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Abstract Drug-resistant tuberculosis is a growing threat

to global public health. Recent efforts to understand the

evolution of drug resistance have shown that changes in

drug–target interactions are only the first step in a longer

adaptive process. The emergence of transmissible drug-

resistant Mycobacterium tuberculosis is the result of a

multitude of additional genetic mutations, many of which

interact, a phenomenon known as epistasis. The varied

effects of these epistatic interactions include compensating

for the reduction of the biological cost associated with the

development of drug resistance, increasing the level of

resistance, and possibly accommodating broader changes

in the physiology of resistant bacteria. Knowledge of these

processes and our ability to detect them as they happen

informs the development of diagnostic tools and better

control strategies. In particular, the use of whole genome

sequencing combined with surveillance efforts in the field

could provide a powerful instrument to prevent future

epidemics of drug-resistant tuberculosis.

1 Introduction

The burden of tuberculosis (TB) caused by drug-resistant

Mycobacterium tuberculosis is increasing. As a result, the

standard treatment—directly observed therapy, short

course (DOTS), composed of 2 months of a four-drug

regimen (isoniazid [INH], rifampicin [RIF], pyrazinamide

[PZA], and ethambutol [EMB]) followed by 4 months of

treatment with RIF and INH—is failing in many settings.

While any degree of drug resistance might worsen the

prognosis of a TB patient [1, 2], there are two definitions of

M. tuberculosis drug resistance that are particularly rele-

vant in the clinic. The first refers to strains resistant to both

INH and RIF and is termed multidrug-resistant (MDR) TB.

Treatment of patients with MDR-TB takes up to 2 years,

and currently relies on fluoroquinolones (FQ) and inject-

able aminoglycosides (AG) to compensate for the loss of

two of the most potent drugs. The acquisition of resistance

to these classes of antibiotics defines extensively drug-

resistant (XDR) TB. XDR-TB requires even longer treat-

ment with drugs that are much more costly and show

limited efficacy and increased side effects. Thus, XDR-TB

is often associated with poor treatment outcomes [3].

The global genetic diversity of drug-resistant M. tuber-

culosis [4–10] indicates that drug resistance evolved on

multiple occasions in geographical hotspots characterized

by a high incidence of TB and inappropriate drug treat-

ment. The latter is mostly driven by a lack of resources

resulting in two important failures: an inability to detect

drug resistance and a systemic failure to deploy effective

treatments [11–13]. The ongoing evolution of M. tuber-

culosis in these settings [14, 15], provides an excellent

opportunity to explore the genetic determinants of drug

resistance in this microbe.

Unlike most other bacterial pathogens, resistance plas-

mids and horizontal gene transfer play no role in the

acquisition of drug resistance in M. tuberculosis. More-

over, efflux mechanisms appear to serve only as a ‘stepping

stone’ to high-level resistance. They allow the bacteria to

tolerate higher levels of drug but do not per se result in

clinically relevant levels of resistance to multiple antibi-

otics in M. tuberculosis [14, 16–18]. Instead, the evolution
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of strains resistant to multiple antibiotics is driven by the

sequential acquisition and accumulation of resistance-

conferring mutations on the bacterial chromosome. These

mutations primarily interfere with drug-target binding (e.g.

RIF-rpoB [19], FQ-gyrA [20]), compromise prodrug acti-

vation (e.g. INH-katG [21], PA-824-fgd [22]), or cause

over-expression of the target (INH/ETH—promoter region

of inhA). The elucidation of the mechanisms of action for

many antimycobacterials led to the identification of key

determinants of resistance (see Zhang and Yew [23] and

Almeida Da Silva and Palomino [24] for reviews), and the

realization that the corresponding genetic mutations can be

used as reliable molecular markers for drug susceptibility

testing (DST) [25]. The application of this knowledge to

the clinic has resulted in the development of diagnostic

tools based on nucleic acid amplification (NAA) that

overcome many of the shortcomings of phenotypic DST;

these include a long turnaround time, outcome variability,

and infrastructure requirements [26–29]. A comprehensive

overview of these diagnostic tools has been given else-

where [30]. Recently, one of these tools, known as Xpert

MTB/RIF, has been the subject of a policy update pub-

lished by the World Health Organization. Their recom-

mendation for Xpert MTB/RIF to replace microscopy in

HIV-positive patients, patients suspected of MDR-TB, and

those suspected of TB meningitis follows its successful

implementation in many countries [31, 32]. The instrument

is designed to analyse sputum directly, hence bypassing the

need for primary bacterial culture. It simultaneously tests

for the presence of M. tuberculosis and RIF resistance.

Even though this technology is having a positive impact on

TB control by offering high sensitivity and reducing the

time to TB diagnosis, the associated costs and infrastruc-

tural requirements (e.g. a constant power supply, machine

maintenance) remain limiting for many high-burden

countries [32, 33]. Hence, on-going efforts in product

development focus on cheaper and simpler so-called

‘point-of-care’ diagnostics [34]. Nonetheless, DST without

bacterial culturing will continue to require NAA. The

choice of targets for NAA will determine the power of

future diagnostics. It should be based on detailed knowl-

edge of the relationship between strain genotype, drug

resistance phenotype, and the patient treatment outcome in

terms of relapse rate and treatment failure. Whole genome

sequencing (WGS) of clinical drug-resistant strains of M.

tuberculosis should be combined with the analysis of

clinical information from patients infected by these strains

to yield valuable new insights into the biology of drug

resistance.

In this review, we first summarize key findings from

recent WGS studies of mycobacterial drug resistance. We

focus specifically on results that shed light on why the

acquisition of individual drug resistance-conferring

mutations is only part of the problem. We then use specific

examples to illustrate how understanding more broadly the

evolutionary mechanisms that drive drug resistance can

inform the development of improved diagnostic tools as

well as better strategies to preserve both existing and new

treatment regimens.

2 New Genomic Insights into Mycobacterium

tuberculosis Drug Resistance

The evolutionary path leading through drug resistance is

strongly influenced by two factors: epistasis and bacterial

fitness [35–38]. We define epistasis as a set of genetic

interactions where the phenotypic effect of one mutation is

determined by the presence of one or more other mutations.

For example, resistant strains carrying the same resistance

mutations vary in their capacity to transmit from patient to

patient [39–42], showing that the strain genetic background

can determine the course of evolution of drug resistance.

Bacterial fitness, on the other hand, is a function of growth

rate, virulence, and transmissibility [15, 43]. Any mutation

that reduces it in relation to the wild-type strain is said to

carry a ‘fitness cost’. The most immediate way to estimate

the relative fitness is to measure the growth rate of bacteria

in culture. On average, most drug-resistance mutations

carry a fitness cost (see Fig. 3) [44] whose magnitude

positively correlates with the frequency of different resis-

tance mutations in the clinic; resistant strains with the

smallest fitness defect are most abundant [45, 46]. Further-

more, the fitness of resistant mutants is not fixed; evolution

is an ongoing process, and a comparison between clinical

and laboratory strains carrying the same drug-resistance

mutation shows that clinical strains often successfully

bypass any fitness cost imposed by resistance [45]. The

acquisition of such compensatory mutations is also an

example of epistasis and is key in the evolution of trans-

missible drug-resistant strains that pose the greatest risk to

public health [6, 10, 47–51]. Unfortunately, we do not cur-

rently have sufficient knowledge to predict epistatic inter-

actions a priori, so we must rely on detecting them

empirically by studying the genetics of drug resistance [52].

A number of recent studies used WGS to address the

evolution of drug-resistant M. tuberculosis [7, 9, 51, 53,

54]. The authors of these studies used approaches based on

phylogeny [7], molecular epidemiology [9, 51, 53], and

mutation frequency analyses [54] to compare drug-sus-

ceptible and drug-resistant clinical strains of M. tubercu-

losis. The shared aim of these studies was the identification

of bacterial genes under positive evolutionary selection by

drug pressure. The detailed discussion of the merits and

shortcomings of the analytical approaches used in these

studies is beyond the scope of this review, but it is
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important to note that there is considerable overlap in the

findings of these studies. In addition to known drug targets,

all studies identified novel bacterial genes and intergenic

regions whose function may be ancillary to drug-resistance

mutations (see Fig. 1). In particular, several genes involved

in lipid metabolism, cell wall homeostasis, purine metab-

olism, and transcriptional control appear to be positively

selected in presence of anti-TB drugs [7, 54]. These studies

represent an important step towards an improved under-

standing of drug resistance. However, with the exception of

just a few mutations (e.g. ponA1, and the promoters of thyA

and thyX [7, 54]), the actual role of these genes remains

unclear, essentially offering an extended list of genes of

interest that require further investigation. Consequently, it

is currently not possible to evaluate the role of these genes

in the development of future diagnostics or therapies.

In addition to the above genes, there are a growing

number of novel genes for which experimental evidence is

available to support a role of epistasis in adaptation to

resistance. These genes were identified through recent

studies aimed at elucidating the evolutionary trajectory of

drug-resistant M. tuberculosis in the clinic [6, 47] and

include rpoC, which mediates the adaptation to RIF

resistance, and Rv3806c, which appears to have a role in

EMB resistance. RIF resistance is caused by mutations of

the beta subunit of RNA polymerase encoded by rpoB.

Mutated amino acids are normally involved in drug binding

and are usually restricted within a short stretch of the

protein termed the rifampicin resistance determining region

(RRDR) [19]. Many of these mutations carry a fitness cost

[45, 49] that appears to be negatively correlated with the

activity of the mutant enzyme [55]. The importance of this

Fig. 1 A web of epistasis mediates drug resistance in M. tubercu-

losis. Key genes in M. tuberculosis drug resistance have been plotted,

taking into account their approximate position in the genome. Genes

in bold are known to be directly involved in antibiotic resistance.

Lines denote putative epistatic interactions; connecting genes

involved in the physiology of a drug as well as more broad/indirect

mechanisms referred to as ‘ancillary to drug resistance’. This

categorization is meant to include factors mediating complex aspects

of cell physiology, such as cell permeability and mutation-induced

physiological changes. Bold lines connecting rpoB to rpoC and embB

to Rv3972 refer to in vitro validated compensatory mechanisms.

Specific mutation pairs using M. tuberculosis numbering are shown

where known. Figure based on information from the following

references: [6, 7, 24, 46, 47, 49, 51, 54, 91–94]. AG aminoglycosides,

EMB ethambutol, ETH ethionamide, FQ fluoroquinolones, INH

isoniazid, PAS para-aminosalicylic acid, PZA pyrazinamide, RIF

rifampicin, STR streptomycin. Many ancillary genes were omitted for

the sake of clarity—see original papers for a more comprehensive list

[7, 54]
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aspect of RNA polymerase physiology is clearly illustrated

by the fact that one of the most frequent resistance muta-

tions observed in the clinic, S450L, (equivalent to S531L in

Escherichia coli) also carries the lowest fitness cost [45].

Moreover, this mutation appears to be almost ubiquitous

among MDR strains of M. tuberculosis [6, 9, 10, 48, 51],

and perhaps more importantly, is shown to be strongly

associated with the acquisition of compensatory mutations

within RNA polymerase genes (rpoA, rpoB, and rpoC).

This combination of mutations is strongly associated with

improved transmissibility of strains as evidenced by clonal

expansion of M. tuberculosis strains carrying these partic-

ular mutations in patient populations [9, 48, 51]. The role

of these compensatory mutations (see Koch et al. [56] for a

more comprehensive review) appears to be to restore wild-

type function of mutant RNA polymerase, probably on the

level of enzymatic activity [49, 50]. Alternatively, these

compensatory mutations maybe also restore the baseline

gene expression profile of cells. Specifically, rpoB mutants

were shown to have a modified lipid profile [57] as well as

a modified expression of many proteins involved in lipid

metabolism, particularly phthiocerol dimycocerosates

(PDIMs) [58]. Interestingly, lipid metabolism genes,

including those for PDIM metabolism, seem to be under

positive selection during the evolution of drug resistance

[7, 54]. Because PDIMs and other mycobacterial lipids

play an important role in virulence [59, 60], this argues that

global physiological consequences of drug-resistance

mutations could provide a contextual framework, within

which the compensatory mechanisms mediated by muta-

tions in ancillary genes can be explored [7, 51, 54].

A recent set of experiments reported by Safi et al. [47]

demonstrate the effect of epistasis in the progressive increase

of minimal inhibitory concentration (MIC) for a drug.

Focusing their study on EMB, they observed that acquisition

of high-level resistance to EMB is a multistep process. In

addition to the most frequently isolated resistance mutant—

embB M306V—they identified nonsynonymous mutations

in Rv3806c and a synonymous mutation in Rv3792 as

important contributors to EMB resistance in vitro. They

proceeded to show that Rv3806c is involved in modulating

the availability of EmbB substrates, while the synonymous

single nucleotide polymorphism in Rv3792 apparently sta-

bilized embC RNA, leading to a de facto over-expression of

the gene, resulting in reduced susceptibility to EMB [47].

Finally, epistasis is not limited to the physiology of a

single drug. Investigations into the interaction between

mutations resulting in resistance to disparate drugs have

suggested that positive epistasis may drive multidrug

resistance [61]. Our group recently published a report

showing that specific resistance mutations in rpoB and

gyrA can compensate for each other’s fitness defects, to the

point that some strains carrying both mutations are fitter

than either single mutant [46]. Moreover, the particular

combinations of mutations conferring resistance to RIF and

ofloxacin (OFX) associated with the highest overall fitness

appear to be positively selected in high-burden settings.

The examples listed here are not designed to offer a

comprehensive overview of all reported examples of

epistasis in drug-resistant M. tuberculosis; we have tried to

sketch a more complete picture in Fig. 1. Instead, they

were chosen to illustrate important concepts brought to

light by recent studies: in the first place, based on current

data, it appears that compensatory mutations occur most

frequently in strains that already harbor the least costly

mutation [48]. Second, epistatic interactions occur between

specific mutations [46, 47, 49], and in some cases these can

be mutually exclusive; for example, a strain harboring an

rpoA mutation does not then also acquire an rpoC or

additional rpoB mutations [6, 50, 51, 62]. Continued

exposure to a drug seems to impose constraints on evolu-

tion that facilitate the acquisition of compensatory muta-

tions in strains that are already resistant [36, 50]. Once

generated, these strains are more likely to be transmitted

than strains carrying the resistance mutation alone [48, 51].

A further consequence of continued drug exposure is the

stepwise accumulation of mutations that result in an

increased level of resistance to a drug [47]; a factor that is

already influencing INH resistance in XDR strains [63] and

may contribute to higher levels of resistance to FQ [64, 65].

Moreover, epistasis can occur between drug-resistance

mutations [46, 61, 66], implicating individual resistance

determinants as drivers of polydrug resistance. Combined,

these observations clearly indicate that continued inap-

propriate treatment, in part caused by misdiagnosis of

resistance, drives the evolution of more transmissible,

increasingly drug-resistant strains [10, 51].

A further set of factors, not considered hitherto, is

involved in the generation of protein heterogeneity in the

cell. The primary source of this is mutations, and mutation

rates were shown to vary between different phylogenetic

lineages of M. tuberculosis. The Beijing family of strains in

particular seems to have a higher mutation rate [67–69].

The exact consequences of this remain to be determined,

but differences in mutation rate have been used to explain

the correlation between this genotype with a higher rate of

drug-resistance acquisition. Mathematical models estimate

that Beijing strains are 22-fold more likely to produce

MDR strains [68]. Another intriguing possibility was

recently put forward by Javid et al. [70], who argue that

protein variability driven by errors in the central informa-

tion-processing pathway (DNA-RNA-protein) may provide

a phenotypic stepping-stone to resistance akin perhaps to

other ancillary mechanisms shown in Fig. 1. While
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intellectually appealing, the clinical relevance of such a

scenario remains to be substantiated.

3 Implications for Diagnosis and Therapy

The translational potential of the knowledge gained from

the above studies lies in the implementation of molecular

tools in TB control (see Table 1 for a summary). Wells

et al. [71] offer an excellent review of current and future

needs for the clinical management of TB, addressing

diagnostics, surveillance, and programmatic approaches. It

is useful to take advantage of their conceptual framework

to discuss the impact of the themes that emerge from

evolutionary studies. They place capabilities available to

TB control programs onto a continuum that spans from

community-based physicians to supranational reference

laboratories (see Fig. 2). Accordingly, the available

resources combined with the specific needs of each level

will dictate the contribution that molecular approaches can

offer.

In the clinic, the main goal is rapid and effective treat-

ment of infected individuals. This relies on quick and

reliable case detection, and, given the need for speed, is

likely to depend on molecular diagnostics in the future

[71]. In this setting, focusing on drug-resistance mutations

offers high sensitivity and specificity for key first-line

drugs [25]. Including compensatory mutations (e.g. in rpoC

or rpoA, discussed above) as diagnostic markers is unlikely

to provide additional clinical benefit, because mutations in

rpoB already display a high sensitivity and specificity for

detecting MDR-TB in individual patients [33, 72]. In

contrast, a key area in which evolutionary lessons could be

brought to bear in a significant manner is surveillance.

Consider the reproductive number of a pathogen (R0, see

Fig. 3). Two dimensions are paramount to the outcome of

transmission cycles; one is pathogen transmissibility

(t) and the other is time to effective treatment (c 9 d).

Strain fitness plays a role in the former, while drug resis-

tance considerably influences the latter. It is in the interest

of public health to identify and eradicate transmissible

drug-resistant strains quickly. We are currently failing on

this front—in 2012, fewer than one-quarter of estimated

MDR-TB cases were detected, and only 23 % of those had

DST results reported for PZA and FQ [73]. To this end,

there is scope for the implementation of ‘molecular diag-

nostics for public health’. Screening for the emergence of

compensatory mutations in a population, perhaps by

Table 1 Implications of understanding evolutionary mechanisms of drug resistance for tuberculosis control

Experimental observation Physiological consequence Implications

Resistant strains gain compensatory

mutations that change the basic

physiology, e.g. RIF-rpoC

Increased transmissibility, increased propensity to

acquire additional resistance

Focus surveillance on mutations that correlate

with transmissible, highly resistant strains

Use spent biosamples to establish wide

catchment area for WGS-based surveillance

Continued exposure to RIF directs

evolution towards the acquisition

of compensatory mutations

More rapid evolution of compensatory mutations Use molecular tools to probe the genotype of

strains and stop administering ineffective drugs

immediately

Epistasis exists between drug-

resistance mutations for a single

drug: e.g. EMB, FQ, INH, RIF

Multi-step acquisition of high level of drug resistance Define clinical breakpoint concentrations based

on specific susceptibility profiles for a drug

Positive epistasis between rpoB and

gyrA mutations

Strains with specific combinations of resistance

mutations (e.g. gyrA D94G and rpoB H445Y) are

fitter than the wild type

Drug regimens containing both RIF and FQ may

fail more quickly. Assess current clinical trials

for evidence

Evaluate if the order in which drugs are

administered might enhance negative epistatic

interactions

Some mutations conferring

resistance to FQ and bedaquiline

have no fitness costs attached

No need to compensate for specific resistance

mutations

Enforce appropriate administration of drugs to

avoid adding these antibiotics to failing

regimens or use as monotherapy

Explore the spectrum of resistance mutations,

identify low cost and frequent mutations before

releasing the drug into the market

Mutation rates vary between M.

tuberculosis lineages

Beijing family strains acquire resistance to INH and

RIF at a higher rate and are 22 times more likely to

develop into MDR than the laboratory-adapted

strain

Increase frequency of phylogeny-based

surveillance and focus monitoring on areas

with high rates of Beijing strains

EMB ethambutol, FQ fluoroquinolones, INH isoniazid, RIF rifampicin, WGS whole genome sequencing
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focusing on re-treatment cases [74] to pinpoint areas with

evolved highly transmissible strains as they emerge [48,

51], would aid the public health official to prioritize

resource allocation and interrupt the spread of these strains.

Examples of such measures include targeted delivery of

individualized, albeit expensive treatments, resource-

intensive active case finding, and, in extreme cases, isola-

tion [75, 76]. In line with the described differences in

mutation rates between M. tuberculosis lineages [67, 68],

the public health official may include phylogenetic markers

to focus monitoring on areas with a high incidence of

Beijing strains. Performing surveillance based on high-

resistance mutations alone may be insufficient. Mutations

conferring intermediate resistance, namely, below that of

empirically determined resistance breakpoints, play a

potentially pivotal role in the spread of resistance [47]. We

have used the ‘fitness-MIC space’ to illustrate these con-

cepts in Fig. 3. It is also important to stress at this point,

that strains harboring mutations conferring low-level

resistance can often be treated effectively with existing

drugs [77], either by increasing the dosage of the same

drug, or by using alternative drugs from the same class, as

is the case of FQ [78]. Conversely, the use of ineffective

drugs should be stopped immediately to avoid directing the

evolution of a strain [36, 50] towards a more transmissible

phenotype.

In addition to surveillance, knowledge of epistasis

should be applied to the design and deployment of future

drug regimens. Given the genetic interaction between

mutations in rpoB and gyrA [46], it may be dangerous to

administer RIF and FQ simultaneously, and should perhaps

be avoided. A number of current clinical trials are testing

an iteration of such a combination [79], and their outcomes

should be carefully scrutinized by using WGS for evidence

of epistasis-driven drug resistance [74, 80–82]. Protecting

new drug classes is equally important. Bedaquiline is the

first new antimycobacterial to be approved by the US FDA

for over 40 years [83, 84]. Given the availability of be-

daquiline resistance mutations with no fitness cost, or even

a fitness benefit (see Fig. 3) [85], it is key that the guide-

lines for the administration of the drug are adhered to [86,

87], especially in light of the fact that no standardized

regimen exists for it yet. Most importantly, bedaquiline

should not be used to rescue a failing regimen, and should

Fig. 2 The healthcare continuum. A diagrammatic representation of

the current healthcare continuum as described in Wells et al. [71],

showing different healthcare levels with their distance from the

patient. The resources dimension encompasses a breadth of param-

eters, from access to infrastructure and apparatus, to technical

proficiency of staff and financial resources that are available.

Different diagnostic and DST technologies are shown as bars with

the arrows indicating the levels at which we would ideally deploy

them in the future. WGS whole genome sequencing, LPA line probe

assay, MGIT mycobacterial growth indicator tube: phenotypic DST

using the Bactec MGIT 960 instrument, automated NAT automated

nucleic acid amplification technology

Fig. 3 Evolutionary trajectories of epistasis-driven resistance. The

relative fitness of strains carrying key drug-resistance mutations

grown in the absence of drug was plotted against their contribution to

MIC to illustrate the relationship between genotype and phenotype for

important drug-resistance mutations. Lines connecting individual

mutations denote strains carrying two mutations, while arrows denote

estimates of the fitness of double/triple-mutants (three different types

of arrows are used to illustrate different evolutionary trajectories).

Reproductive number (R0) defined as the number of secondary cases

caused by an infected individual is roughly equal to the product of an

organism’s transmissibility (t), number of contacts (c), and the

duration of infection (d). Fitness estimates were summarized from

Gagneux et al. [45] (RIF, M. tuberculosis), Borrell et al. [46] (FQ,

Msm), Safi et al. [47] (EMB, M. tuberculosis), and Huitric et al. [85]

(BDQ, M. tuberculosis). We were unable to find true relative fitness

measurements for KatG S315T and GyrA A90V; these were

estimated from Pym et al. [95] and Poissy et al. [96]. Fold increases

in MIC shown are averages of values obtained from Sougakoff et al.

[97–99], Pang et al. [97–99], and Anthony et al. [97–99] for RIF; Pym

et al. [95] for INH; Safi et al. [47, 100, 101], Plinke et al. [47, 100,

101], and Starks et al. [47, 100, 101] for EMB; Aubry et al. [94, 102–

105], Matrat et al. [94, 102–105], Cheng et al. [94, 102–105], Duong

et al. [94, 102–105], and Malik et al. [94, 102–105] for FQ; and

Huitric et al. [85] for BDQ. BDQ bedaquiline, EMB ethambutol, FQ

fluoroquinolones, INH isoniazid, MIC minimum inhibitory concen-

tration, RIF rifampicin
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always be administered with other effective drugs to min-

imize the emergence of resistance.

4 Conclusion

Consensus is growing that biological parameters such as

the frequency of resistance mutations, the occurrence of

low- or no-cost drug-resistance mutations, epistasis

between resistance mutations, as well as host genetics

should be considered when deciding on future treatment

protocols [88]. Efficient inclusion of all of these factors for

drug-resistance surveillance requires broader implementa-

tion of WGS. The World Health Organization is currently

analyzing the results of a surveillance effort looking for

underlying resistance to PZA and FQ where phenotypic

DST was paired with DNA sequencing (Zignol, unpub-

lished). The timing of the study is crucial in view of the

fact that many of the new treatment regimens under

investigation rely on these two drugs, and underlying

resistance may severely compromise their success.

Applying WGS to clinical trials can also contribute

important information on the success of a new treatment

[81], as well as sorely needed data for new-in-class anti-

biotics such as PA-824, delamanide, bedaquiline, and

SQ109 [89]. Together, this knowledge should be used to

build an accurate picture of how the genetic makeup of a

strain ultimately determines the success of treatment.

Due to high costs and logistical requirements, WGS

technology might not find its way into many of the most

affected and often resource-poor countries in the short term.

However, applied at a supranational or national level with a

wide-spread community-based catchment area, WGS would

allow high-throughput analysis of known but also unknown

mutations. Healthcare officials would thus obtain surveil-

lance data and essential information for the development of

new diagnostic tests adjusted to the prevailing resistance

pattern [39, 40, 42, 90]. For example, one could imagine an

approach in which used sputum-microscopy slides from

primary TB-diagnostic centers are recycled as a source of M.

tuberculosis DNA for pooled DNA sequencing to measure

the frequency of drug-resistance alleles in a particular patient

population. Similarly, spent DST samples, such as myco-

bacterial growth indicator tubes (MGIT) and Loewenstein–

Jensen slopes, would provide an excellent source of DNA for

WGS-based surveillance. The application of WGS and

evolutionary principles to drug resistance in M. tuberculosis

has been furthering our understanding of the challenges

faced in the clinic as well as contributing key data for

developing tools and strategies to control drug-resistant TB.

As new treatment regimens containing new drugs are

implemented, we will have to establish the spectrum of

epidemiologically relevant mutations as soon as possible.

This will help us track the emergence of strains resistant to

these drugs in real-time, thereby prolonging the life span of

the new regimens—a fundamental concern given how pre-

cious new drugs are.
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