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Abstract

In many objective optimization problems (MaOPs), more than three distinct objectives are

optimized. The challenging part in MaOPs is to get the Pareto approximation (PA) with high

diversity and good convergence. In Literature, in order to solve the issue of diversity and

convergence in MaOPs, many approaches are proposed using different multi objective evo-

lutionary algorithms (MOEAs). Moreover, to get better results, the researchers use the sets

of reference points to differentiate the solutions and to model the search process, it further

evaluates and selects the non-dominating solutions by using the reference set of solutions.

Furthermore, this technique is used in some of the swarm-based evolutionary algorithms. In

this paper, we have used some effective adaptations of bat algorithm with the previous men-

tioned approach to effectively handle the many objective problems. Moreover, we have

called this algorithm as many objective bat algorithm (MaOBAT). This algorithm is a biologi-

cally inspired algorithm, which uses echolocation power of micro bats. Each bat represents

a complete solution, which can be evaluated based on the problem specific fitness function

and then based on the dominance relationship, non-dominated solutions are selected. In

proposed MaOBAT, dominance rank is used as dominance relationship (dominance rank of

a solution means by how many other solutions a solution dominated). In our proposed strat-

egy, dynamically allocated set of reference points are used, allowing the algorithm to have

good convergence and high diversity pareto fronts (PF). The experimental results show that

the proposed algorithm has significant advantages over several state-of-the-art algorithms

in terms of the quality of the solution.

Introduction

For multi-objective optimization [1] decision-making is based on the multiple criteria. To

solve the multi-objective problems (MOPs) [2], there is a well-known family of meta-heuristic

based algorithms like MOEAs [1], Multi-objective Particle Swarm Optimization (MOPSOs)

[1,3] and multi-objective bat algorithms (MOBATs) [4]. MOEAs achieve the pareto-front (PF)

approximation in a single run with the use of their own population-based property [2]. The

qualities of the solutions are discriminated based on pareto dominance relation [1–2,5]. Con-

sequently, MOEAs, MOPSOs and multi-objective bat algorithms can be characterized accord-

ingly. Non-dominated sort genetic algorithm II (NSGA-II) [6], Strength pareto evolutionary
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algorithm 2 (SPEA2) [7], Speed-constrained multi-objective particle swarm optimization

(SMPSO) [8] and multi-objective bat algorithm [4] use different variant of the pareto domi-

nance relationship [5,9–10]. Moreover, these algorithms are known as Pareto dominance-

based algorithms. MOPSO, MOEA and MOBAT [3] have obtained the preferable results using

dominance relationship for MOPs up to three objectives [5,11] but these algorithms work inef-

ficiently when more than three objectives are optimized simultaneously [5,10,12–13]. In

MaOPs, more than three distinct objectives are optimized. [5,12,14].

Because of the higher number of objectives, the likelihood of the solution being dominated

by the other solutions in the population drop sharply in MaOP [14]. So, the dominance crite-

rion relation does not work to calculate the preference between the solutions. Hence, the guid-

ance of the non-dominated solutions in the search space degrades to critical level. The

selection pressure to the PF is badly affected by this attenuation in the dominance discrepancy.

So, the convergence is sharply reduced [12,15]. In some case it performs as worse as the ran-

dom search algorithm [12,15–17].

The downside of the MaOPs over the MOPs is because of the increased number of objective

functions. Moreover, the non-dominated solutions increase exponentially [18] and this led to

large population to the external archive. Consequently, evolutionary multi-objective optimiza-

tion (EMO) researchers are working to find out the answers to these problems.

The several approaches are presented to get good convergence and diversity in Pareto-dom-

inance based algorithms for MaOPs [5,19]. The several approaches include: relaxed domi-

nance-based approach (adjusted Pareto-dominance relation), Adjusted of the density

estimation (diversity-based approach), The reduction-based approach, Aggregation function,

Using reference information and an approach in which solutions are guided based on of the

reference set in the search space. In the above-mentioned approaches, the first two approaches

can guide the population to region close to PF, but the adverse effect of this approach is that

the diversity is not maintained. Although, the final output solutions are very close to PF, but

they cover only small portion of the PF [5,20]. The third approach is a substitute to the Pareto

dominance relationship, as the superiority of the approximation set is calculated by using an

indicator function [11]. Moreover, for pareto dominance, monotonic operator is used, and

quality indicator is hypervolume [14]. However, the issue is that the computational cost to

compute the hypervolume is very high, that confines its application in MaOPs [5,21]. In the

approach of dimensionality reduction, the first part is to remove the redundant and correlated

objective from MaOPs [14]. Moreover, this approach transforms the large number of objec-

tives into small number of objective while maintaining the same PF. Furthermore, in the next

phase the selected algorithm (compact version of the original problem) is optimized. However,

the issue arises when dealing with the MaOPs with no redundant objectives or after removing

the redundant objectives problem, it remains a MaOPs. These cases still not yield the promis-

ing results to get a good approximation of the PF. In the aggregation function we must select a

proper aggregation function, which is suitable to our problem [21,22]. However, selecting this

function is a drawback in this approach. As, this approach converge the solutions to a small

portion of the PF [14]. As this approach converges to a portion of PF, it is totally inefficient

and useless. Moreover, the use of preference information approach could be used to give us

the approximation of the PF, So the issue of exponential growth in the amount of non-domi-

nated solutions can be addressed [5,14]. As this approach, does not focuses to approximate the

whole PF but only the portion of the PF, so this approach focuses on the region of the PF,

which is interested to the decision-maker. However, the disadvantage with the approach is the

pressure of making good decisions, as the whole process depends on the decision-making [21].

Additionally, most of the time it is convenient to get the full approximation in the PF. In con-

clusion, each one has a drawback in the terms of having gotten better diversity or convergence,
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or they are computationally expensive, or they are not consistently working on practical prob-

lems in the MaOPs. By understanding this, one way to solve MaOPs is with the use of reference

set based methodology. Algorithms based on the reference sets have more success to get the

good approximation of PF and remain a research challenge [9]. The evaluation of solutions

uses the reference set and then select the non-dominating solutions to get the good conver-

gence and high diversity. This approach is somewhat based on the preference-based approach,

but we have to set preferences to get the full approximation of the PF.

This paper presents the MaOBAT algorithm which uses reference point approach to solve

the MaOPs. The main reason of using BAT based technique is that it converges rapidly to PF

and gives good approximation of PF in MOPs as Bat algorithms are based on swarm intelli-

gence and inspired from the echolocation behaviors of bat. Echolocation works as type of

sonar; a loud sound is emitted, and echo returns after that sound hit the object. It is an impor-

tant factor that bats use to identify distances, obstacles and the difference between food and

prey [23]. Moreover, it also allows them to hunt in complete darkness [23]. The combination

of echolocation with swarm intelligence enhances the properties of swarm-based algorithms so

this thing makes BAT algorithm little more effective than the swarm-based algorithms in some

of the scenarios. The fundamentals of the MOEAs and MOBATs are different from each other,

so we cannot use the result and conclusion of MOEAs cannot implies anything for MOBATs.

In fact, the MOEAs converge slowly to PF but BAT based algorithms converge fast in MaOPs

as they converge fast in single objective optimization. Bat-based algorithms perform better

than PSO-based algorithms in some problem specific scenarios [24, 25] as different studies

suggest. For instance, a comparative study between BAT algorithm and PSO algorithm is per-

formed and radial basis function network (RBF) is trained in order to classify types of bench-

marked data. It is seen that BAT algorithm performed better than PSO algorithm in terms of

improving the weights of RBF network and to accelerate the training time and to get good con-

vergence of optimal solutions, which led to increase in the network efficiency and reduced fall-

ing mistakes and nonoccurrence [24]. Moreover, in another study, a comparison of algorithms

for training feed forward neural networks is done. Two gradient descent algorithms (Backpro-

pagation and Levenberg-Marquardt), and three population-based heuristic: Bat algorithm,

Genetic algorithm, and Particle Swarm optimization algorithm are used for testing. Bat algo-

rithm outperforms all other algorithms in training feed forward neural networks [25]. These

studies encourage to use BA in further experiments and in further real-world applications. The

benefit of the using bat algorithm is to obtain solutions based on population and local search-

based algorithms. This combination gives us global diversity as well as local rigorous exploita-

tion, which is important for metaheuristic algorithms. So, Bat algorithm is the combination of

PSO and local search, which further uses pulse rate control and loudness [26]. By adapting the

approach of reference sets, the MOBATs are used for the MaOPs and provide a good balance

in diversity and convergence which is the main issue in the MaOPs. The main purpose of the

paper is to improve the many-objective algorithm result, by implementing a new bat-inspired

algorithm for many-objective optimization problems by using reference set approach to get

good convergence and diversity.

The organization of the paper is as follows. Section 2 describes the Literature Review. Sec-

tion 3 presents the proposed strategy for many-objective BAT-algorithm. Section 4 gives the

brief explanation of state-of-the-art algorithms, which are used for the comparison. Section 5

gives introduction to test problems, parameter settings and the experiment results. conclusion

and future work are presented in Section 6.
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Literature review

In literature, to improve the convergence of the MOEAs, MOPSOs and MOBAT, the relaxed

form of the dominance relationships is proposed by some authors, which increase the selection

pressure towards the PF. In the following section, the representative work is reviewed and then

the inspiration for our work is elaborated.

Sato et al. [5] floated the idea of modified dominance relationship and it enhanced the per-

formance of the NSGA-II. Moreover, the relationship is known as Control of Dominance Area

of Solutions (CDAS). Furthermore, De Carvalho and Pozo applied CDAS on two different

MOPSOs, namely sigma MOPSO and SMPSO. However, because of this updated relationship

the divergence is affected badly as the selective pressure towards the PF is increased.

Mostaghim et al. [16] in 2008 proposed two aggregation methods, the first is weighted sum

approach and the second one is distance-based ranking. Moreover, it is shown that for some

problem the distance-based approach with MOPSO outperformed NSGA-II and random

search up to 20 objectives. However, the analysis is done for the convergence, but the diversity

issue is still remaining.

In order to manage both convergence and diversity simultaneously, Garza-Fabre et al. [15]

provided two aggregation-based MOEAs focusing on the use of fitness assignments to empha-

size convergence called the clustering elitist genetic algorithm (CEGA) and to provide an

explicit system for promoting diversity called the multi-directional fitness assignment

(MDFA), but it still has issues as it converges toward the small part of the PF.

Deb and Jain in 2013 [27], proposed the reformation to NSGA-II based on the reference set

approach to solve the MaOPs and its named as (Non-dominated Sorting genetic Algorithm-

III) NSGA-III [27]. Moreover, in NSGA-III [27], the reference set approach is used, and it

showed good convergence and diversity simultaneously. In addition, the NSGA-II crowding

distance is substituted by clustering operator, in which each member of the population is con-

nected with one of the well-distributed reference points in order to achieve excellent diversity.

Figueiredo et al. [28], in 2016, used the same reference set based approach in MOPSO to

solve the MaOPs with good convergence and diversity. Moreover, they proposed some more

important difference in accordance to the PSO algorithms. The Many Objective Particle

Swarm Optimization (MaOPSO) [28] uses the external archive to save best non-dominant

solutions which can be used in the later iterations for the selection of the leaders as needed in

the PSO algorithms. Another significant distinction is that MaOPSO utilizes density and

pareto dominance data to move the particles towards the PF. However, no unique reproduc-

tion operator is used by NSGA-III [27].

Zhihua et al. [29], proposed an improved version of NSGA-III, in which a new selection

and elimination operator is used. At first, a selection operator is used to locate the reference

point with the minimum niches count, and then one individual is selected with the shortest

penalty-based intersection distance. Secondly, a reference point with the maximum niche

count is defined, and the elimination operator removes one individual with the longest pen-

alty-based boundary intersection distance.

Multi-objective and multidisciplinary in nature demand coherent optimization algorithms,

especially for the engineering optimization problems as they are considered as complex con-

strained problems. To fix this, Xin-She Yang introduced an invariant of bat algorithm known

as MOBAT [3]. Yang enhanced the bat algorithm for solving global and nonlinear optimiza-

tion problems.

Moreover, multi-objective bat algorithm has been used to solve many real-life applications.

Arash et al. [30] proposed a multi-objective Bat algorithm for optimizing the cost for allocating

human resources to an emergency hospital. Anindita et al. [31] proposed a bio-inspired
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algorithm for solving different aspects of wireless sensor network (WSN) like optimal routing,

clustering, dynamic allocation of motes, lifetime optimization and the energy problem.

Learning to rank is an important task in Information Retrieval (IR) and multi-objective

optimization algorithms have shown success in solving these kinds of problems. Tie-Yan Liu

[32] provided a comprehensive overview of learning to rank for IR and categorized the existing

learning-to-rank algorithms into three approaches. A detailed review of these approaches,

their relationship with loss functions and IR evaluation measures are presented. A ranking

model is constructed using data, this task to construct model is known as Learning to rank. Li

et al. [33] proposed a multi-objective optimization model of the robust learning to rank (LTR)

and this model is helpful in sorting objects according to the importance, choice and relevance.

[32, 33]. The algorithm proposed in our paper can be used to solve the problem of learning to

rank.

Recently, Li et al. [34] proposed a dandelion algorithm (DA), which shows excellent results

in solving optimization problems, however, it converges slowly and can easily get trapped in

local optima. In order to overcome these problems, Zhu et al. [35] proposed a dandelion algo-

rithm with probability-based mutation. Levy and Gaussian mutations are used interchange-

ably, and it showed better results than standard DA.

Moreover, with promising results of the reference-based approach with MOEAs for han-

dling the MaOPs, the adaption made in MOBAT using reference set approach to solve the

MaOPs to achieve good convergence and diversity in more efficient manners. Additionally,

this approach uses the archive to maintain best Bats as to select the leaders.

Multi and many objective Bat algorithms

In this Section, multi and many objective Bat algorithms are discussed. Multi-Objective opti-

mization problems are those optimization problems in which there are two or three objectives,

which need to be optimized and those problems having more than three objectives are catego-

rized as Many-objective optimization problems.

The multi-objective bat algorithm and the proposed many-objective bat algorithm are

described in this following chapter.

Multi-objective Bat algorithm (MOBAT)

Multi-objective and multidisciplinary problems in nature demand coherent optimization algo-

rithms, especially for the engineering optimization problems as they are considered as complex

constraint problems. To fix this, Xin-She Yang introduced an invariant of bat algorithm

known as the MOBAT [3]. Yang enhanced the bat algorithm for solving global and nonlinear

optimization problem. MOBAT is first tested on various subsets of trial functions and then it

is used to give solution of multi-objective problems involving welded beam design problem.

MOBAT shows promising results as compared to existing multi-objectives algorithms [2]. For

MOBAT, there are number of challenges needed to be dealt with. Firstly, the multi-objective

problems are quite complex and arduous to solve. As, there are no unique best solutions for a

multi-objective problem, so algorithm must find a non-dominated approximated solution for

the true PF. Secondly, it must guarantee that numerous PF points are distributed evenly on the

front and that the algorithm works for multi-objective design issues without extra circum-

stances such as weighted sum methods to combine various objectives into single objectives.

For the real-world optimization design problems, like engineering problems for which Yang

designed MOBAT, there is mostly uncertainty and noise in the working solution.

The primary problem in multi-objective bat is to approximate or approach the optimal

Pareto fronts and objectives. The bat inspired algorithm must be modified enough to cater the
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multi-objectives of the design problems in proper manner. In this algorithm as per Pareto opti-

mality rule a vector v = (v1,. . ., vn)T is dominated by the solution space vector u = (u1,.., un)T

2 F if and only if ui� vi for 8i 2 {1,. . .,n} and 9i 2 {1,. . .,n}: ui< vi. According to this equa-

tion, it can be said that all corresponding components of (u) are equal or smaller than all com-

ponents of (v) with an applied condition that at least one component of (u) should necessarily

be smaller. From this we can drive dominance relationship equation ≼ i.e. u ≼ v() u� v _

u = v. From this it can be said that for finding the solutions of maximization problems, the

dominance relationship sign� can be inverted with�. A non-dominated solution point x� 2

F can be approximated if no solution can be seen in the solution space that dominates it. The

Pareto front (PF) can be represented with this equation PF = {s2S 9/s 2S: s�s} and PF can be

written in the of Pareto optimality set in search domain can be written as:

PF� ¼ fx 2 F j∄x0 2 F : f ðx0Þ � f ðxÞg ð1Þ

In the MOBAT algorithm the signal objective (f) can be found from the multi-objectives

(fk) as the weighted sum of all multi-objectives, where the summation of all weights is equal to

1. The weighted are approximated randomly from a uniform distribution so that weights can

have the required diversity to approximate the PF. If there are multiple objective functions

from 1 to k, where k is the quantity of objectives of the problem, then f1(x),. . ., fk(x) are the

objective functions given the initial feature set x = (x1,. . ., xd) T.
Algorithm 1: Framework of the Multi-objective BAT
1: Initialize the Bat algorithm population with its parameters
2: Weight vectors for all objective functions are generated, where the
sum of all weights is equal to 1.
3: Execute the algorithm for maximum iterations, which is the hyper-
parameter of MOBAT.
4: In every iteration the new solution for each objection function is
generated by frequency and position updating equations.
5: A single objective is estimated by weighted sum of the multiple
objective functions.
6: New solutions are also estimated by random walk and flying ran-
domly, and best ones are accepted out of them.
7: After each iteration, the ratio of pulse emission and average loud-
ness of bat algorithm is increased.
8: After each iteration, the bats are ranked as per weighted single
objective function (f) and current best solution is found.
9: At the end best non-dominated solution is estimated and it is post
processed, if required.

Many-objective Bat algorithm (MaOBAT)

The proposed algorithm is named as Many-Objective BAT Algorithm and that is summarized

in Algorithm 2. In this algorithm, the uniformly distributed random bats are generated as the

initial population. After this, the algorithm evaluate bat using problem specific evaluation

function. To save non-dominated solutions, MaOBAT has an external archive (At). Initially

Archive (A0) is empty. After that, reference points are generated and then distributed uni-

formly, which are used to compute the social leaders based on discrimination of solutions in

the external archive. In each iteration algorithm chooses the cognitive and social leaders from

the external archive and update particle position and velocity to move in the decision space. In

the next step of the iteration, the polynomial mutation is applied to 15% of the particles. And

in the final step of the iteration, pruning of the external archive is done so that the size of the

external archive doesn’t overflow than the maximum size (N). The iterations are repeated till

the maximum number of iterations (tmax).
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A fitness function is defined by the algorithm, based on that function the discrimination

between particles is done. Based on the fitness values, the choice of the social leaders and the

pruning (Selection of the best non-dominated particles in the archive) of the external archive

is done. The explanation of different components of the Algorithm 2 is discussed in following

sections.

Fitness method. It mainly focuses on two things, diversity measure to get good diversity

and convergence measure to get the high convergence. To calculate these two measures, a

method based on the reference points is presented. The density of the particle is then calcu-

lated by making the cluster of these particles against reference points.

Computation of the reference points and hyperplane. To emphasize on the convergence

and well distribution of the particles to the PF, the algorithm uses the set of the reference

points. Moreover, the method to get the reference point is recommended by Das and Dennis

[36]. Hyperplane has well-distributed set of points in the objective space and it makes equal

angle with each axis and lies in the first quadrant. A factor (p) is used here which decide in

how many distributions each axis is going be divided. The entire number of reference points is

formed using the given formula. H ¼ cmþp� 1
p , where m is the number of objectives. For

instance, with three objectives (m = 3) and p = 4, the number of reference points are 15. More-

over, the reference points on the apex of the triangle are (1,0,0), (0,1,0), (0,0,1) and these refer-

ence points are unitary reference points.
Algorithm 2: Framework of the MaOBAT
1: Create random initial population P0 of bats of size N
2: Take the empty initial archive A0 = ;
3: Take the initial set of extreme point Z0 = ;
4: Compute the set of reference point (^)
5: for itr = 1 to itr_max do
6: Evaluate the of bats in Pitr using MaOP evaluation function
7: Update the Aitr with Aitr-1 [Pitr-1
8: Select the non-dominated solution from the Archive
9: Compute the ideal Zmin from Aitr
10: Calculate the extreme point Zitr from Zitr-1 [ Aitr
11: Using the extreme point Zitr to construct the Hyperplane
12: Using the Density operator calculate the density measure μs of
each solution s 2 Aitr for the reference set ^
13: Using the Convergence operator calculate the convergence measure
ρs of each solution s 2 Aitr for the reference set (^)
14: For each bat i2Pitr calculate the social leader li2Aitr using den-
sity and convergence measure
15: Prune the external archive if necessary
16: Update the Velocities of bats in Pitr
17: Update the Positions of bats in Pitr
18: Apply the random walk on each bat.
19: Update the pulse emission rate (αi) and loudness reduction (γi) for
each bat i 2 Pitr in the population if the bat become better than the
current bat after random walk.
20: end for
21: return Aitr_max

Translation of the solutions. The ideal point (fi�) for each objective is the minimum

value point. If the ideal is given than we use it as it is, otherwise, it calculates by taking the min-

imum value for each objective in the external archive. After selecting the ideal point, subtract it

from each member of the external archive fi0(x) = fi(x) − fi�

Every objective has an ideal point (fi�) which is the minimum value of that objective. The

objective is denoted by (i) and f� represents idea point.
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Density operator. To get the density operator, all the bats from the (At) are projected on

the Hyperplane and each bat assigned to a reference point on the minimum perpendicular dis-

tance basis. For every bat, a cluster of bats are associated with each reference point. After com-

puting the clusters, the density operator of each bat i.e. the number of bats attached with the

reference point to which that bat attached is computed. For example, if the bat attached to the

reference point j are φj = {a,b,c}, the density measure of all the bats (a,b,c) is 3.

Convergence operator. To get good convergence, convergence operator is used. The ASF

of the bat (i) of external archive with respect to that reference point to which it is associated is

calculated. The convergence measure of the bat (i) is the ASF value of that bat. Mathematically

it is as follows: ρi = ASF (xi, λj), where i belongs to φj.
Pruning the external archive. The bats in the external archive plays a vital role in the pro-

cess of updating pulse emission rate and loudness. For each bat to maintain the external

archive properly is quite essential in the algorithm. Updating external archive at each step is

explained as follows. Firstly, non-dominated solution are added to the external archives and if

the added bat is dominated by any of the bat in the external archive then remove this bat from

external archive, otherwise add this bat in external archive and remove the bat of the external

archive which are dominated by this bat. Moreover, if the size of the external archive increases

from the maximum size, then remove the bats based on the density measure but if the two bats

have the same density measure, then the convergence measure is used to differentiate between

the particles. After removing the bat, the density measure for bats, which are associated with

that reference point, to which removing particle is attached are decremented by one. This

elimination step is being done until the external archive reach to the maximum archive size.

Update the loudness and rate of pulse emission. Loudness and rate of pulse emission of

the bat is updated using the random walk on each bat around its leader. The equation is:

xnew ¼ xold þ � A
t ð2Þ

where � is a random value from [–1,1] for each bat and At is the average loudness of all bats for

specific timestamp, if the random value from [0,1] is less than the rate of pulse emission.

In this process the leader of the bat is taken and if the rate of emission is less than the ran-

dom values, the leader is updated using the given equation:

bat½i� ¼ leader½i� þ random ð0; number of decision variableÞ � 0:001 ð3Þ

Using random flying the new bat are created. Moreover, if the fitness of the newly created

bat is better than that leader and random value (which is used above for the comparison with

the rate of pulse emission) is less than the loudness of that bat, then previous bat is replace by

new bat solution. For the fitness comparison, if the new bat dominates then we simply replace

it with the old bat but if they are incomparable than we see which bat from these two bats is

near to ideal solution. The solution with the least distance from ideal point is selected. This

method encourages convergence as we seek to reduce the distance from the ideal point. In the

last step, if the new solution replaces the old solution that we update the pulse emission rate

(α) and loudness reduction (γ) with the following equation:

Atþ1

i ¼ aA
t
i ð4Þ

rti ¼ r0

i ½1 � expð� gtÞ� ð5Þ

Alpha and gamma are constants which represents pulse emission rate (α) and loudness

reduction (γ) and respectively. In fact, alpha is similar to the cooling schedule in simulated

annealing [37].
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Computational complexity of one generation of MaOBAT. Initially there are some ini-

tializations (archive, population, extreme and reference points) so the computational cost for

them are O (n) (line 1 to 5 in Algorithm 2). Major computations are done in each iteration of

the Algorithm 2 so for that we do line by line analysis to have to proper computational analysis.

Selection of non-dominant solutions needs O (N log M −2 N) computations (line 8 in Algo-

rithm 2) [38]. Selection of the ideal point (line 9 in Algorithm 2) requires a total of O (MN)

computations and the identification of extreme point (line 10 in Algorithm 2) needs O (M2N)

computations. One matrix inversion of size M×M, requires O (M3) operations for the determi-

nation of intercepts to construct Hyperplane (line 11 in Algorithm 2) [27]. For calculating the

density measure (line 12 in Algorithm 2) and convergence measure (line 13 in Algorithm 2) of

maximum 2N population members to H reference points requires O(MNH) computations.

Prune external archive (line 14 in Algorithm 2) takes O(NH) computations. Properties like

loudness, rate of pulse emission, velocity and position are updated in computation bounds of

O(NM). In all our calculations, we have considered H almost equal to N and N greater than M.

Considering all of the above computations, the Computational Complexity of One Generation

of MaOBAT is O(N2M).

Moreover, the time complexity of MaOBAT is asymptotically equivalent to time complexity

of NSGA-III.

Comparison of multi and many-objective bat algorithm. In multi-objective Bat algo-

rithm problems arises when the objectives increase, as the convergence and diversity is com-

promised. Moreover, the proportion of non-dominated solutions in a randomly chosen set of

objective vectors becomes exponentially large with the increase in number of objectives, so

there is not much room left for creating new solutions and it slows down the search process.

Through many-objective Bat algorithm, all the above problems are tackled as it uses reference

point approach to solve the MaOPs by converging rapidly to PF and by giving good approxi-

mation of PF. Points corresponding to each reference point can be emphasized to find a set of

widely distributed sets of Pareto-optimal points [27]. As the reference points are widely dis-

tributed throughout the normalized hyperplane, the solutions obtained are also likely to be

widely distributed on or near the Pareto-optimal front. The goal in such a many-objective opti-

mization is to find Pareto optimal points, which are in some way closest to the specified refer-

ence points [27].

Analysis of bat algorithm. Exploration (diversification) and exploitation (intensification)

are two important components of a metaheuristic and there is a need to maintain an appropri-

ate balance between them to find a near global optimum [39, 40]. Exploration property of an

algorithm helps to explore unknown and new regions of the search space by generating diverse

set of solutions focusing on the search at global level [41, 42]. On the other hand, exploitation

capability of an algorithm exploits the information from the solution at hand and aims to

improve it by searching in the local region of the search space [41, 42]. The bat algorithm

exhibits the properties of both population-based methods and local search [43]. It is based on

PSO [44], and uses two components, which are simulated annealing and random walk direct

exploitation heuristics (RWDE) [45]. Simulated annealing heuristic [37] introduces diversity

in the population and enhances the explorative capability of the bat search. RWDE [46] is con-

nected with the exploitative capability of a bat by exploring the local region of the search space

to improve the solution at hand. Exploration and exploitation in a bat algorithm are controlled

by two parameters: the loudness and the pulse rate, respectively [46]. The reason of bat algo-

rithms generating good results is due to the combination of echolocation with swarm intelli-

gence as it enhances the properties of swarm-based algorithms in some of the scenarios.

During search, the loudness and the rate of pulse emission of bats have to be updated accord-

ingly as the iterations proceed as these characteristics help to find the optimized solutions in
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the better way. In early iterations, the loudness is high, which helps in exploring different

regions of the search space. On the other hand, in later iterations of the search, the rate of

pulse emission is increased in order to exploit the promising region of the search space.

Typically, the loudness decreases, and the rate of pulse emission increases as the bats

approach towards the near-optimal solution, and this mimics the behavior of a bat when it

detects and localizes a prey [45]. To control the dynamics of a swarm of bats, these parameters

are tuned to maintain an appropriate balance between exploration and exploitation compo-

nents of the algorithm to find the near-optimal solution.

Many-objective evolutionary algorithms for testing MaOBAT

In this section the NSGA-III [27] and MaOPSO are explained. The performance of the MaO-

BAT is compared with two algorithms MaOPSO [28] and NSGA-III [27]. The brief summary

of these algorithms is given below:

NSGA-III

In NSGA-III, the initial population is created using randomly generated solutions which are

also uniformly distributed. After this, the algorithm evaluates solutions using problem specific

Evaluation function. Then, the offspring are generated with mutation and recombination.

Then, combine the population and offspring to make the fronts based on pareto dominance

relationship as done in the NSGA II [6]. Then, considering the population size, add these

fronts one by one to next generation. After adding each front check whether the size of next

generation is more or equal to population size. If it is equal than move to next iteration and if

the algorithm hasn’t reached to the maximum specified iteration then calculate how many

solutions are required to be added from the last added front and then uniformly distribute ref-

erence points are generated, which are used to normalize all the solutions. The solutions are

connected with each reference point on the basis of a minimum perpendicular distance from

each reference point. The next step is calculating niche count. On the basis of the niche count,

without the final selected front, add solutions from the final front into the next iteration one

by one until it reaches to population size.

MaOPSO

In this algorithm [28], the uniformly distributed randomly generated particles are generated in

the initial swarm So. After this the algorithm evaluate particles using problem specific evalua-

tion function. To save the non-dominated solutions MaOPSO has external archive (At), ini-

tially the Archive A0 is empty. Then, uniformly distributed reference points are created, in

order to compute the social leaders based on the discrimination of solutions in the external

archive. After this, it works iteratively, in each iteration the cognitive and social leaders are

updated from external archive and then these leaders are used to update position and velocity

of particle to move in the decision space. In the next step of the iteration, to the 15% of the par-

ticles, polynomial mutation is applied. In the final step of the iteration, pruning of the external

archive is done so that the external archives size does not overflow than the maximum size N.

These iterations are repetitive until the maximum iterations (tmax). The algorithm defines a

function for fitness and on the basis of the that function, the discrimination between particles

is done. Based on the fitness standards, social leaders are selected, and external archive pruning

is performed as to how to select the best non-dominated particles in the archive.
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Experimental results and discussion

In the following section, the algorithms performance is discussed. The algorithms used for

comparison are MaOPSO, NSGA III, MaOBAT and SMPSO [8]. These comparisons give

three different aspect of how the convergence and diversity values are affected by using three

different algorithms.

In the first aspect, the convergence of many objective algorithms is better than the multi-

objective algorithms. In the second aspect, the analysis of the pareto dominance-based algo-

rithms are not well converged towards PF in MaOPs. Well-known quality indicator such as

inverted generational distance (IGD), generational distance (GD) and hypervolume (HV) are

used to perform the analysis based on the diversity and convergence of the algorithms.

Experiments are performed with varying number of objectives (m) such that m = [2, 3, 5, 7,

10], on different algorithms such as MaOPSO, NSGA-III, MaOBAT, SMPSO and then each

algorithm is evaluated with quality measure algorithm to get the qualitative analysis. Signifi-

cance of the obtained results is also demonstrated using T-Test.

Benchmark test problems

In this paper, DTLZ [2, 4, 6] problems are used as the benchmark problem [36]. The number

of decision variables (n) and number of objectives (m) are altered during the experimenta-

tions. The formula is as follows: n = m+k+1. DTLZ4 is defined as a difficult problem regarding

diversity. DTLZ6 is used to see the how well an algorithm can converge to a curve. We have

used the value of k as 10 for all problems.

Parameters Settings

MaOBAT. In MaOBAT algorithm, fmin and fmax are set to 0 and 1 respectively. Loudness

is assigned the random value from [1,2] for each bat. Pulse emission rate (α) and loudness

reduction (γ) are assigned values in between 0.7 to 0.9 and are used same as these values give

optimal results [4]. The number of divisions in each objective is represented as p and m is the

number of objectives and their values is used in the reference point calculation by this formula

H ¼ cmþp� 1
p . Generally, the greater the number of reference point means better results. The size

of archive is dependent on the number of objectives as shown in Table 1. The archive size is

based on the number of reference points but in case of 10 objectives we assign archive size

equal to 500 as of computational limitations. For the experiments, 100,000 iterations are used,

as the many objective algorithms takes some time to show its convergent behavior for each

algorithm as shown in Figs 1, 2 and 3. MaOPSO [28] also executed 100,000 iterations to calcu-

late the final Pareto Front because it demonstrated the convergent behavior until this number

of iterations. The number of iterations is kept same for all the compared algorithms to have a

fair comparison of the algorithms with MaOBAT. Moreover, the parameters’ settings in the

selected algorithms are inspired from the MaOPSO and the values of the parameters were

selected such that the aim was to achieve the convergence of the algorithms [28]. Mutation

probability of (1/number of decision variable) is used, with mutation distribution of 20 while

using polynomial mutation, according to Nebro et al [8].

MaOPSO. In MaOPSO, the parameter values used are followed from the previous paper

[28]. We run the algorithm for 100,000 iterations with different population size and reference

point as shown in the Table 1.

NSGA-III. In NSGA III, the parameter values used are followed from MaOPSO [28]. We

run the algorithm for 100,000 iterations with different population size and reference point as

shown in the Table 1.
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SMPSO. For SMPSO, the parameter values which are used here are according to the ones

mentioned in MaOPSO [28]. The algorithm is run for 100,000 iterations to have the fair com-

parison with other algorithms. Mutation probability of (1/number of decision variable) is

used, with mutation distribution of 20 while using polynomial mutation, according to Nebro

et al [8].

Parametrical analysis. We have tested it using a different range of parameters such as

Pulse emission rate (α) and loudness reduction (γ) and population size (n) as shown in Figs 4,

5 and 6. By varying α = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1 and γ = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1, 0, it is

found that the best parameters for the most experiments are α = 0.7 to 0.9 and γ = 0.7 to 0.9.

Computational results and discussion

In the following section, we analyze the value of the GD, IGD and HV for MaOBAT,

NSGA-III, MaOPSO and SMPSO. The analysis shows that how these algorithms perform in

accordance to convergence and diversity values. Tables 2–4 shows the values of the GD

Table 1. Parameters settings in the selected algorithms.

Objectives p Number of points Archive size Population size

2 200 200 200 100

3 20 231 231 100

5 8 495 495 100

7 6 924 924 200

10 5 2002 500 300

https://doi.org/10.1371/journal.pone.0234625.t001

Fig 1. Comparison of GD (10 objectives), IGD (7 objectives) and HV values (7 objectives) of MaOBAT and NSGA-III on different number

of iterations on DTLZ2.

https://doi.org/10.1371/journal.pone.0234625.g001
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Fig 2. Comparison of GD, IGD and HV values of MaOBAT and NSGA-III on different number of iterations (10 objectives) on DTLZ4.

https://doi.org/10.1371/journal.pone.0234625.g002

Fig 3. Comparison of GD, IGD and HV values of MaOBAT and NSGA-III on different number of iterations (10 objectives) on DTLZ6.

https://doi.org/10.1371/journal.pone.0234625.g003
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metrics; Tables 5–7 show the values of IGD metrics and Tables 8–10 shows the values of the

HV metrics.

For DTLZ 2 (Tables 2, 5 and 8). In case of convergence, MaOBAT performs better when

objectives are 5 and 10 as shown in Table 2 (For GD values). In regard to IGD, the MaOBAT

performs better and better as the number of objectives increased as shown in Table 5. With

Fig 4. Parametrical analysis of α and γ with Iterations = 100000, m = 10, p = 5, N = 300, and archive size = 500, while considering GD values

of MaOBAT of DTLZ2.

https://doi.org/10.1371/journal.pone.0234625.g004

Fig 5. Parametrical analysis of α and γ with Iterations = 100000, m = 10, p = 5, N = 300, and archive size = 500, while considering GD values of

MaOBAT of DTLZ4.

https://doi.org/10.1371/journal.pone.0234625.g005
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HV consideration, MaOBAT shows the same behavior as shown in the IGD as it performs bet-

ter when objectives are increased as shown in Table 8.

For DTLZ 4 (Tables 3, 6 and 9), using all the quality indicators (GD, IGD, HV). MaOBAT

performs better or significantly better (at 95% confidence interval) for the most number of

experiments for all instances of this problem. So, MaOBAT give the best compromise between

diversity and convergence of this problem.

For DTLZ 6 (Tables 4, 7 and 10), MaOBAT performs better or significantly better (at 95%

confidence interval) for the most number of experiments showing the good convergence.

When IGD values are considered, the MaOBAT again performed significantly better (at 95%

confidence interval) for different number of objectives. On the other hand, when considering

the HV, the MaOBAT performs significantly better (at 95% confidence interval) than the other

many objective algorithms at most times.

The combination of echolocation with swarm intelligence and search process enhances the

properties of swarm-based algorithms so this thing makes BAT algorithm little more effective

than the swarm-based algorithms in some of the scenarios.

Conclusion and future work

This paper proposes a many objective bat algorithm (MaOBAT) to solve many-objective opti-

mization problems by effectively approximating the Pareto approximation (PA) with high

Fig 6. Parametrical analysis of α and γ with Iterations = 100000, m = 10, p = 5, N = 300, and archive size = 500, while considering GD values

of MaOBAT of DTLZ6.

https://doi.org/10.1371/journal.pone.0234625.g006

Table 2. GD metric of problem DTLZ2 (100,000 iterations). Values in bold are best values. ‘�’, ‘−’ and ‘+’ show that the result is statistically similar, significantly worse

and significantly better to that of MaOBAT, respectively (with alpha = 0.05).

Objectives MaOPSO NSGA III MaOBAT SMPSO

2 2.058336E-4 (3.25e-5)� 1.974504E-4 (5.06e-5)� 1.721903E-4 (6.00e-5) 1.662371E-4 (2.99e-5)�

3 3.843454E-4 (4.20e-5)� 3.324329E-4 (3.95e-5)� 3.514326E-4 (5.23e-5) 3.487237E-4 (4.22e-5)�

5 2.645245E-3 (2.82e-4)� 3.234534E-2 (3.02e-3) − 2.562546E-3 (3.50e-4) 3.476738E-2 (3.66e-3) −
7 4.876875E-3 (3.01e-4) − 3.254657E-3 (3.65e-4) + 3.765876E-3 (4.20e-4) 3.639874E-3 (2.98e-4)�

10 5.546757E-3 (3.99e-4)� 6.876875E-3 (2.99e-4) − 5.347683E-3 (2.98e-4) 7.874293E-3 (2.66e-4) −

https://doi.org/10.1371/journal.pone.0234625.t002
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Table 4. GD metric of Problem DTLZ6 (100,000 iterations). Values in bold are best values. ‘�’, ‘−’ and ‘+’ show that the result is statistically similar, significantly worse

and significantly better to that of MaOBAT, respectively (with alpha = 0.05).

Objectives MaOPSO NSGA III MaOBAT SMPSO

2 2.523425E-3 (9.74e-4)� 2.624323E-3 (6.41e-4)� 2.501345E-3 (6.17e-4) 2.523498E-3 (1.18e-5)�

3 1.274898E-2 (5.27e-3)� 1.275687E-2 (9.39e-3)� 1.178726E-2 (6.20e-3) 1.234532E-2 (1.18e-4)�

5 7.242343E-2 (1.38e-3) − 8.352435E-2 (1.66e-3) − 7.123423E-2 (1.05e-4) 8.653453E-2 (2.51e-3) −
7 1.724637E-1 (1.87e-2) − 0.84872638 (2.20e-2) − 1.464564E-1 (1.93e-2) 0.99873468 (2.10e-2) −
10 2.345345E-1 (1.78e-2)� 0.9934984 (4.01e-2) − 2.354565E-1 (2.65e-2) 1.0473486 (3.12e-2) −

https://doi.org/10.1371/journal.pone.0234625.t004

Table 5. IGD metric of Problem DTLZ2 (100,000 iterations). Values in bold are best values. ‘�’, ‘−’ and ‘+’ show that the result is statistically similar, significantly worse

and significantly better to that of MaOBAT, respectively (with alpha = 0.05).

Objectives MaOPSO NSGA III MaOBAT SMPSO

2 2.070280E-4 (4.29e-5)� 1.125479E-4 (4.04e-5) + 2.356600E-4 (5.73e-5) 1.629348E-4 (3.96e-5) +

3 1.345434E-3 (4.39e-4)� 1.434534E-3 (4.06e-4)� 1.545342E-3 (4.56e-4) 1.647298E-3 (3.90e-4)�

5 2.634534E-2 (3.18e-3) + 2.145345E-2 (3.09e-3) + 3.245235E-2 (3.41e-3) 2.423423E-2 (3.12e-3) +

7 3.376576E-2 (2.72e-3)� 4.265467E-2 (3.93e-3) − 3.254655E-2 (3.98e-3) 3.534532E-2 (3.17e-3)�

10 4.353847E-2 (3.08e-3)� 4.734879E-2 (3.48e-3)� 4.623487E-2 (3.13e-3) 4.823488E-2 (2.33e-3)�

https://doi.org/10.1371/journal.pone.0234625.t005

Table 6. IGD metric of Problem DTLZ4 (100,000 iterations). Values in bold are best values. ‘�’, ‘−’ and ‘+’ show that the result is statistically similar, significantly worse

and significantly better to that of MaOBAT, respectively (with alpha = 0.05).

Objectives MaOPSO NSGA III MaOBAT SMPSO

2 7.465870E-5 (1.19e-6) + 8.543565E-5 (1.09e-6) + 8.965765E-5 (6.66e-7) 8.629348E-5 (1.27e-6) +

3 7.465870E-5 (2.95e-6) − 7.465860E-5 (1.65e-6) − 7.273498E-4 (9.25e-7) 9.749284E-5 (1.59e-6) −
5 9.487234E-3 (6.94e-4) − 7.423453E-3 (6.53e-4) − 6.387462E-3 (3.39e-4) 7.624232E-3 (6.61e-4) −
7 1.468879E-3 (7.84e-4)� 1.687987E-3 (5.87e-4)� 1.265476E-3 (5.34e-4) 0.5487328 (6.61e-4) −
10 2.539875E-3 (5.32e-4)� 2.287428E-3 (4.74e-4) + 2.887493E-3 (4.90e-4) 0.7648237 (3.56e-4) −

https://doi.org/10.1371/journal.pone.0234625.t006

Table 7. IGD metric of Problem DTLZ6 (100,000 iterations). Values in bold are best values. ‘�’, ‘−’ and ‘+’ show that the result is statistically similar, significantly worse

and significantly better to that of MaOBAT, respectively (with alpha = 0.05).

Objectives MaOPSO NSGA III MaOBAT SMPSO

2 4.312121E-2 (5.63e-4) − 3.234234E-2 (2.07e-3) − 2.123423E-2 (3.20e-3) 3.423422E-2 (4.54e-4) −
3 4.876768E-2 (5.89e-3) − 5.328798E-2 (2.05e-3) − 4.283915E-2 (3.80e-3) 1.345332E-2 (3.11e-3) +

5 5.384500E-2 (1.08e-3)� 6.123093E-2 (2.48e-4) − 5.873298E-2 (2.05e-4) 5.934223E-2 (3.36e-4) −
7 1.388475E-1 (7.19e-2)� 1.398768E-1 (2.50e-2)� 1.378698E-1 (3.50e-2) 1.414823E-1 (1.58e-2)�

10 3.287498E-1 (1.27e-2) − 3.876987E-1 (1.38e-2) − 2.762847E-1 (1.33e-2) 3.288768E-1 (1.34e-2) −

https://doi.org/10.1371/journal.pone.0234625.t007

Table 3. GD metric of problem DTLZ4 (100,000 iterations). Values in bold are best values. ‘�’, ‘−’ and ‘+’ show that the result is statistically similar, significantly worse

and significantly better to that of MaOBAT, respectively (with alpha = 0.05).

Objectives MaOPSO NSGA III MaOBAT SMPSO

2 7.653915E-5 (1.29e-6) − 8.258954E-5 (1.02e-6) − 7.241409E-5 (1.33e-6) 8.354345E-5 (1.69e-6) −
3 4.634534E-4 (3.35e-5) − 4.644548E-4 (1.98e-5) − 4.352342E-4 (2.36e-6) 4.735345E-4 (1.95e-5) −
5 4.284792E-3 (7.66e-4)� 7.456634E-3 (6.99e-4) − 3.826273E-3 (3.11e-4) 7.887236E-3 (5.57e-4) −
7 3.836576E-3 (8.36e-4)� 8.546557E-3 (5.96e-4) − 3.826273E-3 (4.52e-4) 9.123127E-3 (5.65e-4) −
10 3.987687E-3 (6.35e-4)� 7.674298E-3 (4.66e-4) − 3.946776E-3 (4.45e-4) 8.642342E-3 (4.20e-4) −

https://doi.org/10.1371/journal.pone.0234625.t003
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diversity and good convergence. In the proposed method, the reference-based approach in

MOBAT is used and MaOBAT is proposed, as background study shows that this approach is

being used effectively for MaOPs. Moreover, in the fitness assignment method, the reference

points are evenly distributed for imposing the selection pressure for getting the good conver-

gence against the true PF. The experimental results demonstrate that the MaOBAT have good

capability in generating the PF with good convergence and high diversity. Significance of the

obtained results is also demonstrated using T-Test. Empirical study shows that MaOBAT

works efficiently in comparison to MaOPSO, SMPSO and NSGA III. Moreover, it computes

high diversity and good convergence in a reasonable time. To maintain pressure selection

towards PF and to get the high diversity, extreme solutions and uniformly distributed refer-

ence set are used. Furthermore, the experimental results demonstrate that the MaOBAT algo-

rithm has significant advantages over several state-of-the-art many objective algorithms in

terms of the excellence of the solution.

In future, more experiments can be done for different benchmark problems, specifically for

practical problems having high dimensionality and complex PF to get more meticulous perfor-

mance analysis of the MaOBAT.

Table 8. HV metric of Problem DTLZ2 (100,000 iterations). Values in bold are best values. ‘�’, ‘−’ and ‘+’ show that the result is statistically similar, significantly worse

and significantly better to that of MaOBAT, respectively (with alpha = 0.05).

Objectives MaOPSO NSGA III MaOBAT SMPSO

2 0.990 (0.014060)� 0.992 (0.026770)� 0.991 (0.010238) 0.962 (0.011431) −
3 0.989 (0.021569) + 0.837 (0.007659) − 0.893 (0.011332) 0.862 (0.010369) −
5 0.990 (0.012970) + 0.600 (0.006409) − 0.871 (0.012202) 0.743 (0.011174) −
7 0.931 (0.011988)� 0.630 (0.015702) − 0.942 (0.017528) 0.771 (0.019081) −
10 0.951 (0.017303)� 0.480 (0.010778) − 0.953 (0.008167) 0.420 (0.008177) −

https://doi.org/10.1371/journal.pone.0234625.t008

Table 9. HV metric of Problem DTLZ4 (100,000 iterations). Values in bold are best values. ‘�’, ‘−’ and ‘+’ show that the result is statistically similar, significantly worse

and significantly better to that of MaOBAT, respectively (with alpha = 0.05).

Objectives MaOPSO NSGA III MaOBAT SMPSO

2 0.901 (0.007350) − 0.983 (0.013268) + 0.952 (0.003427) 0.988 (0.010474) +

3 0.921 (0.010605)� 0.854 (0.010401) − 0.933 (0.013729) 0.849 (0.011190) −
5 0.983 (0.014543)� 0.780 (0.013750) − 0.992 (0.008497) 0.701 (0.007513) −
7 0.992 (0.007072)� 0.840 (0.017627) − 0.993 (0.014843) 0.700 (0.015733) −
10 0.989 (0.019326)� 0.950 (0.008873) − 0.990 (0.009701) 0.820 (0.014723) −

https://doi.org/10.1371/journal.pone.0234625.t009

Table 10. HV metric of Problem DTLZ6 (100,000 iterations). Values in bold are best values. ‘�’, ‘−’ and ‘+’ show that the result is statistically similar, significantly

worse and significantly better to that of MaOBAT, respectively (with alpha = 0.05).

Objectives MaOPSO NSGA III MaOBAT SMPSO

2 0.990 (0.014324)� 0.801 (0.024760) − 0.992 (0.004303) 0.911 (0.013035) −
3 0.557 (0.014017) − 0.931 (0.022242) − 0.993 (0.007557) 0.972 (0.009004) −
5 0.621 (0.011132) − 0.382 (0.018306) − 0.992 (0.007555) 0.971 (0.016300) −
7 0.940 (0.009473)� 0.401 (0.008810) − 0.945 (0.004768) 0.964 (0.007558) +

10 0.930 (0.014989)� 0.311 (0.033148) − 0.941 (0.007621) 0.931 (0.011066) �

https://doi.org/10.1371/journal.pone.0234625.t010
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