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Abstract

Coupling crop growth models and remote sensing provides the potential to improve our 

understanding of the genotype x environment x management (G × E × M) variability of crop 

growth on a global scale. Unfortunately, the uncertainty in the relationship between the satellite 

measurements and the crop state variables across different sites and growth stages makes it 

difficult to perform the coupling. In this study, we evaluate the effects of this uncertainty with 

MODIS data at the Mead, Nebraska Ameriflux sites (US-Ne1, US-Ne2, and US-Ne3) and 

accurate, collocated Hybrid-Maize (HM) simulations of leaf area index (LAI) and canopy light use 
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efficiency (LUECanopy). The simulations are used to both explore the sensitivity of the satellite-

estimated genotype × management (G × M) parameters to the satellite retrieval regression 

coefficients and to quantify the amount of uncertainty attributable to site and growth stage specific 

factors. Additional ground-truth datasets of LAI and LUECanopy are used to validate the analysis. 

The results show that uncertainty in the LAI/satellite measurement regression coefficients lead to 

large uncertainty in the G × M parameters retrievable from satellites. In addition to traditional 

leave-one-site-out regression analysis, the regression coefficient uncertainty is assessed by 

evaluating the retrieval performance of the temporal change in LAI and LUECanopy. The weekly 

change in LAI is shown to be retrievable with a correlation coefficient absolute value (|r|) of 0.70 

and root-mean square error (RMSE) value of 0.4, which is significantly better than the 

performance expected if the uncertainty was caused by random error rather than secondary effects 

caused by site and growth stage specific factors (an expected |r| value of 0.36 and RMSE value of 

1.46 assuming random error). As a result, this study highlights the importance of accounting for 

site and growth stage specific factors in remote sensing retrievals for future work developing 

methods coupling remote sensing with crop growth models.
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1. Introduction

1.1. Background

Mechanistic crop growth models temporally predict the growth of crops as a function of 

genotype x environment x management (G × E × M) factors [1]. By mechanistically 

modeling the effects of G × E × M factors and their interactions, crop growth models are 

able to integrate information about the properties of the seed (genotype), the decisions 

farmers make both at planting and within the season (management), and the variability in the 

weather and soil (environment). Examples of these factors in each category of G × E × M 

are shown in Table 1 [2,3]. In addition to these G × E × M factors, biotic stresses—such as 

weeds, pests, and diseases—can further limit the growth of crops and these factors are 

difficult to model, although some recent advances have been made [4]. Nevertheless, in 

highly developed cropping systems, such as the US corn belt, fields tend to be well-managed 

and the reduction in yield caused by unmodeled factors, such as biotic stresses, is generally 

20% or less [5,6]. As a result, mechanistic crop growth model simulations are able to 

provide valuable information with relatively strong predictive performance in highly 

developed cropping systems [6,7].

Assimilation of remote sensing data into crop growth models can be used to reduce the 

uncertainty in the G × E × M factors (which control crop growth) via calibration [8–11]. In 

the calibration approach to remote sensing data assimilation, the model parameters and G × 

E × M factors affecting crop growth are adjusted by reinitialization until the crop growth 

model output agrees with the remote sensing observation (as opposed to the updating or 

forcing approaches where the crop model state variables are themselves directly altered) [9]. 
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However, uncertainty in the remote sensing retrievals of crop state variables, such as leaf 

area index (LAI), leads to significant challenges [9] in the calibration and determination of 

the G × E × M factors. This is because the interactions of G × E × M factors in crop growth 

models are highly non-linear and careful application of inversion techniques is required to 

determine input parameters from observations [12,13]. As a result, even small uncertainties 

in the remote sensing retrievals can propagate into significant errors in the G × E × M factors 

determined by calibration [14]. Therefore, calibration of crop models with remote sensing 

data is primarily used to analyze output variables, such as yields and biomass, discarding the 

G × E × M factors determined by calibration as an intermediate step [8,15–18].

Nevertheless, improved understanding of the G × E × M factor variability can greatly 

improve our ability to use crop growth models at the regional scale [6,19,20] to predict into 

the future and answer questions about climate change [21], agricultural policies [22,23], and 

yield gaps [24]. At the regional scale, G × E × M parameter uncertainty is even more 

significant due to a lack of calibration data as compared to the field-scale [1,25]. Thus, 

constraints from measurements other than yield are vital for further reduction in the 

uncertainty [25] at this scale. Illustrating this point, ref. [25] found that the majority of the 

uncertainty in LAI simulations for regional simulations of Indian groundnut was parametric 

uncertainty, indicating the potential of reductions in the uncertainties of satellite retrievals 

(such as those of LAI) to significantly improve our understanding of G × E × M variability 

in calibration of regional crop models [26].

The crop state variable retrieval uncertainty is in a large part caused by the variability in 

secondary factors [27–32] that influence the remote sensing measurements, such as cultivar 

type, soil background, canopy structure, and inherent leaf properties; most of these 

secondary factors are strongly dependent on site and growth stage [33–36]. Physical canopy 

radiative transfer models, such as PROSAIL [37], provide a theoretical model to understand 

the effect of the secondary factors by forward modeling the top-of-canopy reflectance 

spectrum from variables describing the soil background, canopy structure, and leaf 

properties [9]. However, inversion of canopy radiative transfer models is ill-posed [38] and 

requires the use of a priori constraints to perform the retrievals [39,40]. While temporal [40–

42] and spatial [40,43] constraints can be used to address the ill-posedness of the retrieval, 

they are not sufficiently powerful to remove the uncertainty. As a result, assumptions must 

be made about the canopy structure and leaf properties [40]. Unfortunately, although both 

canopy structure and leaf properties have a significant effect on the uncertainty of the 

retrieval [32], it is difficult to constrain them beyond finding appropriate ranges for the 

values based on land cover [44] and selecting vegetation indices with greater sensitivity to 

the variable of interest [32,45,46]. However, even though the full spectral modeling can 

optimize the best choice of vegetation indices for given applications, using vegetation 

indices in the retrievals directly still results in valuable spectral information being lost, 

undercutting the benefits of the possibility of using the full spectral information available 

with canopy radiative transfer models in the retrieval itself [47] as full-spectrum methods 

have shown good results in the literature [48,49].

However, because of the lack of information available to remove the uncertainty about 

secondary factors, physical radiative transfer approaches have not dominated over empirical 
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approaches, although these often do not use the full spectral information available from the 

sensor and lack a theoretical basis to control secondary factors [27–29]. The empirical 

algorithms overcome these issues by directly using training data to learn to use the “subtle 

spectral features to reduce undesired effects” [47] that make vegetation retrievals difficult. In 

addition, in some cases, empirical methods are also able to improve the retrievals with 

auxiliary information [29,50,51].

In empirical approaches, the uncertainty caused by the variability in secondary factors 

manifests as the “one place, one time, one equation” issue [27] where regressions between 

the satellite measurements and the crop state variables trained on one set of sites and times 

do not generalize well to another set of sites and times [27,28]. The issue occurs because 

most empirical studies develop a global regression relating the satellite measurements to the 

crop state variables which does not account for the spatiotemporal variability in the 

secondary factors, although some studies have attempted to use the secondary factors to 

improve the retrieval [29,50,51]. Specifically, refs. [50,51] find that developing separate 

regression models for different growth stages provides the best results, while [29] finds that 

including cultivar, planting pattern, and growth stage in the model could improve the 

performance of the retrievals. While the secondary factors in [29,50,51] do not correspond to 

the secondary factors in physical radiative transfer models such as PROSAIL, their indirect 

connection to the leaf and canopy parameters used by PROSAIL [33–36] allows them to 

reduce the uncertainty caused by the secondary effects. Nevertheless, the work on including 

secondary effects is quite limited and hampered by lack of available data [28] to span the 

large spatiotemporal variability in these secondary factors, calling for new approaches to 

address this issue.

In order to address the uncertainty caused by secondary factors, it is necessary to obtain data 

that covers the extent of their spatiotemporal variability. Crop growth models provide one 

possible avenue to obtain information on the secondary factor leaf and soil properties. The 

use of crop growth models to obtain information about the secondary factors has been best 

explored in coupling studies [52–55], where remote sensing data is assimilated into a 

combined model consisting of a crop growth model, a canopy radiative transfer model, and 

formalisms linking the outputs of the growth model with the inputs of the radiative transfer 

model. These studies [52–55] have been successful in coupling several variables from the 

crop growth models, such as LAI, leaf structure parameter, water content, dry matter 

content, total chlorophyll content, and relative soil dryness. The variables coupled in 

addition to LAI are secondary factors that affect LAI retrieval [32] and the coupling can be 

understood to provide constraints on these secondary factors from the biological mechanics 

of growth and its interaction with the weather/soil environment. In addition, if available, any 

genetic (cultivar choice) or management information inputted into the crop model can 

provide additional constraints on the secondary factors [56]. Unfortunately, it is difficult to 

use crop growth models to gain information about these secondary parameters at a regional 

scale as information about G × M parameters is limited at this scale [57]. As a result, 

regional crop growth model simulations are generally validated only against crop yields and 

phenological dates [6,20,58–60] and consequently may have significant uncertainty in their 

prediction of in-season state variables (many of which are secondary factors in LAI retrieval) 

[61]. In contrast, field-scale crop growth model simulations have been validated in much 
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more detail with respect to in-season state variables. For example, several studies [2,62–65] 

evaluate their performance in predicting LAI, canopy cover, biomass, soil moisture, soil 

nitrogen, plant nitrogen, evapotranspiration, and phenology as well as yield. The crop 

model’s stronger performance at field-scale in predicting both the yield and individual 

within-season process can be attributed to the availability of significantly more accurate 

agromanagement information, and to a lesser extent to more accurate soil and weather data, 

at this scale [66]. Thus, incorporating field-scale crop growth modeling of secondary 

parameters in training and testing agricultural satellite retrieval algorithms [67] can 

potentially provide for significant advances in addressing the uncertainty caused by site and 

growth stage specific secondary factors.

1.2. Overview

In this study, we seek to show that the difficulties in using remote sensing to determine the G 

× E × M factors affecting crop growth are strongly connected to variability in the 

relationship of satellite measurments and crop state variables and that the variability in the 

relationship is in a large part caused by site and growth stage specific factors. In order to 

achieve these objectives, this study uses field-scale crop growth model simulations powered 

by accurate agromanagement information and collocated with satellite data at the Mead, 

Nebraska Ameriflux sites, supplemented by ground-truth data from additional sites for 

validation. Crop growth model simulations are used from only the Mead, Nebraska 

Ameriflux sites because geolocated agromanagement information, vital [66] to strong 

simulation performance, is difficult to collect, partially due to farmer concerns about data 

privacy [68], limiting available information about commercial-sized plots. The availability of 

collocated crop growth model simulations allows us to (a) analyze the sensitivity of the 

genotype x management (G × M) factors retrieval by the satellite to variability in the 

relationship of satellite measurments and crop state variables and (b) use time-series analysis 

to analyze the uncertainty caused by this variability. Furthermore, the collocated crop growth 

model simulations are used to demonstrate the possibility of training and testing agricultural 

remote sensing algorithms with farmer-collected agromanagement data across a wide range 

of spatiotemporal variability, following the concept we introduced in [67] at the regional 

scale. Specifically, as in [67], the crop growth model simulations based on the provided data 

can be used to train and test remote sensing retrieval algorithms and, with sufficient farmer 

participation, a large swath of the spatiotemporal variability of the secondary factors 

affecting the retrievals can be covered. This dataset would allow further research to find 

methods to optimally use available weather, soil, and remote sensing data to create 

algorithms to map the regional-scale variability in G × E × M. As a result, by using crop 

growth model simulations at a fixed number of sites where the G × M parameters are known, 

a remote sensing retrieval algorithm could be trained to map G × M parameters where they 

are unknown and where no high quality collocated crop growth model simulations are 

available.
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2. Materials and Methods

2.1. Data

In this study, we rely on two ground-truth maize datasets, which we term FLUX and 

LAIGROUND. The data sources are summarized in Table 2.

The FLUX dataset consists of CO2 flux tower measurements of gross primary productivity 

(GPP) and incoming solar radiation (SRAD) time series in maize fields. The eddy-

covariance technique determines the CO2 flux, which is termed the net ecosystem exchange 

(NEE), from the covariance of the vertical wind velocity and CO2 flux, sampled by the 

tower at 10–20 Hz and averaged to 30–60 minute periods [69]. The height of the flux tower 

is selected to have an appropriate footprint covering the field being studied by the tower. The 

ecosystem respiration is removed from the NEE to obtain the amount of carbon captured by 

the producers in the field (GPP) by a partitioning algorithm. In this study, the GPP is either 

obtained from the nighttime-partitioned product provided by FLUXNET2015 [70] or the site 

principal investigators (PIs), or calculated from NEE using the nighttime-based partitioning 

algorithm of [71] implemented in [72]. In addition, ground-truth LAI that was measured at 

sites on some days of the season and the planting and harvest dates were obtained.

The LAIGROUND dataset consist of ground-truth LAI measurements of maize obtained 

during various campaigns with different measurement technique (Destructive, LAI2000, 

AccuPAR, Hemispheric Photography) compiled by [27]. Destructive measurements of LAI 

rely on physically sampling leaves in predefined areas in the field and measuring them in a 

laboratory to estimate the LAI in the field. In contrast, the LAI2000, AccuPAR, and 

Hemispheric Photography techniques use ground-based optical measurements made by 

researchers in the field on sampling campaign days, along with physics and image-

processing based techniques, to estimate the LAI. Further details on all the different 

measurement techniques can be found in [73]. Each site in this dataset represents a different 

measurement campaign and some consist of LAI measurements on a single day in 

neighboring plots, some consist of LAI measurements in different fields (sometimes many 

kilometers apart), and some consist of multitemporal measurements in the same field/plot. 

Two of the sites are taken at CO2 eddy-covariance tower sites in the FLUX dataset (Italy and 

Mead) and the analysis conducted in this study takes care to ensure these are treated as the 

same sites across datasets when any site-based cross-validation-type analysis is conducted. 

Following [27], LAI measurments greater than 6 and less than 0.1 are excluded from the 

LAIGROUND dataset as they are beyond the prediction power of vegitation indicies.

In addition to the ground data in Table 2, we also use solar-reflective satellite data collocated 

with the ground data. Data from the Thematic Mapper (TM) sensor was used from 

LANDSAT 5, while data from the Enhanced Thematic Mapper Plus (ETM+) sensor was 

used from LANDSAT 7. The LANDSAT satellites used for each site depend upon which 

LANDSAT satellites were active when the site’s data was collected; LANDSAT 5 was active 

from March 1984–January 2013, while LANDSAT 7 was active from April 1999 to present 

(ca. August 2019). Data from both satellites was used at sites where data was collected when 

both satellites were active. For the LAIGROUND dataset, the plots tend to be small and we 

consequently use 30-m atmospherically-corrected LEDAPS surface reflectance data from 
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LANDSAT 5 and 7 obtained from Google Earth Engine via the GEEXTRACT python tool 

within 5 m of the plot coordinates. For the FLUX dataset, the plots tend to be production-

sized fields and we obtain the average LANDSAT LEDAPS [74] surface reflectance within a 

100-m radius of the plot coordinates. In addition, because the LANDSAT temporal 

resolution is quite low, we obtain MODIS MCD43A4 BRDF-corrected nadir surface 

reflectance [75] at daily time steps (based on a weighted window of 16 days of 

measurements) at 500 m for the FLUX sites, allowing for temporal analysis of the retrieval 

performance. MODIS data was available for the entire study period for the FLUX sites.

2.2. Hybrid-Maize (HM) Simulations

Simulations from the Mead, Nebraska Ameriflux sites performed by [90] with the Hybrid-

Maize (HM) crop growth model are used in this study. The simulations in [90] are based on 

accurate weather, soil, and agromanagement inputs at the sites and were publicly released 

[91]. The agromanagement inputs that were recorded at the sites and included in the 

simulations are planting date, cultivar maturity, plant density, and irrigation. The simulations 

were validated by [90] with respect to yield, crop respiration, soil respiration, and ecosystem 

respiration; they are further validated by us in Section 3.1 with respect to LAI and canopy 

light use efficiency (LUECanopy).

2.3. Methods

In this subsection, we discuss the methods we use to evaluate the influence of site and 

growth stage specific secondary factors on the relationship between crop state variables and 

satellite measurments and the retrievability of G × M factors from satellite data. We focus on 

LAI and GPP in this study because these variables are some of the most commonly retrieved 

from remote sensing [92]. GPP also serves as a good complement to LAI because, unlike 

LAI, it is measured on a daily time scale at CO2 eddy-covariance tower stations. Thus, it can 

be used to provide validation of the temporal analysis performed on crop growth model 

simulations of LAI. In addition, it should be noted that, as in [67], the methods in this paper 

can be applied to crop growth model simulated variables whose time series are more difficult 

to measure than LAI and GPP, providing a basis to analyze performance over a wide range 

of crop state variables.

As daily GPP strongly depends on the daily SRAD, studies analyzing satellite-derived GPP 

must account for the strong temporal variability of SRAD when performing retrievals; this is 

because the variability in SRAD can mask the much smaller variability component in GPP 

caused by changes in the leaves, plants, and canopy structure [93]. A common technique to 

do so is correlating the product of the remote sensing measurement and SRAD with daily 

GPP, as opposed to the remote sensing measurement itself [93]. To achieve a result identical 

to [93], we analyze the canopy light use efficiency (LUECanopy) in place of the GPP, which 

we define as

LUECanopy = GPP
SRAD , (1)
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As the definitions of various light use efficiencies are not standardized in the literature, we 

need to clarify that LUECanopy is essentially equivalent to LUEInc in [94], except that 

incident photosynthetically active radiation (PARinc) is used in place of SRAD. In addition, 

we wish to note that for the purposes of this study, the criticism of LUEInc in [94] does not 

apply because our goal in calculating LUECanopy is simply to remove the influence of SRAD 

and not any plant-based process.

2.3.1. Evaluation of HM Simulations—First, in order to use the HM simulations to 

evaluate the retrievals, we expand upon the validation performed by [90] to include LAI and 

LUECanopy. To do so, the modeled and measured values are scatter plotted against each other 

and the coefficient of determination (R2) to the best-fit line and the root mean square error 

(RMSE) between the modeled and measured data are calculated. In order to facilitate 

comparison between the modeling performance of LAI versus LUECanopy, only dates on 

which both LAI and LUECanopy measurements were available were included in the analysis 

to ensure that the distribution of crop growth stage did not vary between scatterplots or 

performance metrics (R2 and RMSE).

In addition, because daily LUECanopy measurements were available, a separate analysis of 

the performance of the LUECanopy values and the change in LUECanopy is made. The change 

in LUECanopy is defined as

ΔLUECanopy[t] = LUECanopy[t + Δ − 1] − LUECanopy[t − Δ + 1], (2)

where Δ is in days and termed the Δ window. ΔLUECanopy is more sensitive to 

environmental-induced changes than the LUECanopy value itself and the performance in 

modeling it thus provides additional information on the strengths and limitations of the 

model.

Furthermore, because of high frequency variability in LUECanopy, the time series modeling 

performance is analyzed at various levels of smoothing. The smoothing is performed by a 

moving average filter which is defined as

LUECanopy[t] = 1
2N − 1 ∑

i = − N + 1

N − 1
LUECanopy[t + i], (3)

where N is in days and termed the smoothing window.

2.3.2. Regression-Based LAI and LUECanopy Retrieval—Second, we train a 

regression of LANDSAT measurements to LAI and LUECanopy with the LAIGROUND and 

FLUX datasets. Specifically, we determine the regression coefficients in

LAI = aEVI2 + b, (4)

Levitan et al. Page 8

Remote Sens (Basel). Author manuscript; available in PMC 2019 September 18.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



LUECanopy = cEVI2 + d, (5)

where EVI2 is the Enhanced Vegetation Index 2 [27] and is defined as

EVI2 = 2.5 NIR − Red
1 + NIR + 2.4Red , (6)

and NIR is the surface reflectance in the near-infrared band, while Red is the surface 

reflectance in the red band. The NIR is designated as Band 4 (0.77–0.90 μm) on Landsat 5 

and 7, while the Red is designated as Band 3 (0.63–0.69 μm). The coefficients are 

determined with leave-one-site-out cross-validation by calculating the coefficients on all 

sites except the one being evaluated. The RMSE performance is then assessed using the 

coefficients determined from all the other sites and the procedure is repeated for each site. In 

addition, confidence intervals for the coefficients are determined by bootstrapping. 

Specifically, for each left-out site, regression coefficients are determined for 1000 random 

subsets of the remaining sites with the probability of inclusion of a point in any individual 

random subset equaling 50%. The 5th and 95th percentiles for the regression coefficients of 

these subset realizations are used as the estimated lower and upper bound of the leave-one-

out regression coefficients for the site.

The LAIGROUND and FLUX datasets are analyzed separately for this procedure. The 

nearest cloud-free LANDSAT measurement within 15 days of the ground measurement is 

used to analyze the LAIGROUND dataset for consistency with [27], while the average 

cloud-free LANDSAT measurement within 10 days of the ground measurement is used for 

the analysis of the FLUX dataset.

2.3.3. Satellite Retrieval and Crop Growth Model Sensitivity Analysis—Third, 

we analyze the sensitivity of the crop growth model to its G × M inputs and analyze how 

uncertainty in the satellite retrieval of LAI propagates to the uncertainty in estimation of its 

G × M inputs. Specifically, we perform new Hybrid-Maize simulations based on the inputs 

used in [90], varying the planting density, the planting date, and the seed’s growing degree 

days to maturity from their actual values, and observe the error in the modeled LAI with 

respect to the measured LAI for the modified simulations. As the emergence date is directly 

input into the simulations in [90], a preliminary set of Hybrid-Maize simulations is used to 

determine the appropriate planting date in Hybrid-Maize for the observed emergence date 

and then this planting date is varied in the sensitivity analysis. This method of determining 

the planting date to be varied is used in place of the actual planting date to remove the 

uncertainty caused by modeling the planting to emergence time (as in [90]).

Comparison of the modeled LAI is performed with both the actual measured ground-truth 

LAI and the measured LAI retrieved from the MODIS measurements. To visualize the effect 

of the uncertainty in the regression coefficients, the error is shown for a range of regression 

coefficients determined from the confidence intervals obtained by bootstrapping in the 
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previous subsection. Specifically, the slope of the regression is linearly varied from its 

minimum lower bound to its maximum upper bound while the intercept of the regression is 

simultaneously varied from its maximum upper bound to its minimum lower bound. As a 

large value for the intercept compensates for a lower value in the slope and vice versa, this 

method generates a realistic space within which to analyze the variation of the regression 

coefficients.

2.3.4. Evaluation of Uncertainty of LAI and LUECanopy Retrievals Due to Site 
and Growth Stage Specific Factors with Temporal Analysis—Fourth, we assess 

the uncertainty of LAI and LUECanopy retrievals with temporal analysis due to site and 

growth stage specific factors. Due to the “one place, one time, one equation” concept [27], 

different regression equations should be used to retrieve the LAI and LUECanopy at different 

sites and growth stages (different times). Furthermore, data from different years may also 

appear to require different regression equations because the interannual difference in 

weather and agromanagement is very significant [13] and can cause large differences in 

secondary factors. Therefore, different years can also be considered different sites for the 

purposes of this analysis. In order to separate uncertainty caused by site and growth stage 

specific factors from other types of uncertainty, we use temporal analysis and focus on the 

retrieval of the temporal change in LAI and LUECanopy. Errors caused by site and growth 

stage specific factors should be strongly positively correlated at the same place and nearby 

times; as a result, errors should partially cancel out when retrieving the temporal change as 

opposed to the actual values themselves. Thus, in order to assess the extent of the 

uncertainty caused by site and growth stage specific factors, the retrieval error of the change 

in LAI and LUECanopy is compared to the theoretical error of the change in LAI and 

LUECanopy assuming temporal independence of error.

To perform the temporal uncertainty analysis for LAI, we use the LAIGROUND dataset as 

the baseline retrieval and apply the LANDSAT-trained leave-one-site-out regression 

coefficients from Equation (4) to the MODIS MCD43A4 BDRF-adjusted daily surface 

reflectance time series to obtain retrievals of LAI with daily resolution. The NIR band is 

designated as Band 2 on MODIS (0.84–0.88 μm), while the Red band is designated as Band 

1 on MODIS (0.62–0.67 μm). The training of the LAI retrieval algorithm is performed on 

the LAIGROUND dataset with LANDSAT measurements for two reasons:

• Using the LAIGROUND dataset with LANDSAT imagery better allows for the 

use of exact point measurements in fields and is thus less likely to be subject to 

uncertainty in training due to the inhomogeneity of LAI in the field, which can 

be significant [95].

• Training on high-resolution LANDSAT imagery as opposed to moderate-

resolution MODIS imagery is preferable due to the significance of the mixed-

pixel effect and neighboring pixels of other land types (including other crops) 

[95,96].

In addition, a scaling effect correction algorithm is not used to correct for the uncertainty in 

applying a regression trained on LANDSAT data to MODIS data as these algorithms 

generally require a priori information on the subpixel contents of the moderate resolution 
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MODIS pixels [95,96] which is not readily available. For this reason, training on MODIS 

pixels would likely not provide a benefit with respect to the uncertainty as it is likely that the 

bias caused by LAI inhomogeneity and the mixed pixel effect varies strongly from site to 

site [95,96].

With these daily LAI retrievals from MODIS measurements, we calculated the change in 

LAI as

ΔLAI[t] = LAI[t + Δ − 1] − LAI[t − Δ + 1], (7)

where Δ is in days and termed the Δ window.

The MODIS-retrieved ΔLAI is compared to the crop growth model predicted ΔLAI using 

the correlation coefficient absolute value (|r|) and RMSE. These metrics are compared to the 

theoretical |r| and RMSE if the error of retrieved LAI [t + Δ − 1] and LAI [t − Δ + 1] were 

independent with a RMSE equivalent to the leave-one-site-out RMSE calculated in Section 

2.3.2. In this case, the theoretical RMSE and |r| can be calculated as

RMSE(ΔLAI[t])Theor = RMSE(LAI[t + Δ − 1] − LAI[t − Δ + 1]) = 2RMSE(LAI[t
]),

(8)

r(ΔLAI[t])Theor =
cov ΔLAIactual + eΔLAI, ΔLAIactual

var ΔLAIactual + eΔLAI var ΔLAIactual

= 1

1 + 2RMSE(LAI[t])
σ ΔLAIactual

2
,

(9)

The uncertainty analysis for LUECanopy is complicated by the presence of high frequency 

components that need to be smoothed by Equation (3) in order to fully understand the 

temporal resolution of the retrieval. As the baseline retrieval methods with LANDSAT 

cannot account for the effects of the temporal smoothing because LANDSAT does not make 

daily measurements, the baseline retrieval must be retrained with MODIS measurements. 

Thus, leave-one-site-out regression is used to determine the regression coefficients in
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LUECanopy = pEVI2 + q, (10)

where EVI2 is the moving average of EVI2 defined as

EVI2[t] = 1
2N − 1 ∑i = − N + 1

N − 1 EVI2[t + i], (11)

With these leave-one-site-out regression coefficients, a baseline RMSE for the retrieval of 

LUECanopy can be identified. In addition, as we have the benefit of a daily time series of 

MODIS measurements, ΔLUECanopy (defined in the same way as ΔLUECanopy in Equation 

(2) can be determined by training a direct regression

ΔLUECanopy = r(EVI2[t + Δ − 1] − EVI2[t − Δ + 1]) + s, (12)

in place of using Equation (10). The regression coefficients in Equation (12) are determined 

by leave-one-site-out cross-validation and the performance is compared to the theoretical |r| 

and RMSE performance defined in Equations (8) and (9) (with LUECanopy substituted for 

LAI). As using Equation (12) depends on having multiple sites for cross-validation, this 

analysis is only performed for the actual LUECanopy measurements, while only the |r| 

correlation with MODIS measurements is analyzed for the modeled measurements. The 

analysis for LUECanopy measurements is performed analyzed for the modeled 

measurements. The analysis for LUECanopy measurements is performed between the 

planting and harvest dates reported for the sites; the LUECanopy analysis is not performed at 

US-Bi2 due to the unavailability of planting and harvest dates at this site.

2.3.5. Training LAI and LUECanopy Retrievals with HM Simulations—Lastly, in 

order to validate the concept of training and testing field-scale remote sensing retrievals with 

crop growth model simulations, we compare the performance of LAI and LUECanopy at sites 

other than those in Mead, Nebraska using (a) regression coefficients trained with the actual 

LAI and LUECanopy measurments at the Mead, Nebraska sites; and using (b) regression 

coefficients trained with HM modeled LAI and LUECanopy values at the Mead, Nebraska 

sites. These retrievals are trained and evaluated using LANDSAT measurements and the 

performance is reported site-by-site.

3. Results

3.1. Evaluation of HM Simulations

We first evaluate the performance at the Mead, Nebraska of the modeled HM LAI and 

LUECanopy at the Mead, Nebraska sites. In Figure 1a,b, we show scatterplots between the 

modeled HM LAI and LUECanopy values and the actual values on the ground. As discussed 

in Section 2.3.1, only dates that have both LAI and LUECanopy measurements are included in 
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Figure 1a,b for consistent comparison of the modeling performance of these two variables. 

The figures show strong performance for modeled LAI and LUECanopy with R2 values of 

0.91 and 0.77 and RMSE values of 0.62 and 0.30, respectively; although, the bias for LUE is 

relatively high.

In Figure 2, the performance of modeled LUECanopy and ΔLUECanopy are shown for all 

ground measurements of LUECanopy, not only those that also have a LAI measurement on 

the same date. Figure 2a shows the scatterplot of modeled LUECanopy versus actual 

LUECanopy with no smoothing, while Figure 2b shows the R2 value between modeled and 

actual LUECanopy and ΔLUECanopy at different levels of smoothing and values of Δ. As seen 

in Equation (3), a smoothing window of 1 represents no smoothing. Only days where 

modeled LUECanopy is greater than zero are included in Figure 2. In addition, a small 

number of days which have less than 95% of the underlying GPP time are series available 

not included in Figure 2.

The results in Figure 2 show that the performance of modeled LUECanopy is strong with an 

R2 of 0.76 in the absence of smoothing and slightly higher with smoothing. In contrast, as 

seen in Figure 2b, the performance of ΔLUECanopy is dependent on the level of smoothing 

and value of Δ, with stronger performance with longer Δ windows and more smoothing.

3.2. Regression-Based LAI and LUECanopy Retrieval

We now present the results of the retrieval of LAI and LUECanopy from LANDSAT EVI2 by 

Equations (4) and (5) via leave-one-site-out cross validation. In Figure 3, we present the 

leave-one-leave-one-site-out performance for all sites combined in separate scatterplots for 

the LAIGROUND and FLUX datasets (prediction performed with leave-one-site-out site-by-

site and then combined into a single scatter plot). Figure 3a shows the LAI retrieval 

scatterplot for the LAIGROUND dataset, while Figure 3b,c show the LAI and LUECanopy 

retrieval scatterplots for the FLUX dataset.

Figure 3 shows LAI retrieved with a R2 performance between 0.41 and 0.69 and an RMSE 

between 1.07 and 1.22, while LUECanopy is retrieved with an R2 performance of 0.74 and an 

RMSE of 0.17. In addition, the site-by-site leave-one-site-out retrieval performance and 

regression coefficients for the LAIGROUND dataset are shown in Table 3, while the 

corresponding information for the FLUX dataset is shown in Table 4. Tables 3 and 4 also 

show the confidence intervals for the determined leave-one-site-out coefficients.

3.3. Satellite Retrieval and Crop Growth Model Sensitivity Analysis

We now turn to presenting the results of the crop growth model-based sensitivity analysis. 

First, in Figure 4, we show the RMSE of the modeled LAI with respect to the actual ground 

truth LAI for different simulations where three G × M parameters (the planting date, seed 

GDD to maturity, and planting density) are o set by various amounts from their actual 

values. The results in Figure 4 allow for analysis of the effect of biases in combinations of 

the three G × M parameters varied in the figures. The results show that with respect to the 

ground-truth there are several combinations of parameter bias which lead to LAI RMSEs 

below 0.7 against the ground-truth measurements, demonstrating ill-posedness in the 

inversion of LAI values to G × M parameters. As expected, the situation where none of the 
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parameters are biased (i.e., the actual G × M parameters applied in the field, at the center of 

the figure), leads to a low RMSE (near 0.6), however other combinations of biases have 

similar RMSE. The magnitude of the error seems to be most sensitive to variations in the 

planting density (as seen by patterns in the variation of the performance corresponding to the 

frequency of the density variation); however, significant negative GDD offsets and positive 

planting day delays are also seen to significantly increase the error. Overall, the error is 

highly variable with respect to the parameter biases and many combinations of biases lead to 

high error (a range of LAI RMSEs from 0.6 to 1.6 is observed). This variation shows the 

strong sensitivity of the LAI to these three G × M inputs and the interactions between them.

In Figure 5, the sensitivity analysis from Figure 4 is reproduced with MODIS LAI retrievals 

instead of ground-truth LAI measurements. First, it is important to note that the analysis 

causes a great increase in the number of points analyzed (from N = 146 to N = 3280) and 

removes potential biases from a skewed distribution of growth stages as all dates are 

included, instead of just the dates where the ground-truth LAI measurements were taken. 

Secondly, the figure shows the change in modeled versus retrieved LAI error as the MODIS 

EVI2/LAI regression coefficients are varied. The results show the strong dependence of the 

error on both the regression coefficients used and the bias in the model parameters. 

Interestingly, although all regression coefficients show good performance for some 

combinations of G × M biases, some regression coefficients show significantly less 

sensitivity to G × M biases than others in terms of LAI error. For example, low regression 

slopes allow for low RMSE values at a limited number of G × M bias combinations, while 

high regression slopes allow for low RMSE values at a significantly greater number of G × 

M bias combinations. As in Figure 4, the variation in the LAI RMSE error is very sensitive 

to the variation of planting density, although negative GDD o sets also have a very 

significant effect in increasing the error. The ill-posedness of inverting the G × M factors 

from the MODIS measurements is seen clearly in the figure with several combinations of 

biases and regression coefficients leading to similar levels of LAI error. As expected, low 

parameter biases (near the center of the figure) lead to low LAI RMSE values, although 

negatively biasing the planting density appears to allow for better matchup with the MODIS 

measurements over a wider range of regression coefficients.

3.4. Evaluation of Uncertainty of LAI and LUECanopy Retrievals Due to Site and Growth 
Stage Specific Factors with Temporal Analysis

We now present the results analyzing the uncertainty of LAI and LUECanopy retrievals due to 

site and growth stage specific factors with temporal analysis. First, in Figure 6, we show 

scatterplots of retrieved versus HM modeled ΔLAI at three values of Δ (Figure 6a–c, Δ = 3, 

6, 9) and compare them to the retrieval performance of HM modeled LAI itself (Figure 6d). 

The leave-one-out regression values from Table 3 for Mead are used to perform the 

retrievals. The results in Figure 6 show a rising level of performance with increasing Δ 

values, ranging from an R2 of 0.41 for Δ = 3 to an R2 of 0.72 at Δ = 9. The retrieval of 

modeled LAI itself is seen to have an R2 of 0.85 in Figure 6d.

In Table 5, we show the actual and theoretical, modeled versus retrieved |r| and RMSE for 

LAI itself and ΔLAI for Δ = 2 to 10. The results in Table 5 show that the actual |r| and 
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RMSE performance of the ΔLAI retrievals significantly outperform the theoretical 

performance calculated with Equations (8) and (9); for example, for Δ = 4, which 

corresponds to a week of measurements, the actual |r| and RMSE values are 0.70 and 0.40, 

while the theoretical values are 0.36 and 1.46, respectively.

In Figure 7, we present the |r| correlation of the MODIS EVI2 measurements versus modeled 

ΔLUECanopy at different levels of smoothing and values of Δ. The results in Figure 7 show 

that the |r| MODIS EVI2/ΔLUECanopy correlation strongly depends on the level of 

smoothing and the value of Δ; however, high |r| values may be obtained when smoothing is 

performed at Δ values above 5.

Only days with modeled LUECanopy greater than zero are included in Figures 6 and 7 and 

Table 5. In addition, for consistency with Figure 2, the small number of days which have less 

than 95% of the underlying measured GPP time series available are not included in Figure 7.

In addition to comparison of modeled values (from the Mead, Nebraska sites) in Figure 7, 

ΔLUECanopy retrievals are compared against the actual ΔLUECanopy measurments at all the 

sites in the FLUX dataset. The performance against all the actual ΔLUECanopy data is shown 

in Figures 8 and 9, while the site-by-site performance is shown in Figures S1–S10 in the 

Supplementary Materials.

Figures 8 and 9 and Figures S1–S10 show that the actual ΔLUECanopy is retrieved with a 

performance at or above the theoretical performance assuming independence of retrieval 

error with respect to time and the relationship holds at most, but not all, sites. Poor 

performance at some sites, as seen in Figures S1–S10, may be explained by the large pixel 

size of MODIS (500 m), which can cause significant noise in the measurement of the daily 

time series depending on the size of the field and the inhomogeneity of the area surrounding 

the field [97,98]. Specifically, the mixed-pixel effect causes the signatures of neighboring 

pixels to be blended and it makes it difficult to separate the time-series of individual crops, 

especially if spring and winter crops are grown nearby [97], as is the case at some of the 

sites where poor performance is observed. Furthermore, the footprint of the flux tower 

measurements themselves depends on meteorological conditions and can be affected by 

process occurring the boundaries of the field [81,99]. Overall, however, strong performance 

is seen outside for the majority site-years of analyzed providing confidence in the retrievals.

3.5. Training LAI and LUECanopy Retrievals with HM Simulations

Lastly, we present the results indicating the performance of training the LAI and LUECanopy 

retrievals with HM modeled values as opposed to measured ground-truth values. In Table 6, 

we compare the RMSE of the LAI retrieval at sites other than Mead in the LAIGROUND 

dataset trained on either actual or modeled Mead LAI values, while in Table 7 we do the 

same for the LUECanopy retrievals in the FLUX dataset.

The results in Tables 6 and 7 show the difference in performance in using modeled versus 

actual data to train the LAI regression is small, while LUECanopy retrievals perform better 

when trained with actual, as opposed to modeled, values.
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4. Discussion

The results presented in this study outline the importance of reducing the uncertainty in the 

relationship between satellite measurements and crop states variables caused by site and 

growth stage specific factors, in particular to use using remote sensing to map the G × E × M 

factors affecting crop growth. The importance of reducing the uncertainty is well illustrated 

by Figure 5, which shows that the set of allowable G × M parameters in terms of consistency 

with the MODIS LAI retrievals (as measured by the RMSE) is strongly a function of the 

regression coefficients chosen.

Based on the “one place, one time, one equation” concept [27], the appropriate regression 

coefficients for each time and place are ultimately different; therefore, auxiliary information 

is needed to select the appropriate regression coefficient column for each site and time to 

retrieve G × M in Figure 5. This variability of the regression coefficients is best seen on the 

LAIGROUND dataset with high-resolution LANDSAT measurements in both the 

coefficients themselves and the large confidence intervals in Table 3, from which the range 

of the regression coefficients in Figure 5 was constructed. Less variability is seen on the 

FLUX dataset in Table 4 because this dataset has fewer points, smaller diversity in sites 

(points from Mead, Nebraska make up more than half the dataset), and is not designed to 

test the spatial variability of LAI in nearby plots in the same way as the LAIGROUND 

dataset; as a result, the LAIGROUND results in Table 3 are more appropriate for analyzing 

the variability between sites. Analyzed in conjunction with Figure 5, the regression 

coefficient variability in Table 3 makes it very difficult to use remote sensing for mapping G 

× E × M. This is because, as illustrated in Figures 4 and 5, the retrieval of G × E × M is 

difficult due to equifinality (i.e., “multiple combinations of parameters leading to similar 

simulation accuracy”) [13] and, especially when the observations are uncertain remote 

sensing retrievals, is ill-posed. Figure 4 does a good job of showing the ill-posedness of the 

G × M retrieval even when using ground-truth LAI measurements; interestingly, due to the 

availability of the entire time series when using MODIS measurements in Figure 5, some 

combinations of G × M identified as probable in Figure 4 are not probable in Figure 5 for 

any combination of regression coefficients. This is an illustration of the importance of the 

number of measurements [13,100] needed to perform G × E × M retrievals and the frequent, 

low-cost observations provided by satellites may be one of the most promising technologies 

to achieve that goal [101].

Although the uncertainty caused by site and growth stage specific secondary factors is well-

known [27–29,50,51], it is difficult to isolate it from other sources. One approach to 

understand it [29,50,51] is to include variables connected to the secondary factors that cause 

it in the regression methodology. Unfortunately, this approach requires that the secondary 

factors causing the uncertainty are known and recorded or measured prior to the analysis 

being conducted. As a result, these studies can miss some of the factors causing the issue 

and underestimate its extent. Another approach is to train a global relationship between the 

satellite variables and crop state variables, ignoring the secondary factors [27]. In this case 

[27], the issue is seen from the variability of the regression coefficients, as in our analysis in 

Tables 3 and 4, as well as indirectly from the variability in the leave-one-site-out RMSE 
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error. However, this method cannot be used to exclude other sources of uncertainty from the 

retrieval, such as random error and the mixed-pixel effect [102].

In this study, temporal analysis is used to avoid these alternate sources [27,29,50,51] of 

uncertainty in determining the portion caused by site and growth stage specific secondary 

factors. The results in Table 5 show that the modeled ΔLAI is retrieved from the MODIS 

measurements with significantly better performance in terms of both |r| and RMSE as 

compared to the theoretical values assuming temporal independence of error, indicating 

significant site and time correlation of error. These results are also reproduced with actual 

ΔLUECanopy measurements across multiple CO2 flux tower sites in Figures 8 and 9. Both the 

results with modeled ΔLAI and actual ΔLUECanopy indicate a significant portion of the error 

can be removed by either predicting the secondary factors [29,50,51] or developing better 

methods to remove their influence, such as identifying vegetation indices less sensitive to the 

secondary factors [32,45,46]. The difference between the actual and theoretical |r| and 

RMSE for both ΔLAI and ΔLUECanopy provide an indication of the possible reduction in 

uncertainty by addressing the issue with secondary factors. The change in performance with 

respect to the value of Δ is driven by two factors:

• As Δ increases, the correlation between the error in the retrieved LAI or 

LUECanopy at t2 relative to t1 decreases because the measurements are more 

likely to be in different growth stages.

• As Δ increases, the magnitude of the retrieved ΔLAI or ΔLUECanopy increases 

relative to the remaining error which is not cancelled when calculating the 

change in the retrieved variables from the variables themselves, i.e., e[t2] – e[t1].

As a result of these opposing error-influencing forces, a single value for the improvement in 

the performance that could be obtained by reducing the influence of the secondary factors 

cannot be reported; however, as seen from Table 5 and Figures 8 and 9 the improvement can 

be quite dramatic. For example, for ΔLAI, the actual |r| at Δ = 2 is 0.52 (compared to a 

theoretical value of 0.13), while the actual |r| at Δ = 5 is 0.75 (compared to a theoretical 

value of 0.45).

Furthermore, the retrieval of ΔLAI and ΔLUECanopy is also useful as a measure of the 

timescale of the sensitivity of the MODIS measurements to changes in the canopy structure 

and crop status. Good responsiveness to time-sensitive processes is important for several 

applications of crop remote sensing. For example, good responsiveness is important in 

monitoring phenology/crop growth stage [103–105], in-season detection of nitrogen 

[106,107], water [107], and disease [108] stresses, and measurement of change in canopy 

structure during important growth stages [109]; these applications have proven useful in crop 

growth modeling [59], precision agriculture [110], and phenotyping for breeding selection 

[109], respectively. Our results show that satellite measurements can be used to detect 

changes in LAI and LUECanopy faster and with higher accuracy than would be expected if 

the error in LAI and LUECanopy retrievals were not autocorrelated in time. As a result, we 

also show the potential to rapidly detect growth and stress related changes in crop state 

variables with greater precision than that would be inferred from looking at generic 

performance validation studies [27,28].
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The analysis used in this study relied on strong crop growth model simulation performance 

to expand the dataset of ground-truth LAI values to daily resolution. The strong performance 

of the HM simulations at the Mead, Nebraska sites, seen in [90] and Figures 1 and 2, 

provides a potential path [67] for future research to expand the development of testing 

agronomic satellite retrievals to a wide variety of G x E x M factors with farmer-provided 

agromanagement data. The results in Table 6 show that using HM simulation data from 

Mead, Nebraska to train LAI retrievals can provide nearly identical performance to using 

actual ground-truth LAI measurements from Mead, while Table 7 shows there are some 

relatively significant biases in using modeled LUECanopy to perform the training. The 

results for training LAI retrievals on HM simulation data show the potential of using farmer-

provided agromanagement data to train, test, and improve retrieval algorithms, although a 

significantly greater number of sites is needed to understand the generalizability and biases 

in this approach. Nevertheless, the potential of reducing the uncertainty in the retrieval of 

crop state variables and the potential to map G × E × M factors shown in this study provides 

strong support for pursuing this collocated crop growth model simulation approach in 

agricultural remote sensing and should encourage researchers to increase their collaborative 

efforts with farmers [68,111].

5. Conclusions

Overall, this study showed that the uncertainty in the relationship between satellite 

measurements and crop state variables caused by site and growth stage specific factors is 

significant and that this uncertainty leads to significant difficulties in using remotely sensed 

data to retrieve the genotype × environment × management (G × E × M) factors affecting 

crop growth. Specifically, we performed an extensive temporal analysis and retrieved the 

temporal change in the state variables to show the amount of uncertainty caused by this 

secondary factor variability. We also conducted a joint sensitivity analysis of the remote 

sensing regression parameters and crop model genotype x management (G × M) parameters 

to illustrate the ill-posedness of retrieving G × E × M factors from satellite measurements. 

This analysis demonstrated the criticalness of reducing the uncertainty in the relationship 

between satellite measurements and crop state variables to make the retrieval more feasible. 

The study shows the need for further data collection and model development that can 

ultimately lead to methods that will minimize the secondary uncertainty caused by site and 

growth stage specific factors. In addition, further work needs to be conducted to address the 

application of the methods to use training data in regions where biotic stresses are poorly 

controlled and where, unlike the case in highly developed commercial agriculture systems 

[7], crop growth models show significant uncertainties in predicting actual yields (as 

opposed to potential yields) due to suboptimal management [112]. This research is critical to 

achieving the goal of mapping G × E × M factors on a global scale, which can improve our 

ability to make predictions about the global agricultural system [113].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of actual versus Hybrid-Maize modeled (a) LAI and (b) LUECanopy. The color 

bar represents the number of points at each marker on the scatter plot.
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Figure 2. 
(a) Comparison of actual versus Hybrid-Maize modeled LUECanopy. The color bar 

represents the number of points at each marker on the scatter plot. (b) R2 of actual versus 

Hybrid-Maize modeled LUECanopy and ΔLUECanopy at different levels of smoothing and 

values of Δ. N = 2384.
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Figure 3. 
Comparison of retrieved versus actual (a) LAI from LAIGROUND dataset, (b) LAI from 

FLUX dataset, and (c) LUECanopy from FLUX dataset from LANDSAT measurements via 

leave-one-site-out cross validation. The color bars represent the number of points at each 

marker on the scatter plot.
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Figure 4. 
RMSE of modeled LAI with respect to ground-truth LAI while varying planting date, seed 

GDD to maturity, and planting density. Leftmost column represents offset from actual seed 

GDD to maturity in °C in simulation variant, while second leftmost column represents offset 

from actual planting density in plants/m2 in simulation variant. Header represents offset 

from actual planting day in days in simulation variant. Color bar at right and color in main 

panel represents LAI RMSE for each simulation variant determined by column and header. 

N = 146.
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Figure 5. 
RMSE of modeled LAI with respect to MODIS-retrieved LAI while varying planting date, 

seed GDD to maturity, and planting density, and MODIS EVI2/LAI regression coefficients. 

Leftmost column represents offset from actual seed GDD to maturity in °C in simulation 

variant, while second leftmost column represents offset from actual planting density in 

plants/m2 in simulation variant. Topmost header represents offset from actual planting day 

in days in simulation variant. Second topmost header represents slope of EVI2/LAI 

regression coefficients. Third topmost header represents intercept of EVI2/LAI regression 

coefficients. Color bar at right and color in main panel represents LAI RMSE for each 

simulation variant determined by column and header. N = 3280.
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Figure 6. 
(a–c) Retrieved versus HM Modeled ΔLAI at Δ = 3, 6, 9; (d) Retrieved versus HM Modeled 

LAI. The color bars represents the number of points at each marker on the scatter plot.
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Figure 7. 
|r| correlation of the MODIS EVI2 measurements versus HM modeled ΔLUECanopy at 

different levels of smoothing and values of Δ. N = 2359.
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Figure 8. 
Actual versus theoretical |r| performance of the ΔLUECanopy retrievals at all sites at different 

levels of smoothing and values of Δ. N = 5071.
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Figure 9. 
Actual versus theoretical RMSE performance of the ΔLUECanopy retrievals at all sites at 

different levels of smoothing and values of Δ. N = 5071.
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Table 1.

Examples of common G × E × M factors included in crop growth model simulations [2,3].

Genotype (G) Environment (E) Management (M)

-Air temperature

-Relative maturity/Growing degree days (GDD) to maturity
-Precipitation -Planting date

-Solar radiation -Planting density

-GDD to flowering -Soil bulk density -Fertilization

-Potential kernel number per ear -Soil available water -Irrigation

-Grain growth rate -Soil organic matter

-Soil pH
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Table 2.

Ground-truth data sources.

Name Source(s) Sites Variables

Name Latitude Longitude Name Years

Flux Tower Data (Dataset 
FLUX)

Ameriflux 
[76]

US-Ne1 [35] 41.17 −96.48

GPP SRAD Ground-
truth LAI Planting 
Date Harvest Date

2001–2009

US-Ne2 [35] 41.16 −96.47 2001–2009, 
odd years

US-Ne3 [35] 41.18 −96.44 2001–2009, 
odd years

US-Ro1 [77] 44.71 −93.09 2005, 2009, 
2011, 2013

US-Bi2 [78] 38.11 −121.54 2017–2018

US-ARM [79] 36.61 −97.49 2008

GHG 
Europe

DE-Kli [80] 50.89 13.52 2007, 2012

FR-Gri [81] 48.84 1.95 2008, 2011

FR-Lam [82] 43.5 1.24 2006, 2008, 
2010

IT-BCi [83] 40.52 14.96 2004–2009

NL-Lan [84] 51.95 4.90 2005

LAI Validation Data 
(Dataset LAIGROUND)

Beltsville 39.02 −76.85

Ground-truth LAI

1998
(N = 26)

CEFLES2 [85] 44.37–
44.46 0.19–0.41 2007

(N = 26)

California [86] 35.48–
39.22

−122.14–
119.28

2011–2012
(N = 59)

Italy (IT-BCi) [83] 40.52 14.96 2008–2009
(N = 35)

[27] Mead (US-Ne1 to 
US-Ne3) [35] 41.16 −96.46 2001–2012

(N = 92)

Missouri [87] 39.22 −92.12 2002
(N = 10)

NAFE06 [88] −35.08–
34.65 145.87–146.3 2006

(N = 14)

SEN3EXP2009 [85] 39.02–
39.08 −2.13–2.08 2009

(N = 10)

SMEX02-IA [89] 41.76–
42.67 −93.73–93.28 2002

(N = 21)

SPARC [85] 39.03–
39.15 −2.18–1.88 2003–2004

(N = 45)
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Table 3.

Leave-one-site-out LAIGROUND LANDSAT regression retrieval performance using Equation (4). a and b are 

the leave-one-site-out regression coefficients defined in Equation (4).

Best-Fit Lower Bound Upper Bound

Coefficients Confidence Interval Confidence Interval

Site Name LAI RMSE N a b a b a b

Beltsville 0.85 26 8.41 −0.92 7.73 −1.18 8.94 −0.65

CEFLES2 0.60 26 8.55 −1.04 7.76 −1.31 9.10 −0.79

California 1.32 59 8.19 −1 7.60 −1.43 9.22 −0.77

Italy 1.58 35 8.49 −1.20 7.82 −1.49 9.33 −0.92

Mead 1.03 92 7.27 −0.71 5.86 −0.9 7.67 −0.03

Missouri 0.98 10 8.13 −0.87 7.57 −1.18 8.81 −0.64

NAFE06 0.31 14 8.08 −0.85 7.50 −1.42 9.19 −0.61

SEN3EXP2009 0.89 10 8.20 −0.94 7.61 −1.26 8.90 −0.77

SMEX02-IA 1.23 21 8.66 −1.06 8.03 −1.35 9.27 −0.83

SPARC 1.74 45 9.17 −1.31 8.67 −1.55 9.73 −1.03
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Table 4.

Leave-one-site-out FLUX LANDSAT regression retrieval performance using Equations (4) and (5). a, b, c, and 

d are the leave-one-site-out regression coefficients defined in Equations (4) and (5).

RMSE Best-Fit Coefficients Lower Bound Confidence Interval Upper Bound Confidence Interval

Site LAI LUE N a b c d a b c d a b c d

DE-Kli 0.85 0.20 4 9.52 −1.24 1.67 −0.16 9.29 −1.36 1.57 −0.20 9.85 −1.11 1.75 −0.13

FR-Gri 2.83 0.18 1 9.52 −1.24 1.67 −0.16 9.28 −1.36 1.58 −0.20 9.88 −1.09 1.76 −0.14

FR-
Lam 1.11 0.20 16 9.64 −1.25 1.68 −0.17 9.40 −1.38 1.61 −0.21 9.96 −1.15 1.77 −0.15

IT-Bci 1.41 0.18 32 9.50 −1.27 1.69 −0.17 9.28 −1.39 1.62 −0.22 9.83 −1.15 1.80 −0.15

US-
Arm 0.14 0.23 1 9.52 −1.24 1.66 −0.16 9.24 −1.36 1.57 −0.19 9.87 −1.03 1.74 −0.13

US-Bi 1.63 0.26 12 9.52 −1.25 1.66 −0.16 9.35 −1.40 1.57 −0.20 9.90 −1.17 1.74 −0.13

US-Ne 0.83 0.16 124 8.84 −0.80 1.44 −0.09 5.08 −0.96 1.11 −0.18 9.62 1.36 1.68 0.07

US-Ro 1.16 0.13 27 9.59 −1.20 1.65 −0.16 9.25 −1.37 1.51 −0.18 9.93 −1.03 1.71 −0.10
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Table 5.

Comparison of HM modeled versus retrieved, actual and theoretical |r| and RMSE for the retrieval of ΔLAI 

and LAI at different values of Δ.

Δ (Days) |r|-Modeled v 
Retrieved

|r|-Modeled v Retrieved 
Theoretical

RMSE-Modeled v 
Retrieved

RMSE-Modeled v 
Retrieved Theoretical N

2 0.52 0.13 0.17 1.46 2429

3 0.64 0.25 0.29 1.46 2429

4 0.70 0.36 0.40 1.46 2429

5 0.75 0.45 0.50 1.46 2429

6 0.78 0.53 0.59 1.46 2429

7 0.81 0.59 0.68 1.46 2429

8 0.83 0.65 0.76 1.46 2429

9 0.85 0.69 0.84 1.46 2429

10 0.87 0.73 0.91 1.46 2429

Value Itself (no 
delta) 0.92 0.88 1.04 1.03 2429
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Table 6.

Comparison of LAI retrieval performance on all sites except Mead, Nebraska in LAIGROUND dataset trained 

with actual and HM-modeled Mead, Nebraska LAI values. Only sites with ≥ 10 points listed site-by-site; all 

points included in last row.

Site N RMSE Trained with Actual Data RMSE Trained with Modeled Data

Beltsville 26 0.84 0.97

CEFLES2 26 0.77 0.87

California 59 1.40 1.39

Italy 35 1.39 1.26

Missouri 10 0.62 0.78

NAFE06 14 0.51 0.47

SEN3EXP2009 10 0.87 0.79

SMEX02-IA 21 1.20 1.32

SPARC 45 1.87 1.83

All except Mead, Nebraska 267 1.30 1.29
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Table 7.

Comparison of LUECanopy retrieval performance on all sites except Mead, Nebraska in FLUX dataset trained 

with actual and HM-modeled Mead, Nebraska LUECanopy values.

Site N RMSE Trained with Actual Data RMSE Trained with Modeled Data

DE-Kli 4 0.20 0.20

FR-Gri 1 0.20 0.10

FR-Lam 16 0.21 0.29

IT-BCi 32 0.19 0.35

US-ARM 1 0.22 0.37

US-Bi2 12 0.26 0.30

US-Ro1 27 0.13 0.28

All except Mead, Nebraska 93 0.19 0.31

Remote Sens (Basel). Author manuscript; available in PMC 2019 September 18.


	Abstract
	Introduction
	Background
	Overview

	Materials and Methods
	Data
	Hybrid-Maize (HM) Simulations
	Methods
	Evaluation of HM Simulations
	Regression-Based LAI and LUECanopy Retrieval
	Satellite Retrieval and Crop Growth Model Sensitivity Analysis
	Evaluation of Uncertainty of LAI and LUECanopy Retrievals Due to Site and Growth Stage Specific Factors with Temporal Analysis
	Training LAI and LUECanopy Retrievals with HM Simulations


	Results
	Evaluation of HM Simulations
	Regression-Based LAI and LUECanopy Retrieval
	Satellite Retrieval and Crop Growth Model Sensitivity Analysis
	Evaluation of Uncertainty of LAI and LUECanopy Retrievals Due to Site and Growth Stage Specific Factors with Temporal Analysis
	Training LAI and LUECanopy Retrievals with HM Simulations

	Discussion
	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.
	Table 7.

