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THE BIGGER PICTURE Modern systems biology experiments profile thousands of biomolecules across
many experimental conditions to generate insights about the biological system. While data collection for
these experiments can be routine, interpretation of the resultant datasets often requires interlaboratory
collaboration of scientists with diverse expertise and is hindered by challenges inherent to sharing and
exploring ‘‘Big Data.’’ We have developed Argonaut, a web-based platform purpose-built to accommodate
large-scale, multi-omic experiments and to enable intuitive and interactive exploration of the associated
data. Argonaut presents the experimental results in an online code-free environment, empowering both ex-
perts and non-experts worldwide to easily interact with and share the data. Our platform aims to streamline
derivation of impactful experimental conclusions by overcoming the hurdles of working with large datasets
and lowering the barrier to entry for biological and clinical collaborators.

Production: Data science output is validated, understood,
and regularly used for multiple domains/platforms
SUMMARY
Researchers now generate large multi-omic datasets using increasingly mature mass spectrometry tech-
niques at an astounding pace, facing new challenges of ‘‘Big Data’’ dissemination, visualization, and explo-
ration. Conveniently, web-based data portals accommodate the complexity of multi-omic experiments and
the many experts involved. However, developing these tailored companion resources requires programming
expertise and knowledge of web server architecture—a substantial burden for most. Here, we describe Argo-
naut, a simple, code-free, and user-friendly platform for creating customizable, interactive data-hosting web-
sites. Argonaut carries out real-time statistical analyses of the data, which it organizes into easily sharable
projects. Collaborating researchers worldwide can explore the results, visualized through popular plots,
and modify them to streamline data interpretation. Increasing the pace and ease of access to multi-omic
data, Argonaut aims to propel discovery of new biological insights. We showcase the capabilities of this
tool using a published multi-omics dataset on the large mitochondrial protease deletion collection.
INTRODUCTION

Multi-omics is a powerful and versatile approach for probing bio-

logical systems. Encompassing many layers of biological infor-
This is an open access article under the CC BY-N
mation, multi-omics data can holistically describe a living system

and its response to perturbations, as metabolites, lipids, and

proteins co-function to orchestrate responses to various stim-

uli.1,2 Recent advances in mass spectrometry (MS) profiling
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technologies have revealed this coordination by enabling simul-

taneous measurement of multiple molecular classes.3–9 Specif-

ically, improvements in experimental throughput of multi-omic

analyses have opened the door to large-scale MS-based

profiling studies, where the analysis of diverse biomolecules in

many samples under dozens of different conditions is consid-

ered nearly routine.10–16

The rapid creation of these large and complex datasets,

however, presents a new challenge: quickly processing raw

MS data into sets of quantified biomolecules and extracting

rigorous biological insights from these results. To this end, tools

for processing mass spectral data—primarily proteomic data,

such as Perseus and MSstats17,18—have enabled a number

of analyses and visualizations. Nonetheless, major challenges

persist: (1) designed for use by MS experts, these tools require

both a thorough understanding of statistics and knowledge of

common nuances in MS data; (2) because data processing is

not fully streamlined, considerable hands-on and potentially

taxing interaction with large datasets is required, and (3) these

tools’ tabular outputs are not conducive for dissemination to

and exploration by a non-expert user base. Making results

accessible to a broader scientific community is essential to

realizing the full potential of biological MS, particularly as MS

technologies become increasingly application-driven and

therefore collaborative.19,20

Online data analysis and visualization tools have become

increasingly popular in other areas of science as they stand to

alleviate many of the issues associated with analysis and

communication of large datasets.21–23 These online tools also

avoid issues commonly associated with software distribution,

eliminating the need for version control by centralizing the soft-

ware to a standardized web server environment. Functional

web-based utilities thus provide an efficient means to share re-

sults with collaborators, minimize the challenges of data transfer

between laboratories, and improve scientific discussion. In fact,

to augment dissemination of study findings, many large-scale

resource projects feature tailored companion websites that facil-

itate interactive data exploration.11,24–26

Although ideal, such custom web-based interfaces are

tedious and time-consuming to develop—even for a single

research project. Construction of these tools requires program-

ming experience and familiarity with web server architecture.

Recently, Torre et al. presented BioJupies, a web-based utility

that greatly augmented the analysis and distribution of transcrip-

tomic data.27,28 Other research groups have released web appli-

cations that facilitate online exploration and sharing of MS data-

sets.29–34 The next generation of tools should be available to

non-programmers, able to convert general multi-omics MS

data into a cloud-friendly format, comprehensively interfaced

with interactive visualizations, and sharable with collaborators

for intuitive hands-on exploration.

To fulfill this need, we present a new platform called Argonaut.

Our tool enables rapid and codeless generation of MS data

exploration portals, allowing users to create project-specific

websites hosted on standalone web servers using the Docker

environment.35 We describe this process in detail below,

demonstrating its use with a large multi-omic dataset generated

by a study on yeast mitochondrial protease deletion. In brief,

users upload their quantitative data (formatted in simple generic
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spreadsheets) directly to a browser. Argonaut then performs on-

the-fly statistical analyses of those data and allows users to

select several interactive visualizations, which are automatically

embedded into the customwebsite. Once created, the data por-

tals can be securely shared with researchers worldwide in just a

few clicks.

RESULTS

Creation of the Multi-omic Data Portal Argonaut
Overview

Argonaut allows users to easily generate standalone, password-

protected websites containing analyses and visualizations of

their MS data (hereafter ‘‘data portals’’). Argonaut contains Java-

Script, PHP code, and all necessary files and architecture to run

an interactive data portal on a public or private web server. Each

data portal holds project descriptors, interactive visualizations,

and detailed annotations describing the types of data inside

the project. Individual data portals can be created in a ‘‘contain-

erized’’ Docker environment, allowing users to save and export

snapshots of a fully functional data portal at any time.35

The portal creation process can be completed through a series

of intuitive steps (Figure 1). First, a new data portal is initialized

using Docker. Then, the project owner can log into the data por-

tal through their preferred web browser and begin to customize

the newly created portal by providing a project title and descrip-

tion and uploading hierarchically organized quantitative data in

accordance with their experimental design. The upload proced-

ure allows for experimental or technical replicates to be easily

grouped into separate branches under experimental treatment

and an ome classifier. Argonaut utilizes an HTML upload page

that accepts files containing quantitative data in a post-pro-

cessed form, e.g., tabular sets of biomolecule abundances.

While many pipelines use a variety of standardized file formats

to store data,36,37 Argonaut supports solely tabular, text-based

spreadsheets; thanks to their simplicity and flexibility, many

search algorithms and processing pipelines are capable of ex-

porting results in this format. Following the initial data upload,

users can select individual visualizations to add to their custom

web portal from a menu of options, such as volcano plots and

correlations, among many others. Based on these selections,

Argonaut constructs a complete data exploration webpage

with all associated functionality embedded. These custom web

portals can then be shared with other researchers—at the

discretion of the creator—via a tiered-permission sharing

scheme.

Use with Testbed Dataset

To demonstrate how our tool creates interactive data portals for

improved analysis and exploration, we acquired data from a

multi-omics study investigating the biological functions of mito-

chondrial proteases and their substrates in Saccharomyces cer-

evisaie.38 In this study, 19 single-gene deletion yeast strains and

a control wild-type strain were analyzed in biological triplicate

under two growth conditions for a total of 120 unique samples

per ome. We reasoned that this rich dataset with validated bio-

logical insights could serve as a suitable and sufficiently chal-

lenging testbed for our tool. The publicly hosted data portal con-

taining this dataset can be accessed at https://coonlabdatadev.

com with the username ‘‘guest’’ and password ‘‘password.’’

https://coonlabdatadev.com
https://coonlabdatadev.com


Figure 1. The Argonaut Workflow
Argonaut is designed as a portable platform to share multi-omics data in an online environment using customizable interactive visualizations. Processed

quantitative measurements from case/control-style experiments are uploaded to the online platform in a variety of text-based formats. Uploaded data are then

categorized according to the uploader’s experimental design. Common data transformations, such as missing value imputation, filtering missing values, control

normalization, or log2 transformations, can be conducted. Inferential statistics are used to determine the significance of molecular perturbations. Data portals can

be customized in a variety of ways, allowing detailed project and data descriptions, selection of visualization options, and project management. Data portal

access can also be shared directly with collaborators using a secure permission sharing scheme, allowing multiple laboratories to concurrently explore large

datasets to rapidly generate biological insight.
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The Veling et al. study38 identified and quantified >3,000 bio-

molecules. Highlighting the compatibility of this dataset with

our platform, we converted the abundance measurements of

these biomolecules into three comma-separated value tables,

each corresponding to one of the omes profiled in the study,

i.e., the proteome, metabolome, and lipidome. The columns of

the files included non-redundant biomolecule identifiers (e.g.,

UniProt, KEGG, or HMDB), unique names of experimental condi-

tions, including names of the strains, condition and replicate in-

formation, and optional sample metadata (alternative biomole-

cule names, FASTA headers, etc.), as illustrated in Figure S1A.

A category of information in the columns must be specified dur-
ing the data upload. The rows contained quantitative values of

each biomolecule in the respective sample conditions. An in-

depth description of file structure along with example quantita-

tive files can be found in the Supplemental Information and at

Argonaut’s GitHub.

As in many other large-scale studies, samples in this study

were processed in experimental batches with a designated

batch control (the wild-type strain) and included biological repli-

cates. To accommodate this common experimental design,

Argonaut utilizes a tree-based hierarchy to organize replicates

of experimental conditions in a batch-based format (Figure S2B).

Within each branch, samples are grouped to determine their
Patterns 1, 100122, October 9, 2020 3
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relationship to the rest of the samples within the uploaded data-

set, including designation of replicate sets. Here, three replicates

of the wild-type strain were denoted as batch controls, and

average molecular abundances in the three replicates of

each deletion strains were normalized to those in the selected

control. (Note if the batch control is not specified, Argonaut

automatically normalizes the condition measurements to the

population mean.)

During data processing, the significance of molecular pertur-

bations between the control and the experimental conditions

are calculated on-the-fly using homoscedastic two-sided t test

and stored in a database for later querying. Correction for multi-

ple hypothesis testing is available upon request using either

the Bonferroni or Benjamini-Hochberg procedures. Once data

are processed, the project creator can navigate to a list of

predefined options to choose which visualizations and analyses

are presented to the portal’s users. If downstream gene ontology

(GO) enrichment is desired and the uploaded file includes GO-

compatible unique identifiers, GO enrichment analysis can be

enabled (as it was here) by specifying the sample organism,

the column containing the unique identifier, and the identi-

fier type.

As a completed study, Veling et al.38 had already conducted

data transformations and filtered quantitative values. Note, how-

ever, that users can enable these operations during upload. For

example, raw quantitative values can be log2 transformed to

facilitate fold-change visualizations; missing values can be

imputed utilizing a modified left-censored imputation algorithm

(Figure S2); or biomolecules can be filtered from downstream

analysis if their abundance measurements are missing in a

user-defined number of samples (refer to Experimental Proced-

ures, Table S1, or the GitHub repository for more details).

Interactive Data Examination
The tree-based architecture of Argonaut is well suited to multi-

omics datasets because it segregates data from a single exper-

iment into distinct branches (e.g., proteomics, lipidomics, and

metabolomics). When exploring the data, users can rapidly

switch between branches to compare trends in biomolecular

abundances across samples and different biomolecule classes.

On entering the data portal, users are presented with an over-

view, highlighting each branch (i.e., "ome") of the project to

briefly summarize the number of experimental conditions, repli-

cates, quantified biomolecules, and the average biomolecular

coefficient of variation. From there, users can navigate to data

visualization tabs to explore their dataset through six staple bio-

informatic analyses (shown in Figure 2): volcano plots, principal-

component analysis (PCA), condition-condition correlation, bar

charts of biomolecule abundances, GO enrichment, and the

outlier analysis. All visualizations are generated using the Java-

Script library D3.js, which enables real-time customization and

interactivity.39 Significance thresholds can be modified by the

user, andmany plots support data point lookups by unique iden-

tifiers. Any visualization can be downloaded in scalable vector

graphics format, permitting easy integration into publication-

quality figures, such as Figure 2. In addition, any uploaded or

processed data used to generate the visualizations can be ex-

ported from the data portal. All interactive visualization options

can be inspected on our publicly hosted portal. Further details
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explaining each visualization can be found on the Argonaut Gi-

tHub wiki.

Using our platform, we rapidly recapitulated and visualized

several key findings of the Veling et al. study38 using their quan-

titative data. All visualizations contained in Figure 2 are represen-

tative of a selection of main text and supplemental figures from

the Veling et al. manuscript. Volcano plots are used in many

studies to quickly highlight large biomolecule perturbations re-

sulting from experimental conditions.15,40 For example, the vol-

cano plot in Figure 2A demonstrates the upregulation of the

iron sulfur assembly protein ISA1 in the absence of the pim1

gene, revealing a novel relationship between the two proteins

in the Veling et al. study. PCA is commonly used to segregate

groups of samples or explore origins of variance in a dataset.41,42

Veling et al. used PCA (2B) to demonstrate clear separation be-

tween the respiration-deficient and respiration-competent

deletion strains. Biomolecule abundance correlation analysis is

often used in gene deletion experiments to (2C) demonstrate a

functional relationship between two gene deletion strains.11,41,43

Veling et al. show the highly correlated biomolecular profiles of

two strains with deleted genes encoding inner membrane prote-

ases IMP1 or IMP2.

Visualizing a biomolecule’s abundance across experimental

conditions can quickly highlight expression trends and relation-

ships.44 Figure 2D visualizes the log2 fold-change abundance

of 3-hexaprenyl-4-hydroxybenzoate across all respiration-

competent deletion strains and uncovers an increase in the

Oct1 mitochondrial protease deletion strain, as reported in the

Veling et al. study. GO analysis is an established technique to

determine enrichment for specific biological functions in tran-

scriptomic and proteomic datasets.45 Veling et al. demonstrated

that the term ‘‘ATP synthesis coupled protein transport’’ (2E) re-

capitulates known relations between the mitochondrial protease

PIM1 and ATP. The outlier analysis used in Argonaut quickly pin-

points experimental conditions where a biomolecule is charac-

teristically and uniquely up- or downregulated.11 Veling et al.

used an outlier analysis (2F) to reveal the Oct1mitochondrial pro-

tease deletion condition to be a significant outlier regarding the

abundance of 4-hydroxybenzoate, a cytosolic precursor to co-

enzyme Q. These and potentially many other novel biological in-

sights, hidden in the Veling et al. dataset, are readily accessible

for exploration by all portal users. As the website navigation is

intuitive, engaging with the hosted data requires almost zero

prior guidance from the project creator, lowering barriers to entry

into the world of omics data for non-experts.

Collaborative Data Exploration
To facilitate the collaborative aspect of Argonaut, we have devel-

oped a three-tier accessibility scheme that allows for flexible uti-

lization of a generated data portal’s functionality. The first tier

provides read-only access to a portal, allowing users with this

permission level to view the created portal, interact with the visu-

alizations, and download the processed data. The second tier

upgrades the user accesses with additional edit permissions,

which allow addition, removal, and editing of the uploaded

data. The third permission tier corresponds to that of the project

creator, allowing the users to invite collaborators, select visuali-

zations, or to delete the portal website entirely. Only project

owners and tier three users have comprehensive discretion



Figure 2. Bioinformatic Analyses Visualized

by Argonaut

The website generated using the multi-omic data

from the Veling et al. study38 features a set of six

analyses that are commonly used in omics experi-

ments. All visualizations are fully interactive and

generated on-demand using queries from the up-

loaded data. Significance and fold-change thresh-

olds for data highlighting can be adjusted as

desired. Visualizations and data can be exported

from the portal as vector graphics, such as the ones

used to produce this figure, and text-based

spreadsheets, respectively.
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over access to the portal data. Upon initial data portal creation,

the portal creator is the only user with permission to access

the site, but with only a few clicks, they can send any collaborator

an automatic invitation via email, which grants the new user ac-

cess to the associated project with the predefined permission

level. Aswith the Veling et al. dataset here, upon publication proj-

ect-specific data portals can be made public through the crea-

tion of generic usernames and passwords with the tier one

permission level. This approach enables online exploration of

the study findings worldwide, while preserving the integrity of

the underlying dataset.

DISCUSSION

As MS researchers increasingly leverage ‘‘Big Data’’ offered by

high-throughput studies to answer complex biological ques-

tions, multi-omics has become a particularly powerful

approach—one that generates deep, multi-faceted descriptions

of the biological systems. However, tools to quickly interpret the

results of multi-omics experiments across laboratories have not

kept pace. Furthermore, in the absence of means for enhancing

data accessibility, the discovery potential of rapidly evolving MS

techniques remains untapped for many researchers unfamiliar

with systems biology data.

We thus developed Argonaut to provide the scientific commu-

nity with a much-needed tool for the analysis of complex, data-

rich resources. To the best of our knowledge, there is no other

online platform enabling users to compile their multi-omics
Patterns 1, 100122, October 9, 2020 5
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data into a single resource and present it in

the easy-to-explore manner offered by

Argonaut. The codeless generation of

web portals for data analysis, visualization,

and sharing makes this tool uniquely

accessible. The only processing steps

required to take advantage of the platform

are fold-change normalization and statisti-

cal testing. These requirements are

compatible with the most generic batch-

based experimental designs that contain

biological or technical replicates. For addi-

tional flexibility, the platform allows users

to conduct different data filtering, missing

value imputation, or data transformation

operations external to Argonaut, if desired.

Note that due to the considerable compu-
tational overhead, Argonaut does not currently support process-

ing of raw MS data. We also elected to decouple Argonaut from

any ‘‘searching’’ operations such as those offered by the Trans

Proteomic Pipeline.46 In doing so, we aim to keep our platform

lightweight to increase performance for both data retrieval and

visualization and to widen the platform’s utility for the broades

MS and omics community.

Although the analyses conducted using Argonaut are no

exhaustive or exclusive to our platform, we believe the ability

to securely share experimental omics data in a unified and intu

itive format is transformative. By encouraging broad data

sharing among the research community, Argonaut is directed

to two goals. First, to leverage the expertise of individual re-

searchers from different fields, it allows data portals to be

hosted on a public server as companion resources for manu-

scripts using a few simple Docker commands. Second, to

sharpen the significance of novel biological findings, our tool al-

lows multiple portals from our platform to be hosted in a singu

lar location that permits facile comparisons across multiple da

tasets. Indeed, Argonaut is an agnostic platform that can be

used to host the transcriptomic, epigenetic, and phenotypic

data that are often generated in the course of comprehensive

multi-omic studies. While researchers with the relevant exper-

tise may adapt Argonaut to serve specific projects, applica-

tions, or frameworks, for the broader scientific community i

provides a stable platform for teams of researchers to concur-

rently conduct in-depth analyses of their datasets and readily

share their data in an intuitive, accessible format.
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EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the Lead Contact, Evgenia Shiskova

(shishkova@wisc.edu).

Materials Availability

This study did not generate any new unique reagents or materials.

Data and Code Availability

The example Argonaut data portal can be accessed at https://

coonlabdatadev.com using the username ‘‘guest’’ and the password ‘‘pass-

word.’’ Argonaut’s source code and guides can be found at https://github.

com/coongroup/Argonaut. Several example upload datasets are included in

Data S1. The Argonaut Docker image is made freely available at https://hub.

docker.com/r/coonlabs/argonaut.

Method Details

The Argonaut Website

The Argonaut platform is served using a Dockerized Linux, Apache, MySQL,

and PHP (LAMP) web server. The client-side platform was built using the

HTML templating framework Bootstrap (3.0) and the Angular JavaScript

framework (1.3). Server-side scripts written in PHP (7.0) conduct database op-

erations and relay data from the server to client. On container initialization, a

blank data portal is assembled with a predefined administrative user account

for data portal management. When an administrative user makes edits to a

data portal’s architecture (e.g., name, project description, or visualization op-

tions), the server utilizes the new data portal settings and embeds the new set-

tings together with required HTML templates (Figure S1B) to generate an up-

dated data portal. Only administrative user accounts are permitted to upload

data, edit project architecture, or invite new users. A running data portal can

be accessed by any web browser capable of communicating with the Docker

machine.

Docker Image

The Docker container consists of a base Ubuntu image (16.04) with an Apache

web server (2.4.33), a MySQL relational database (1.6), and the server-side

scripting language PHP (7.2). The PHP Data Object extension is used for

abstracted database accession and automatic query sanitization. The MySQL

database contains 47 tables that serve to rapidly store and retrieve user-sub-

mitted data. To enable easier project database management, phpMyAdmin, a

common web server administration platform, is installed to enable database

management (phpMyAdmin, https://www.phpmyadmin.net). Details on how

to access the Docker phpMyAdmin administrator account can be found in

the Argonaut wiki.

Submitting Data to Argonaut

Administrative users can submit text-based spreadsheets containing quanti-

fied biomolecules from an experiment using the angular-file-upload directive

(https://github.com/nervgh/angular-file-upload). Argonaut is capable of

parsing text-based quantitative spreadsheets delimited by tabs. For example,

when a new text file is uploaded, the file is temporarily saved and the column

headers from the file are extracted. A selection of these column headers can

be assigned as either unique identifiers, metadata, or quantitative values (Fig-

ure S1A). The user must also indicate which quantitative columns belong to the

same condition (i.e., are experimental replicates). The uploaded data are then

organized into a hierarchical structure to bin the uploaded experimental repli-

cates into experimental conditions, experimental batches, and branches (Fig-

ure S2B). Branches can be used to separate data generated from themeasure-

ment of different biomolecule classes (i.e., different omes). Eachuploadedfile is

denoted as by the keyword batch (i.e., batch of samples), and as such, missing

value imputation, control normalization, and log2 transformation is conducted

on each uploaded set of quantitative values independently. If standard molec-

ular identifiers are included in the uploaded file’smetadata, specifying the sam-

ple organism, the column containing the standard identifier, and the type of

standard identifier can enable optional downstream GO enrichment analysis.

UniProt identifiers are currently supported for GO enrichment analysis,

although support for other identifiers will be added in the future.

Once all settings are finalized, the data’s tree-based hierarchy is presented

to the user for review, and raw quantitative values are then uploaded to the
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database to begin data processing. Submitted files are queued for processing

using the PHP Client URL library to enable the asynchronous processing of

concurrent file uploads and appropriately meter computational resources. Af-

ter data processing, the uploaded spreadsheet is preserved on the server to

allow retrieval of the stored data at any time. Examples of Argonaut-compat-

ible files can be found in the Supplemental Information, downloaded from

the Argonaut GitHub, or downloaded from the example portal provided at:

https://coonlabdatadev.com using the username ‘‘guest’’ and the password

‘‘password.’’

Quantification and Statistical Analysis

Data Organization

When a new set of experimental data is uploaded, the server begins a multi-

stage process to group the user-provided quantitative measurements into

conditions, conduct an optional log2 transform for raw quantitative values,

optionally filter and/or impute missing values, and conduct significance testing

and other analyses. Initially, the raw quantitative values are loaded into mem-

ory. Any non-numeric or negative entries found in the quantitative value col-

umns are initially set to 0. Biomolecular identifiers are checked for uniqueness.

If duplicates in the unique identifier values are found, the duplicates are ap-

pended with an additional text qualifier. The experimental condition classifiers

provided by the user are used to group experimental replicates into conditions

using custom PHP objects. These grouped experimental replicates then un-

dergo optional data filtration and missing value imputation.

Data Filtering and Imputation

Before statistical testing can be conducted, the dataset first must be consid-

ered complete, meaning there can be no missing values. The best strategy to

account for missing quantitative values is an active area of debate regarding

large-scale MS profiling experiments.47,48 To provide a one-size-fits-most so-

lution to this issue, Argonaut provides functionality for the user to remove

sparsely quantified biomolecules that are missing in a user-specified propor-

tion of the experimental replicates and in addition offers a left-censored

missing value imputation algorithm. Alternatively, data filtering and missing

value imputation can be conducted externally to Argonaut if other data-clean-

ing approaches are more appropriate for a particular dataset.

Missing values in MS profiling experiments often arise from low-abundance

molecular species below the limit of quantification.47,48 Argonaut’s missing

value imputation algorithm is adapted from the imputation strategy imple-

mented in Perseus,49 where a set of the smallest quantitative values are lever-

aged to impute missing data. Argonaut’s imputation algorithm is visualized in

Figures S2A and S2C. For each condition, log2 transformed quantitative mea-

surements are placed into an array and placed in ascending order, generating

a roughly normal distribution of quantitative values. An iterative loop is used to

subset the smallest x% of existing quantitative values, (1% % x % 100%), as

demonstrated in Figure S2C. A Gaussian distribution is drawn for the mean

and standard deviation of the subset data. This Gaussian is then randomly

sampled to populate all missing values for this condition, and the average

biomolecule coefficient of variation (CV) within the condition is calculated for

the cutoff x. The ideal cutoff x is selected by minimizing the average biomole-

cular CV. This calculation is then iteratively applied to all other conditions. If

data filtration and missing imputation are not conducted and missing values

remain, they will be excluded from further statistical analysis.

Normalization and Statistical Testing

After data filtration and missing value imputation are completed, the mean and

standard deviation of all remaining quantified biomolecules are calculated

within each condition. Calculated means then undergo a linear control normal-

ization to better scale raw abundances for visualizations. If a control condition

was not specified for an uploaded batch, this calculation uses the mean abun-

dance across all conditions for a biomolecule instead.

These quantitative data then undergo statistical testing against the newly

uploaded batch’s control if one was specified. Otherwise the testing is con-

ducted against the batch’s log2 transformed average biomolecular abundance

for each respective biomolecule. The test statistic of differential biomolecule

expressions are calculated using an unpaired two-tailed Student’s or Welch’s

t test.

The test statistic is converted to a p value and stored in the MySQL data-

base. Multiple hypothesis corrected p values are then calculated using both

the Bonferroni50 and Benjamini-Hochberg49 correction methods. These

mailto:shishkova@wisc.edu
https://coonlabdatadev.com
https://coonlabdatadev.com
https://github.com/coongroup/Argonaut
https://github.com/coongroup/Argonaut
https://hub.docker.com/r/coonlabs/argonaut
https://hub.docker.com/r/coonlabs/argonaut
https://www.phpmyadmin.net
https://github.com/nervgh/angular-file-upload
https://coonlabdatadev.com
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corrected p values can be selected for use in Argonaut’s interactive visualiza-

tions to enable users to be more stringent in what is labeled as statistically sig-

nificant. Finally, outlier analysis and PCA are conducted as described previ-

ously by Stefely et al.11

Uploaded proteomics datasets that contain either UniProt identifiers or

systematic gene names can undergo GO enrichment analysis. A contingency

table is derived from the quantified biomolecules in an experimental condition

using user-specified fold-change and p value cutoffs. GO enrichment statisti-

cal testing is conducted using a Fisher’s exact test followed by a Benjamini-

Hochberg correction for multiple hypothesis testing correction. A list of

supported organisms for GO enrichment can be found at the Argonaut

GitHub wiki.
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