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Abstract

Freezing of gait (FOG) is an intermittent walking disturbance experienced by people with

Parkinson’s disease (PD). Wearable FOG identification systems can improve gait and

reduce the risk of falling due to FOG by detecting FOG in real-time and providing a cue to

reduce freeze duration. However, FOG prediction and prevention is desirable. Datasets

used to train machine learning models often generate ground truth FOG labels based on

visual observation of specific lower limb movements (event-based definition) or an overall

inability to walk effectively (period of gait disruption based definition). FOG definition ambi-

guity may affect model performance, especially with respect to multiple FOG in rapid suc-

cession. This research examined whether merging multiple freezes that occurred in rapid

succession could improve FOG detection and prediction model performance. Plantar pres-

sure and lower limb acceleration data were used to extract a feature set and train decision

tree ensembles. FOG was labeled using an event-based definition. Additional datasets

were then produced by merging FOG that occurred in rapid succession. A merging thresh-

old was introduced where FOG that were separated by less than the merging threshold

were merged into one episode. FOG detection and prediction models were trained for merg-

ing thresholds of 0, 1, 2, and 3 s. Merging slightly improved FOG detection model perfor-

mance; however, for the prediction model, merging resulted in slightly later FOG

identification and lower precision. FOG prediction models may benefit from using event-

based FOG definitions and avoiding merging multiple FOG in rapid succession.

Introduction

Freezing of gait (FOG) is a walking disturbance experienced by approximately 68% of individ-

uals with advanced Parkinson’s disease (PD) [1, 2]. FOG is a sudden inability to walk, usually
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of short duration, and appears intermittently [3]. Freezing can lead to loss of balance and falls

[4], which are a major concern for individuals with PD [5, 6].

External cues (e.g., rhythmic auditory tones, visual, tactile) can improve PD gait [7, 8] and

reduce FOG occurrence [9]. However, continuous cueing can lose effectiveness over time;

therefore, cueing should be customizable and applied only when a FOG episode is imminent

or in progress [9]. Wearable sensors together with machine-learning models have been utilized

for FOG detection to provide such intelligent cueing [9]. This decreased freeze duration and

helped freezers resume walking [10–12]. With FOG detection, the freeze event would still

occur and thus the risk of falling due to freezing remains a concern. A preferred approach

would be to identify an oncoming FOG episode just before the onset and provide a cue to alter

the gait pattern to prevent the freeze.

FOG detection and prediction models are frequently set up as supervised machine-learning

classifiers [13] that utilize training datasets containing both FOG and non-FOG (i.e., steps

without freezing). Therefore, accurate manual labeling of the dataset as FOG or non-FOG is

essential. Unfortunately, FOG characteristics can vary considerably between individuals and

between FOG episodes for the same individual. As described in [14], FOG can occur with

small shuffling steps, trembling in place, or a complete lack of movement (akinetic). Subse-

quently [15], proposed that FOG be defined as “an episodic inability (lasting seconds) to gen-

erate effective stepping. . .”. The definition proposed by [15], has been used by other

researchers [16, 17] and encompasses the FOG types described in [14]. However, the definition

relies on subjective judgement of “effective” walking and, even when performed by experts,

visual FOG assessment is prone to inter-rater discrepancies, especially between different clini-

cal teams [18]. Despite this, expert assessments likely capture the majority of gait deviations

and are sufficient for FOG detection, as evidenced by the good detection performance of the

resulting models [11, 17, 19–42]. However, FOG prediction cannot be approached the same

way since the period before a freeze cannot be easily identified visually. Instead, FOG predic-

tion ground truth is typically identified by selecting walking data immediately before FOG

onset (Pre-FOG). Models are trained to differentiate between this Pre-FOG gait, FOG episode,

and normal PD walking [13]. Appropriate ground truth labeling can improve the model train-

ing set and allow reproducibility and comparison between different studies.

Table 1 presents various definitions used for FOG ground truth labeling in FOG detection

and prediction studies. Key phrases such as “episodic inability to generate effective stepping”

[17], or “stop in alternating left-right stepping” [43–45], can be subjective and leave room for

ambiguity regarding what is considered an “effective” step. This is especially true when activi-

ties other than straight line walking are performed, where normal “alternating left-right step-

ping” is intentionally disrupted (e.g., changing speed or direction, obstacle avoidance).

Ambiguity also occurs for festination and small shuffling steps, which are a common FOG sub-

type [14] and may not be considered as freezes according to some definitions [16, 46]. Table 1

also presents definitions used in FOG detection and prediction studies that are more specific

and encompass multiple FOG subtypes. The definition used by [46] lists different ways a freeze

might present (e.g., no foot movement, heel lifting while toes stay on the ground, irregular

turning rhythm while the pivot foot stays on the ground [46]), whereas [27, 38, 39, 47] use

multiple FOG labels according to different types or severities of FOG instances.

The definitions in Table 1 can be broadly grouped as event-based [12, 16, 43–47] or periods

of gait disruption [17, 29, 36–39, 49]. The event-based definitions focus on specific behaviors

of the limbs, such as cessation of foot advancement [16] or failure of the stepping foot to leave

the ground [46]. Event-based definitions have a very specific onset (e.g., foot fails to leave the

ground) and termination (e.g., foot leaves the ground); however, shuffling FOG or multiple

consecutive FOG episodes separated by a few steps would be labeled as many separate freezes,
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that may be more appropriately classified as a single FOG episode. In contrast, the “periods of

gait disruption” definitions are more general and relate to functional locomotion. For example,

cessation of “effective stepping” [17] does not specify exact onset and termination timing.

Accordingly, shuffling FOG and multiple FOG episodes in quick succession could be consid-

ered as a single period of disrupted gait.

In FOG detection and prediction studies, FOG episodes are labeled and datasets are sub-

jected to various assumptions (e.g., ignoring short FOG [32, 46]) and pre-processing steps

(e.g., merging FOG episodes [46] or window homogeneity requirements [51]) to refine which

frames or data windows are considered as FOG. Since very short duration FOG can be difficult

to detect using automatic systems [17] or could be considered a minor gait disturbance, some

researchers exclude short FOG from datasets [32, 46]. In [46], FOG shorter than 1 s in dura-

tion were labeled as non-FOG gait. Similarly, in [32], only FOG episodes longer than 3 s were

considered to be clinically important. In addition to explicitly eliminating FOG episodes based

on a duration, short FOG can also be excluded by using a low temporal resolution (e.g., labels

applied at one second intervals or longer [24, 52]). Similarly, some FOG episodes can be

excluded through windowing, which is the segmentation of walking data into time windows

that are used for feature extraction and classification [13]. If the windows are required to be

homogeneous (i.e., composed entirely of data with the same label) then all FOG episodes

shorter than the chosen window duration are excluded. In many cases, the chosen window

length is a compromise between being short enough to capture brief FOG episodes and long

enough for specific feature calculations, such as the Freeze Index (FI) [13, 53].

Table 1. FOG definitions in FOG detection and prediction studies.

FOG Definitions Source

“The beginning of a FOG event was detected when the gait pattern (i.e., alternating left–right stepping)

was arrested, and the end of FOG was defined as the point in time at which the pattern was resumed”

(authors reference [14])

[12]

“. . .the moment of arrested gait pattern, i.e., stop in alternating left-right stepping, as start of a FOG

episode, and the instant when the patient resumed a regular gait pattern as end of FOG”

[43–

45]

“. . .an episodic inability to generate effective stepping” (authors reference [15]) [17]

“. . . an unintentional and temporary phenomenon where the feet failed to progress” (authors reference

[14, 15, 48])

[16]

“. . . an absolute cessation or marked reduction of forward progression of the feet despite the intention to

walk” (authors reference [3])

[29]

“. . . paroxysmal interruption of stride or marked reduction in forward feet progression” [36]

“. . . an epoch of time in which patients suddenly became unable to make a turn inside a taped 1 m2 box on

the floor, despite the intention to do so” (authors reference [29])

[37]

“. . .when the gait pattern (alternating right and left steps) was arrested or if it appeared as if they were

trying unsuccessfully to initiate or continue locomotion/turn. The end of an episode was defined as the

time when an effective step had been performed and followed by continuous locomotion.”

[49]

Definitions including subtypes

“(1) slight modification of the gait with no falling risk (green); (2) main gait modification with falling risk

(orange); (3) FOG gait is blocked with or without festination (red).”

[38, 39]

“. . . an intention to walk without movement of the feet, or as heel lifting while toes stay on the ground, or

an irregular turning rhythm while the pivot foot stays on the ground” (authors reference [14, 17, 50])

[46]

“. . . each stride is classified at the output as one of the six types: normal, short+ (similar to, but shorter

than ‘normal’ strides), short- (very short forward movements, up to 20 cm, with frequencies of the

movement in the low (locomotor) band), FOG+ (FOG with knee trembling/tremor), FOG- (FOG with

complete motor block), and progressive shortening of stride while turning (PST).” �

[47]

No definition provided, however, a distinction is made between trembling in place and shuffling forward

FOG subtypes.

[27]

� Locomotor band refers to the 0–3 Hz frequency range.

https://doi.org/10.1371/journal.pone.0258544.t001
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Excluding short FOG may overlook periods of multiple FOG in rapid succession. For

example, a person may freeze, take a few ineffective steps while attempting to resume normal

walking, then freeze again. According to an event-based FOG definition, multiple FOG epi-

sodes in quick succession would be labeled as individual FOG episodes with a few steps in

between. If a low temporal resolution for labeling is used (i.e. labels applied at long time inter-

vals), a minimum FOG duration is imposed, or windows are required to be homogeneous,

entire sequences of short FOG episodes may be excluded or labeled as normal gait. However,

multiple short FOG episodes may be a relevant gait disturbance that should be detected and

considered in a cueing system. A FOG definition based on a period of gait disruption would

consider a sequence of multiple short FOG episodes as a single FOG occurrence. Combining

many short FOG episodes into one FOG occurrence would be less likely to result in discarded

data due to windowing or the labeling interval.

Various approaches can be used to merge multiple FOG episodes that occur in quick suc-

cession. In [46], FOG episodes separated by less than 1 s were merged. In [51], windows were

considered to be FOG if they contained at least 50% FOG data; therefore, as the window

moved through the data, two FOG episodes separated by a short non-FOG period, such as one

or two small steps, could result in the windows all being labeled as FOG. In [49], the FOG

detection model outputs were merged if the model detected FOG separated by less than 2 s.

This merging allowed better comparison between the model output and the dataset labels,

since labels were generated using a period of gait disruption definition [49].

Currently, evidence is lacking to support the decision to use an “event-based” or “period of

gait disruption” approach for classifying FOG. For example, merging in [49] was done to

improve the agreement between the model output and expert generated data labels, not due to

established recommendations in existing literature. Considering this gap in the literature, the

effect of using event-based and period of gait disruption approaches for FOG identification

should be examined. The current research determined the effect of merging successive FOG

on freeze detection and prediction in PD. The study outcomes can help guide development of

objective and appropriate classification models for wearable FOG mitigation systems.

Methods

Data collection

Walking data were collected from eleven males with PD, during a single visit to the Movement

Performance Laboratory at the University of Ottawa. To be eligible for the study, participants

were required to be able to walk unassisted, experience freezing at least once a week, and not

have undergone deep brain stimulation therapy or have conditions other than PD that impair

gait and balance. Ethics approval was obtained from the University of Ottawa (H-05-19-3547)

and University of Waterloo (40954) and all participants provided informed written consent.

Participant demographics and questionnaire outcomes are included in Table 2. Participants

were on their normal antiparkinsonian medication dosage and schedule. Data collection was

generally scheduled such that participants were tested just prior to their next regular medica-

tion dose.

During the lab visit, participants walked a complex path consisting of 90˚ and 180˚ turns,

stops, starts, and a narrow passageway leading to a dead end (Fig 1). The first stop, during

straight-line walking back to the chair, was required to be within the 3 m region delimited by

the cones. The stopping location was chosen by the participant and could therefore be different

for each trial. For the second stop, participants stopped directly in front of the chair. While

walking the path (up to 30 times), participants performed additional physical and verbal tasks

to increase the likelihood of freezing. The physical task began with a plastic tray with a small
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pyramid of 3 wooden blocks on top. To increase difficulty, if necessary, the blocks were

replaced with a paper cup or the tray was held with one hand while a sealed water bottle was

held in the other hand. The verbal task consisted of saying as many words as possible begin-

ning with a specific letter. The words were required to be different, and proper nouns or very

similar words were not allowed. A total of 241 minutes of walking data were collected, during

which seven participants froze 362 times.

FScan pressure sensing shoe insoles (Tekscan, Boston, MA) and Shimmer3 inertial mea-

surement units (IMU) (Shimmer, Ireland) were used to collect walking data (Fig 2). FScan sen-

sors are thin (less than 1 mm), flexible, insoles with 3.9 pressure sensing cells per cm2 (Fig 2A).

Prior to participant arrival, a new pair of insoles was equilibrated using a pressurized air blad-

der. The insoles were then cut to fit inside the participant’s regular shoes. Prior to beginning

the trials, a step calibration was performed, during which the participant shifted all of their

weight from one foot to the other and back again. The plantar pressure data were collected at

100 Hz.

Table 2. Participant information and questionnaire outcomes.

Participant Age (years) Years since diagnosis NFOG-Q UPDRS III

P01 67 16 14 10

P02 80 11 21 20

P03 71 11 17 13

P04 64 10 4 18

P05 70 14 20 13

P06 68 19 22 29

P07 78 5 15 16

P08 70 12 17 20

P09 80 10 18 18

P10 80 2 4 15

P11 72 5 19 20

Mean 72.7 10.5 15.5 17.5

(SD) (5.5) (4.8) (5.9) (4.8)

NFOG-Q, New Freezing of Gait Questionnaire; UPDRS-III, Unified Parkinson’s Disease Rating Scale Section III.

https://doi.org/10.1371/journal.pone.0258544.t002

Fig 1. Experiment walking path. Image adapted from [54].

https://doi.org/10.1371/journal.pone.0258544.g001
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Four IMU sensors were used to collect acceleration (± 4 g) and gyroscope (± 500 dps) data

with a sampling rate of 512 Hz. The sensors were positioned on the lateral thigh just above the

knees and on the medial shank just above the ankle and held with elastic straps. Acceleration

and gyroscope data were downsampled to 100 Hz to match the plantar pressure sampling rate.

Walking trials were video recorded using a smartphone camera for post collection FOG identi-

fication. Each trial began with a single stomp of the right foot, which was used to synchronize

the video, plantar pressure, and IMU data. The synchronization was confirmed during the

labeling process by examining multiple heel-strike events.

FOG definition and merging approach

The collected data were synchronized, visually inspected, and labeled using a custom labeling

program written with MATLAB R2019b App Designer. All data processing and model devel-

opment were performed in the MATLAB environment (MathWorks, MA, USA). During data

collection, authors SP and JN identified FOG occurrences. In post processing, SP identified

the onset and termination of FOG episodes to a resolution of 30 Hz. In case of uncertainty, the

second rater was consulted. The beginning of a freeze was defined as “the instant the stepping

foot fails to leave the ground despite the clear intention to step”. The end of the freeze was

defined as “the instant the stepping foot begins or resumes an effective step”. For example, a

step was considered effective the instant the heel lifted from the ground, provided that it was

followed by a smooth toe off with the entire foot lifting from the ground and advancing into

the next step without loss of balance. As a special case if a person froze, stopped trying to

advance, and remained standing, the instant that the participant stopped trying to advance

was considered the end of the freeze. This was determined by the complete absence of foot

movement and known FOG characteristics such as trembling of the knee, medial-lateral

weight shifting, or attempt at shuffling.

To determine the effect of merging successive freeze episodes on freeze detection and pre-

diction, consecutive freezes were merged into a single freeze if the time between the beginning

of a FOG episode and the end of the previous FOG episode was less than a merging threshold.

Fig 2. Sensors systems used in data collection. (A) FScan pressure sensing insole. (B) Shimmer3 IMU sensor. (C) Diagram of IMU placement. (D)

Insole and IMU systems on body. Modified from [54].

https://doi.org/10.1371/journal.pone.0258544.g002
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All data between the two freezes were relabeled as FOG, thus forming a single longer FOG epi-

sode. Merging thresholds of 0, 1, 2, and 3 s were tested.

FOG prediction and detection models

Data were labeled as Non-FOG, Pre-FOG, or FOG. Pre-FOG was defined as 2 s of data before

each FOG, as in [54, 55]. The labeled data were divided into 1 s windows with 0.2 s shift

between windows (i.e., 80% overlap) (Fig 3). Similar to [51], the windows were not required to

be homogeneous; therefore, windows could contain different labels, which ensured that no

FOG data were discarded.

For detection models, the target class included all windows that contained any FOG data.

For example, in Fig 3 windows (W) containing FOG and Pre-FOG (W14-W18) and purely

FOG (W19), as well as windows containing FOG and non-FOG data (not shown) were

included in the target class. The non-target class contained all other data.

For prediction models, the target class contained the windows beginning anytime during

the 2 seconds prior to FOG onset (W9-W18). This included windows beginning and ending

during the 2 seconds prior to FOG onset (W9-W13) as well as windows that include some Pre-

FOG and some FOG data (W14-W18). Windows that contained only non-FOG data

(W1-W3), non-FOG and Pre-FOG (W4-W8), and only FOG data (W19) were in the non-tar-

get class for FOG prediction models (Fig 3).

Ten features were extracted from each window. The features were calculated from lower-

limb IMU and plantar pressure data and were selected by Relief-F feature ranking from

among over 850 total features, described in [54]. The features used were the dominant fast

Fourier transform (FFT) frequency of foot centre of pressure (COP) velocity in medial/lateral

(ML) directions for the right leg and anterior/posterior (AP) for the right and left legs, the

dominant FFT frequency of thigh accelerometers in the AP direction for the right and left legs,

mean energy of wavelet transform (WT) approximation coefficient of COP position in the AP

direction for the right leg, number of COP AP reversals for the right and left legs, mean of WT

approximation coefficient for COP position in AP for the right leg, and the min of the COP

Fig 3. Diagram of windowing approach. Windows W1-W3 contain only non-FOG data, W4-W8 contain both non-

FOG and Pre-FOG data, W9-W13 contain only Pre-FOG data, W14-W18 contain both Pre-FOG and FOG data, and

W19 contains only FOG data.

https://doi.org/10.1371/journal.pone.0258544.g003
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detail coefficient in the AP direction for the right leg. A two-class decision tree ensemble com-

posed of 100 trees with a maximum of five splits each was trained using random undersam-

pling boosting (RUSBoost). A leave-one-freezer-out cross validation was performed for all

models. In leave-one-freezer-out cross validation, model training uses data from all but one

participant who froze and model testing uses data from the remaining participant. The process

is repeated for each freezer and the model performance results are averaged across all itera-

tions. To examine the effect of FOG merging on FOG detection performance, the decision tree

ensemble was trained repeatedly using identical model parameters but with different merging

thresholds (0, 1, 2, 3 s). The datasets created with separate freeze episodes and with merged

freeze episodes using different merging thresholds have been made publicly available [56].

FOG prediction and detection model evaluation

The trained models were evaluated using windows and FOG episodes. The window-based

evaluation compared each window classification to the ground truth label and calculated sensi-

tivity and specificity. While sensitivity and specificity are useful measures, this evaluation does

not necessarily reflect a model’s ability to act as a timely trigger for a cueing system since a

model may only detect freeze windows and trigger a cue at the end of a FOG episode. There-

fore, the FOG-episode-based evaluation determined if and when each episode was detected by

the model. To avoid cues caused by misclassified windows, three consecutive positive target

class classifications were required to generate a model trigger decision (MTD) (i.e., three previ-

ous windows had to be classified as belonging to the target class, Fig 4). For each FOG episode

in the test data, a MTD target zone was defined as the period that includes the Pre-FOG data

and FOG episode (2 s prior to FOG onset until the end of the FOG episode) (Fig 4), since a cue

within this target zone would be helpful to either prevent or mitigate a FOG episode. The epi-

sode was considered to be correctly identified if at least one MTD occurred within the MTD

target zone. For each correct FOG episode identification, the identification delay (ID) was cal-

culated as the time difference between the FOG onset and the MTD. If a FOG episode resulted

in multiple MTD, then the earliest MTD within the target zone was used to determine the

identification delay for that episode. Positive FOG ID values indicated that the MTD occurred

Fig 4. Diagram of FOG episode identification using the FOG episode-based evaluation. Three consecutive positive window classifications

(W1-W3) result in a model trigger decision (MTD) at the end of the third window (MTD instant). To be correctly identified, a FOG episode

requires the MTD instant to be within the MTD target zone. Identification delay is the time difference between FOG onset and the MTD.

https://doi.org/10.1371/journal.pone.0258544.g004
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after FOG onset, and negative FOG ID values indicated that the MTD occurred before FOG

episode onset.

The number of MTD true positives (MTD within MTD target zone) and false positives

(MTD outside the zone) were determined and used to calculate model precision. Lastly, a hypo-

thetical cueing protocol was introduced to demonstrate how the system might be used in a real

cueing application. Since cueing is intended to modify the person’s gait, a period is needed to

allow the gait to change before another cue would be given. Therefore, a 2.5 s no-cue interval,

during which all MTD would be ignored, was used. If a FOG episode began within a no-cue

interval, then this freeze was considered to have been identified, since it follows a MTD.

Results

Table 3 presents the number of FOG episodes experienced by each participant for different

merging thresholds. Merging FOG episodes reduced the number of FOG episodes, primarily

for Participants P07 and P08.

For window-based FOG detection (Table 4), sensitivity and specificity averages across all

participants changed little (� ± 1%) due to merging (mean sensitivity: 83.4% for mt = 2 s,

Table 3. Number of FOG episodes for each participant for different merging thresholds.

Participant Number of FOG episodes Reduction in number of episodes by merging with mt = 3 s

mt = 0 s mt = 1 s mt = 2 s mt = 3 s

P01 49 48 48 48 1

P02 35 35 35 35 0

P03 14 14 13 13 1

P04 0 0 0 0 -

P05 0 0 0 0 -

P06 10 10 10 10 0

P07 221 171 118 87 134

P08 24 16 14 14 10

P09 9 9 9 7 2

P10 0 0 0 0 -

P11 0 0 0 0 -

mt, merging threshold.

https://doi.org/10.1371/journal.pone.0258544.t003

Table 4. Window-based FOG detection model performance for various merging thresholds.

Participant mt = 0 s mt = 1 s mt = 2 s mt = 3 s

Sens Spec Sens Spec Sens Spec Sens Spec

(%) (%) (%) (%) (%) (%) (%) (%)

P01 88.1 88.2 88.3 88.3 89.5 87.3 88.8 87.4

P02 81.0 90.2 81.4 90.4 80.6 90.1 81.0 90.2

P03 70.6 93.1 72.0 93.0 74.8 93.1 73.4 93.0

P06 90.6 90.7 93.8 90.3 90.6 90.6 93.8 90.3

P07 64.9 86.9 65.1 86.4 63.2 86.6 61.3 86.8

P08 87.2 87.2 87.2 87.2 86.6 87.3 87.0 87.0

P09 94.4 81.6 93.1 80.8 98.6 80.4 94.1 80.4

Mean 82.4 88.3 83.0 88.1 83.4 87.9 82.8 87.9

(SD) (10.1) (3.4) (10.0) (3.6) (10.8) (3.7) (11.0) (3.7)

mt, merging threshold; Sens, sensitivity; Spec, specificity.

https://doi.org/10.1371/journal.pone.0258544.t004
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compared to 82.4% for mt = 0 s; mean specificity: 87.9% for mt = 2,3 s, compared to 88.3% for

mt = 0 s). This included Participants P07 and P08, who had the largest reduction in number of

FOG episodes due to merging (Table 3). For the prediction models (Table 5), mean sensitivity

decreased slightly as the merging threshold increased (68.4% for mt = 2 s, from 73.4% for

mt = 0 s). Mean specificity was highest (82.8%) for mt = 2 s and lowest (80.9%) for mt = 3 s.

Results for the FOG episode-based evaluation are presented in Tables 6 and 7. For the FOG

detection model (Table 6), the mean percentage of correctly identified FOG episodes increased

from 91.3% for 0 s merging threshold to 93.3% for 2 s merging threshold. For the prediction

model (Table 7), the mean percentage of correctly identified FOG episodes increased from

94.0% (0 s threshold) to 95.9% (3 s threshold). For the detection model, the highest percentage

of correctly identified FOG episodes occurred using a 2 s merging threshold. For prediction,

the highest percentage was achieved with a 3 s merging threshold.

For the detection model, changing merging thresholds from 0 s to 3 s, led to FOG identifi-

cation (earliest MTD) occurring 0.21 s later (changing from -0.4 s to -0.19 s). When changing

merging threshold from 0 s to 2 s, which had the best percentage of correctly identified FOG

Table 5. Window-based FOG prediction model performance for various merging thresholds.

Participant mt = 0 s mt = 1 s mt = 2 s mt = 3 s

Sens (%) Spec (%) Sens (%) Spec (%) Sens (%) Spec (%) Sens (%) Spec (%)

P01 70.5 81.7 68.8 80.6 63.1 82.0 67.3 79.0

P02 55.3 83.5 57.3 83.1 58.2 83.4 59.0 82.3

P03 61.7 93.4 60.2 93.9 57.4 94.3 63.1 93.1

P06 87.1 88.7 85.1 89.1 82.2 90.7 82.2 90.3

P07 72.2 67.5 68.6 67.0 66.2 66.7 65.6 64.7

P08 77.6 84.3 71.2 84.5 69.4 85.6 67.2 82.8

P09 89.2 75.6 87.8 76.1 82.4 76.7 78.6 73.7

Mean 73.4 82.1 71.3 82.1 68.4 82.8 69.0 80.9

(SD) (11.5) (7.9) (10.7) (8.1) (9.6) (8.4) (7.7) (9.0)

mt, merging threshold; Sens, sensitivity; Spec, specificity.

https://doi.org/10.1371/journal.pone.0258544.t005

Table 6. Episode-based FOG detection model performance for various merging thresholds.

Participant mt = 0 s mt = 1 s mt = 2 s mt = 3 s

Episodes identified Average ID Episodes identified Average ID Episodes identified Average ID Episodes identified Average ID

(%) (s) (%) (s) (%) (s) (%) (s)

P01 91.8 0.02 91.7 0.04 93.8 0.01 93.8 0.03

P02 85.7 0.48 85.7 0.49 85.7 0.47 85.7 0.47

P03 71.4 -0.34 71.4 -0.32 84.6 -0.13 76.9 -0.18

P06 100.0 -0.35 100.0 -0.41 100.0 -0.35 100.0 -0.41

P07 90.0 -0.72 90.1 -0.62 89.0 -0.21 88.5 -0.08

P08 100.0 -1.09 100.0 -0.73 100.0 -0.53 100.0 -0.56

P09 100.0 -0.83 100.0 -0.78 100.0 -1.10 100.0 -0.58

Mean 91.3 -0.40 91.3 -0.33 93.3 -0.26 92.1 -0.19

(SD) (9.7) (0.50) (9.7) (0.43) (6.4) (0.45) (8.2) (0.34)

mt, merging threshold; ID, identification delay. Episodes identified are a percentage of the total number of FOG episodes for each participant. Identification delay (ID)

indicates the average time between FOG onset and freeze identification (MTD). Positive delay indicates FOG identified after onset, negative delay indicates FOG

identified before onset.

https://doi.org/10.1371/journal.pone.0258544.t006
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episodes, the mean ID occurred 0.14 s later (-0.4 to -0.26 s). For the prediction model, chang-

ing merging thresholds from 0 s to 3 s led to the FOG identification (earliest MTD) occurring

0.08 s later (changing from -0.56 s to -0.48 s). For both detection and prediction models, a neg-

ative ID indicated a FOG prediction since the FOG identification was before FOG onset.

The number of true positive (TP) and false positive (FP) MTD for each participant are pre-

sented in Tables 8 and 9. The precision of the detection model increased minimally (0.2%)

with merging, with 40.3% precision for a 3 s merging threshold. Prediction model precision

decreased from 19.4% to 14.3% as the merging threshold increased from 0 s to 3 s.

Table 10 presents the results of the hypothetical cueing protocol using a 2.5 s no-cue inter-

val after each triggered cue. The no-cue interval was applied to the detection and prediction

models with the highest precision (i.e., the detection model with 3 s merging threshold and

prediction model with 0 s merging threshold). For detection model episode identification, the

no-cue interval did not change the percent of identified FOG. For the prediction model, the

Table 7. Episode-based FOG prediction model performance for various merging thresholds.

Participant mt = 0 s mt = 1 s mt = 2 s mt = 3 s

Episodes identified Average ID Episodes identified Average ID Episodes identified Average ID Episodes identified Average ID

(%) (s) (%) (s) (%) (s) (%) (s)

P01 95.9 -0.02 95.8 0.00 89.6 0.04 91.7 -0.01

P02 94.3 0.30 94.3 0.27 97.1 0.27 100.0 0.30

P03 78.6 -0.33 64.3 -0.49 76.9 -0.26 92.3 -0.28

P06 100.0 -0.49 100.0 -0.49 100.0 -0.59 100.0 -0.61

P07 97.3 -1.17 97.1 -1.01 95.8 -0.83 94.3 -0.76

P08 91.7 -1.15 100.0 -0.81 100.0 -0.72 92.9 -1.08

P09 100.0 -1.10 100.0 -1.12 100.0 -0.98 100.0 -0.92

Mean 94.0 -0.56 93.1 -0.52 94.2 -0.44 95.9 -0.48

(SD) (6.9) (0.55) (11.9) (0.47) (7.9) (0.43) (3.6) (0.46)

mt, merging threshold; ID, identification delay. Episodes identified are a percentage of the total number of FOG episodes for each participant. Identification delay (ID)

indicates the average time between FOG onset and freeze identification (MTD). Positive delay indicates FOG identified after onset, negative delay indicates FOG

identified before onset.

https://doi.org/10.1371/journal.pone.0258544.t007

Table 8. MTD precision for the FOG detection model.

Participant mt = 0 s mt = 1 s mt = 2 s mt = 3 s

TP FP PR TP FP PR TP FP PR TP FP PR

(%) (%) (%) (%)

P01 324 231 58.4 323 227 58.7 330 245 57.4 321 236 57.6

P02 436 346 55.8 443 337 56.8 434 346 55.6 436 343 56.0

P03 79 268 22.8 82 276 22.9 87 270 24.4 81 271 23.0

P06 221 575 27.8 233 608 27.7 221 570 27.9 232 604 27.8

P07 1147 409 73.7 1128 437 72.1 1131 407 73.5 1196 414 74.3

P08 211 391 35.0 213 381 35.9 206 374 35.5 206 373 35.6

P09 62 797 7.2 61 844 6.7 67 851 7.3 71 836 7.8

Total 2480 3017 2483 3110 2476 3063 2543 3077

Mean 40.1 (21.6) 40.1 (21.5) 40.2 (21.2) 40.3 (21.5)

(SD)

mt, merging threshold; TP, true positive (MTD within MTD target zone); FP, false positive (MTD outside MTD target zone); PR, precision (PR = TP/ (TP+ FP) ×100).

https://doi.org/10.1371/journal.pone.0258544.t008
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no-cue interval reduced the mean percentage of identified FOG slightly (94% to 93.8%). This

decrease was due solely to Participant P07 for whom the percentage of identified FOG episodes

decreased from 97.3% to 96.4%. The no-cue interval reduced the number of false positive and

true positive MTD for both the detection and prediction models. The no-cue interval

decreased mean detection model precision from 40.3% (mt = 3 s) to 31.8% and increased

mean prediction model precision from 19.4% (mt = 0 s) to 30.6%.

Fig 5 shows an example walking session with the MTD TP and FP. Without a no-cue inter-

val (Fig 5A), the first FOG episode was detected at the beginning of the episode (leftmost green

circle at approximately 26 s), the second FOG was predicted approximately 1 s before FOG

onset (multiple MTD starting at approximately 44 s), and MTD occurred in groups of conse-

cutive windows for both the TP MTD (green) and FP MTD (red). When the no-cue interval

was used (Fig 5B), there was also successful FOG identification at the beginning of the episode

Table 9. MTD precision for the FOG prediction model.

Participant mt = 0 s mt = 1 s mt = 2 s mt = 3 s

TP FP PR TP FP PR TP FP PR TP FP PR

(%) (%) (%) (%)

P01 171 383 30.9 162 377 30.1 137 338 28.8 154 429 26.4

P02 117 705 14.2 123 721 14.6 126 699 15.3 132 781 14.5

P03 41 205 16.7 40 154 20.6 32 157 16.9 42 213 16.5

P06 73 728 9.1 70 649 9.7 63 474 11.7 67 535 11.1

P07 998 1565 38.9 793 1641 32.6 508 1691 23.1 365 1863 16.4

P08 120 437 21.5 78 413 15.9 64 342 15.8 66 492 11.8

P09 48 1008 4.5 46 883 5.0 44 832 5.0 32 1010 3.1

Total 1568 5031 1312 4838 974 4533 858 5323

Mean 19.4 (11.2) 18.3 (9.4) 16.7 (7.1) 14.3 (6.5)

(SD)

mt, merging threshold; TP, true positive (MTD within MTD target zone); FP, false positive (MTD outside MTD target zone); PR, precision (PR = TP/ (TP+ FP) ×100).

https://doi.org/10.1371/journal.pone.0258544.t009

Table 10. MTD precision for FOG prediction and detection models using a 2.5 s no-cue interval between consecutive cues.

Participant Detection Model Prediction model

mt = 3 s (2.5 s no-cue interval) mt = 0 s (2.5 s no-cue interval)

Episodes identified (%) TP FP PR (%) Episodes identified (%) TP FP PR (%)

P01 93.8 45 40 52.9 95.9 47 51 48.0

P02 85.7 45 73 38.1 94.3 50 76 39.7

P03 76.9 11 67 14.1 78.6 12 54 18.2

P06 100.0 23 108 17.6 100.0 24 109 18.0

P07 88.5 187 98 65.6 96.4 222 164 57.5

P08 100.0 25 67 27.2 91.7 23 64 26.4

P09 100.0 10 132 7.0 100.0 11 165 6.3

Total 346 585 389 683

Mean 92.1 31.8 93.8 30.6

(SD) (8.2) (19.9) (6.8) (17.0)

mt, merging threshold; ID, identification delay; TP, true positive (MTD within MTD target zone); FP, false positive (MTD outside MTD target zone); PR, precision

(PR = TP/ (TP+ FP) ×100). Episodes identified are a percentage of the total number of FOG episodes for each participant.

https://doi.org/10.1371/journal.pone.0258544.t010
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(TP MTD at 26 s), successful FOG prediction (TP MTD at 44 s), and the number of false posi-

tive MTD was reduced from 15 (Fig 5A) to 2 (Fig 5B).

Discussion

The best performing FOG detection model used a 2 s merging threshold, whereas the best pre-

diction model had a 0 s merging threshold (i.e., no merging). For the window-based evalua-

tion, there was very little difference in model performance for all detection models, across

merging thresholds, and a slight difference in performance for prediction models. Model per-

formance was similar to other person-independent FOG detection [32, 46, 51, 57, 58] and pre-

diction [55, 59–61] models in the literature.

For FOG episode-based analysis, the percentage of successfully identified FOG episodes

increased slightly due to FOG-episode merging for both the detection (+ 2.0%) and prediction

(+ 1.9%) models. The prediction model with a 3 s merging threshold outperformed the detec-

tion model by identifying 95.9% of FOG episodes. For all merging thresholds of the detection

and prediction models, FOG episodes were identified prior to the FOG onset; therefore, both

detection and prediction models were able to predict FOG.

Fig 5. Example session of walking data classification and freeze identification. (A) Without no-cue interval. (B) With 2.5 s no-cue interval. TP MTD: true

positive model trigger decision (MTD within MTD target zone), FP MTD: false positive model trigger decision (MTD outside MTD target zone).

https://doi.org/10.1371/journal.pone.0258544.g005
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The earliest predictions occurred without merging (0 s merging threshold). Individual par-

ticipant FOG identification was as early as 1.09 s before FOG onset for the detection model

(P08, Table 6), and 1.10 s to 1.17 s before FOG onset for the prediction model (P09-P07,

Table 7). When averaged across participants, the earliest identifications were 0.40 s before

FOG onset for the detection model and 0.56 s before FOG onset for the prediction model,

which both occurred with no merging. The FOG identification was closer to freeze initiation

when the merging threshold was 3 s for detection (0.19 s before FOG onset) and 2 s for predic-

tion (0.44 s before FOG onset). Therefore, a merging threshold of 3 s for detection and 2 s for

prediction would provide the shortest time for preventative cueing. Merging FOG episodes

may not be beneficial in a preventative cueing system since merging led to later FOG identifi-

cations but similar FOG identification percentages.

For the detection model, less than ± 0.2% differences in MTD precision were found

between merging thresholds. For the prediction model, increasing the merging threshold from

0 s to 3 s decreased the number of true positive MTD from 1568 to 858 and increased the num-

ber of false positives from 5031 to 5323, resulting in a 5.1% decrease in precision. This may be

the result of having fewer data windows in the target class during training due to merging.

Also, there were more FP compared to TP, for both detection and prediction models.

Models tended to produce grouped zones of MTD (Fig 5A), likely because of the 80% over-

lap between consecutive windows, where data in successive windows are similar and lead to

the same classification. To reduce FP, a larger shift between windows may be helpful [46];

however, this would decrease the temporal resolution of a cueing protocol. Using the 2.5 s no-

cue interval greatly reduced the number of false positive MTD (5323 to 585 for detection, 5031

to 683 for prediction) by excluding consecutive FP MTD after the first MTD in the group. As

shown in Fig 5, a TP MTD near the end of a FOG episode can eliminate FP MTD immediately

after the end of the FOG episode, since the FP MTD would fall within the no-cue interval. For

the detection model, the no-cue interval had no effect on the percentage of identified FOG epi-

sodes. For the prediction model, the no-cue interval only affected the percentage of identified

FOG episodes for Participant P07, and this was only a 0.9% difference. P07 had many short

FOG in rapid succession. FOG episodes that began within a no-cue interval were considered

to be successfully detected, whereas Pre-FOG data for subsequent short freezes within the no-

cue interval were ignored. Therefore, models using the no-cue interval may miss FOG episodes

that otherwise would have been predicted from the Pre-FOG data. However, these missed epi-

sodes do not necessarily indicate decreased model performance, since in a real application, if a

cue were given, the subsequent (missed) episode may never occur. In this research, 2.5 s was

considered enough time for the person to respond to the cue and for the model to collect addi-

tion data that will inform the next classification. Further study is required to determine the

time required for gait to adjust following a cue, if the time is person or FOG-subtype specific,

and whether subsequent FOG episodes can be avoided. The results could then be used as rele-

vant parameters for personalized FOG cueing systems. For example, the user’s reaction to the

cue could be the input of a secondary classifier that is trained using post-cue data. The second-

ary classifier could determine if the gait parameters are stabilizing and cueing can be stopped,

or the gait remains abnormal and cueing should be continued or modulated.

The FOG episode merging results provide guidance for future research. For the FOG detec-

tion model, merging successive FOG episodes produced a slight performance improvement.

The window-based and FOG episode-based evaluations had their best FOG detection perfor-

mance when the merging threshold was 2 s, while the highest model precision was for the 3 s

merging threshold. However, the non-merged case (0 s merging threshold) resulted in the ear-

liest MTD for the detection models. Thus, the detection model performed better with merging

at the cost of identifications being made less in advance, yet still prior to FOG onset. Early
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detection may not be necessary for non-cueing applications of FOG detection (e.g., gait moni-

toring [20, 62, 63]), therefore merging FOG episodes may be beneficial.

For the prediction model, FOG episode merging increased the percentage of identified

FOG episodes, but slightly decreased window-based sensitivity and specificity, decreased

model precision, and resulted in less time between identification and freeze onset. The

improvement in percentage of identified FOG episodes was at the cost of identifications being

made later. For a FOG prediction model intended to be used in a cueing system, where early

detection of FOG may be important, the merging of FOG episodes could be detrimental.

This study utilized data from 11 participants, 7 of whom froze. Future research will aim to

integrate models into a real-time system and validate the models on a larger dataset with addi-

tional participants. Furthermore, the effect of merging episodes and no-cue intervals for differ-

ent FOG subtypes and for specific activities, such as turning, could be examined.

Conclusion

This research examined the effects of defining FOG either as a period of gait disruption (merg-

ing successive FOG), or based on an event (no merging), on FOG detection and prediction.

For detection, defining FOG as a period of gait disruption produced slightly better results than

the event-based definition. Therefore, for FOG detection systems, expert labeling based on

periods of ineffective gait is likely sufficient and labeling the onset and termination of each suc-

cessive FOG episode within a larger period of gait disruption may not be required. However,

prediction model performance was adversely affected by increasing the merging threshold,

specifically in terms of precision. Therefore, FOG prediction models should be trained using

event-based FOG definitions (e.g., foot leaves or fails to leave the ground) that consider succes-

sive FOG episodes separately.
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