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Abstract: Three alkoxyamines based on imidazoline radicals with a pyridine functional
group—potential initiators of nitroxide-mediated, controlled radical polymerization—were
synthesized. Electron Paramagnetic Resonance (EPR) measurements reveal biexponential kinetics
for the thermolysis for diastereomeric alkoxyamines and monoexponential kinetics for an achiral
alkoxyamine. For comparison, the thermolysis of all three alkoxyamines was studied by NMR
in the presence of three different scavengers, namely tetramethylpiperidine-N-oxyl (TEMPO),
thiophenol (PhSH), and β-mercaptoethanol (BME), and detailed analysis of products was performed.
NMR differentiates between N-inversion, epimerization, and homolysis reactions. The choice of
scavenger is crucial for making a reliable and accurate estimate of the true homolysis rate constant.

Keywords: nitroxide; alkoxyamine; nitroxide mediated polymerization; kinetics; scavenger;
imidazoline radical; homolysis; nitrogen inversion; chirality; stereoisomerization

1. Introduction

Alkoxyamines have been used for three decades [1] as initiators in Nitroxide-Mediated
Polymerization (NMP) [2–15]. The main parameters determining the applicability of alkoxyamines
for NMP are the rate constants of their homolysis, kd, the rate of recombination of the corresponding
alkyl and nitroxide radicals, kc (Scheme 1), and the absence of substantial side reactions. Each of
the kd and kc rate constants depend on the structure of both the nitroxide and the alkyl radicals.
The equilibrium constants vary over a wide range depending on the steric and/or electronic effects
of substituents in both the nitroxyl [16–19] and the alkyl parts [19–22]. In addition, the alkoxyamine
homolysis parameters can be varied via the introduction of functional groups capable of reversible
protonation [23–25], hydrogen bonding [26] or coordination with metals [21,27–29] (for example,
pyridine or OH groups) in so-called “switchable” alkoxyamines [30–32]; another such factor is light
in photo-cleavable alkoxyamines [33]. For example, the introduction of a pyridine group into the
alkoxyamine produced up to a 30-fold increase or decrease of kd upon complexation [21,28–30].

In the present work, we investigate the homolysis of alkoxyamines composed of imidazoline
radicals with a pyridine functional group capable of complexation with metals (Chart 1).
Sterically hindered imidazoline radicals have shown their applicability to NMPs [34]. However,
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the introduction of bulky groups often leads to chiral alkoxyamines, which raises the question
of whether the rate kd and kc constants can be different for different stereoisomers. In particular,
Ananchenko et al. studied tetramethylpiperidine-N-oxyl (TEMPO) and N-(2-methylpropan-2-yl)-
N-(1-diethylphosphono-2,2-dimethylpropyl)-aminoxyl)-based alkoxyamines by 1H and 31P NMR
spectroscopy [35–37]. They showed that the diastereomeric excess upon homolysis and reformation
of the diastereomeric alkoxyamines depends strongly on the structure of both the nitroxyl and the
released alkyl part.
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Chart 1. Structures of the nitroxide (1•), alkoxyamines (2RR/SS, 2RS/RS, 3), and scavengers (TEMPO,
thiophenol (PhSH), β-mercaptoethanol (BME)).

The coupling of a chiral nitroxyl radical with a prochiral alkyl radical produces an alkoxyamine
exhibiting two chiral centers: one on the alkyl fragment and one on the nitroxyl fragment. In addition,
the N-atom could be considered as a third pseudo-chiral center because of its three different substituent
groups, with its electron lone pair as the fourth group. The chiral nitrogen implies the possibility
of configuration inversion at the N-atom through a flip-flop or inversion process. These three chiral
centers could undergo two independent processes: (a) nitrogen inversion and (b) stereoisomerization
of the alkyl part following alkoxyamine homolysis and recombination (Scheme 2). Hereafter, we will
refer to this second process as epimerization.

The homolysis of alkoxyamines commonly has a monoexponential time dependence,
and consequently, EPR is often used to study the kinetics of the homolysis reaction. In such
experiments, the oxygen dissolved in the sample is used as a scavenger for the alkyl radicals, so that the
increasing nitroxyl radical concentration reveals the kinetics of the homolysis reaction [38]. However,
this approach is not useful for the more complicated, non-monoexponential kinetics caused by side
reactions. In such cases, NMR spectroscopy is used to detect and monitor the reaction intermediates
and final products [39–41]. Here, we used three different scavengers, namely TEMPO, thiophenol
(PhSH), and β-mercaptoethanol (BME) (Chart 1), to show the importance of the selection of a radical
trap for NMR measurements of different alkoxyamines. We examine how various processes can
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manifest themselves and show that only a careful analysis by the NMR method allows us to draw
conclusions about the processes that take place.
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Figure 1. 1H-NMR spectra in the region of the proton at the tertiary chiral carbon center for the two 
diastereomers 2RS/SR and 2RR/SS. For each diastereomer, the highlighted regions correspond to the 
respective invertomers. 
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2.1. Nitrogen Inversion

Two diastereomers 2RS/SR and 2RR/SS were studied by NMR in the 265–331 K temperature range.
Both diastereomers were found to undergo N-inversion: for the 2RS/SR diastereomer, the invertomer
ratio is 1:3; and for 2RR/SS, the invertomer ratio is 1:30 at room temperature (Figure 1, SI p. S3–S23).
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Figure 3. Eyring plot for the nitrogen inversion of the 2RS/SR diastereomer. 

 

Figure 1. 1H-NMR spectra in the region of the proton at the tertiary chiral carbon center for the two
diastereomers 2RS/SR and 2RR/SS. For each diastereomer, the highlighted regions correspond to the
respective invertomers.

The nitrogen inversion rate constants were determined in the temperature range 265–311 K by 2D
NOESY/Exchange Spectroscopy (EXSY) and at 302-331 K by Dynamic Nuclear Magnetic Resonance
(DNMR) for the 2RS/SR diastereomer, which was possible because of the substantial signal from its
minor invertomer. Under such conditions, the nitrogen inversion is slow on the NMR time scale;
plus, the alkoxyamine epimerization process is negligible and does not affect nitrogen inversion.
The signals of protons at tertiary chiral carbon centers from DNMR and cross-peaks of the α-pyridine
protons from NOESY/EXSY (Figure 2; SI p. S180) were used.

In the case of NOESY/EXSY, the nitrogen inversion rate constant kAB is [42]:

kAB =
K

(K + 1)τ
ln

IAA + KIBB + (K + 1)Icross

IAA + KIBB − (K + 1)Icross
(1)
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where K is the equilibrium constant; τ—the mixing time (0.1 s); IAA and IBB—the integral intensity
of the diagonal peaks; Icross = (IAB + IBA)/2; and IAB and IBA—the integral intensity of the cross peaks
(Figure 2). For the DNMR line shape analysis, we used the DNMR5 software package [43].
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Enthalpy and entropy of activation were calculated using the Eyring equation:
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and R—the universal gas constant (Figure 3, SI p. S180). The transmission coefficient was taken as 1.
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Figure 3. Eyring plot for the nitrogen inversion of the 2RS/SR diastereomer.

Determination of the nitrogen inversion rate constants for alkoxyamine 3 was performed in the
temperature range 342–376 K by 2D NOESY/EXSY. The nitrogen inversion is much slower in 3 than in
2RS/SR (0.086/0.36 s−1 vs. 48/115 s–1 at 342 K in toluene-d8 for the rates of the more populated invertomer
to/from the less populated invertomer). The ratio of isomers for nitrogen inversion in 3 is 4:1.

Due to the specific steric hindrances in alkoxyamines 2 and 3, nitrogen inversion is always
accompanied by a rotation around the N–O bond. The sequence of these two events could follow
two alternative processes shown in Scheme 3a,b. However, according to DFT calculations (Figure 4,
SI p. S205–S213), planarizing the N-atom coordination center and the rotation of the N—O bond do not
occur sequentially. The two events are concerted, and the reaction path of nitrogen inversion contains
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no additional intermediates. The N-O-C fragment turns into the plane of the imidazoline ring in the
transition state (TS). An introduction of bulky substituents to the carbon atom of this fragment would
make TS less favorable and raise the energy barrier. The steric factor of a methyl group is greater than
that of phenyl and especially of a hydrogen atom; therefore, nitrogen inversion in 3, which contains
two methyl groups, should be slower than that in 2RS/SR.
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2.2. EPR Study of Alkoxyamines Homolysis

Homolysis kinetics were investigated by EPR with oxygen as a scavenger for both diastereomers
2RS/SR and 2RR/SS, as well as for alkoxyamine 3. As expected, alkoxyamine 3 exhibited monoexponential
kinetics; the homolysis rate constant was kd = 2.5 × 10−4 s−1 (Figure 5, green). In contrast,
for alkoxyamines 2RS/SR and 2RR/SS, bi-exponential kinetics were observed (Figure 5, blue and red),
as evident in the upward deviation in concentration of nitroxide at short times. In general, such a
dependence is typical of a mixture of diastereomers, such as a mixture of 2RS/SR and 2RR/SS. However,
the samples studied here contain only minor impurities of the corresponding diastereomers, which does
not account for the deviations from monoexponential decay.

2.3. NMR Study of Alkoxyamine Homolysis

As mentioned above, the NMR experiments are affected by two dynamic processes in these
alkoxyamines: (i) nitrogen inversion and (ii) homolysis of the C–ON bond followed by recombination of
the nitroxyl and alkyl radicals giving either of the two diastereomers (epimerization). The kinetics of
homolysis can be observed by the addition of a radical scavenger to convert the generated radicals
(or at least only the alkyl radicals) into diamagnetic products. The epimerization reaction relies on
homolysis of the C–ON bond to generate two radicals with a loss of chirality at both N- and C-atoms,



Molecules 2020, 25, 5080 6 of 20

but chirality regenerates upon coupling. Thus, the ∆G, of epimerization should be close to the ∆G, of
homolysis and larger than 110 kJ/mol. From the little data available in the literature concerning labile
alkoxyamines [44,45], the ∆G, of nitrogen inversion is around 60–75 kJ/mol for non-sterically hindered
alkoxyamines and close to ∆G, of homolysis when sterically hindered [46].
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δ = 7.7 and 8.9 ppm, with a half-width of about 20 Hz and each with an intensity of 1H, which is 
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In 1H-NMR spectra, the signals of the α-protons of pyridine moieties are easily recognized by the
reduced spin–spin coupling constant with the neighboring proton (≈5 Hz) and are in the low-field
region of the spectrum, not overlapping with the signals of other protons. Therefore, in reactions
where the pyridine ring is not affected, the total integral of the entire region of α-pyridine protons of
the starting materials and products can be taken as unity and used as an “internal standard” in the
processing of kinetic data. In addition, in reactions in which the nitroxide radical 1• is the starting
material or the product, the 1H spectrum contains two relatively narrow, precisely integrable signals,
δ = 7.7 and 8.9 ppm, with a half-width of about 20 Hz and each with an intensity of 1H, which is
presumably related to the pyridine fragment. The large chemical shifts difference of the ethyl group
protons is noteworthy and is due to the specific spatial structure of this alkoxyamine (SI, p. S10).

2.4. Homolysis of Alkoxyamines in the Absence of Scavengers (Epimerization)

The main reaction upon heating of the alkoxyamine solution is the homolysis of the C–ON bond
with the formation of a nitroxyl and a planar alkyl radical with a subsequent recombination of these
radicals to form one of the diastereomers. In the absence of any alkyl radical traps, including oxygen,
the only one side reaction is a recombination of two alkyl radicals. It leads to the accumulation of an
excess of the stable nitroxyl radical, forcing the recombination of nitroxyl and alkyl radical to be the
main reaction occurring in our experimental conditions [36–38,47]. Toluene was chosen as the solvent
after careful consideration of the NMR and EPR experiments, taking into account the advantage of
using non-polar solvents in EPR experiments on the one hand and the typical activation energy of this
reaction (and temperature range) on the other hand.

Kinetic data were collected for the proton located at the stereogenic carbon center (Figure 1).
The kinetic scheme was the conventional reversible conversion 2RS/SR � 2RR/SS (Figure 6, Table 1).
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aA lower concentration of TEMPO was essential to get resolved NMR spectra. 
bEpimerization. 
cTo simplify comparison of rate constants, the initial concentration of the substrate was taken as 1. To 
obtain the formally correct value (as for bimolecular reaction with TEMPO), the rate constant must be 
divided by the initial concentration of 2 or 3 (0.033 mol/L), see SI p. S189. 
dInterpolated to 347 K from the rates at 342 K and 376 K (the reaction was carried out at a different 
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4.1 10−6 s−1. T = 376 K, k = 3.1 10−4 s−1. 
eExtrapolated to 347 K from rate at T = 376K, kd = 1.9 10−4 s−1. 
fExtrapolated to 347 K from the rates at 300 K by the Eyring equation with ΔS# = 0 (the reaction is very 
fast even at room temperature, incl. at increased speed is not measured). 
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Table 1. Rate constants (×10−5 s−1) for the reactions of alkoxyamines (≈0.02 mol/L) with BME (2 mol/L),
PhSH (2 mol/L) and TEMPO (3 eqv. a) in toluene-d8 at 347 K by NMR.

None TEMPO BME PhSH

2RS/SR 10.5 b 5.0 c 8.3 16.3

2RR/SS 6.0 b 2.2 c 2.5 7.0

3 0.33 c 0.81 d 0.36 e

1• 21 6400 f

a A lower concentration of TEMPO was essential to get resolved NMR spectra. b Epimerization. c To simplify
comparison of rate constants, the initial concentration of the substrate was taken as 1. To obtain the formally correct
value (as for bimolecular reaction with TEMPO), the rate constant must be divided by the initial concentration of
2 or 3 (0.033 mol/L), see SI p. S189. d Interpolated to 347 K from the rates at 342 K and 376 K (the reaction was carried
out at a different temperature so that broadening due to nitrogen inversion would be less disturbing). At T = 342 K,
k = 4.1 10−6 s−1. T = 376 K, k = 3.1 10−4 s−1. e Extrapolated to 347 K from rate at T = 376K, kd = 1.9 10−4 s−1.
f Extrapolated to 347 K from the rates at 300 K by the Eyring equation with ∆S# = 0 (the reaction is very fast even at
room temperature, incl. at increased speed is not measured).

For the calculation of the energetic parameters of the reaction, a number of experiments at different
temperatures were performed (SI, p. S181–S186). The enthalpy and entropy of the reaction were
obtained using:

∆G0 = ∆H0 − T∆S0 = −RT ln Keq (3)

where Keq is the equilibrium constant of the reaction. The calculated values are ∆H0 = 0.021 ± 0.046 kJ/mol
and ∆S0 = 2.33 ± 0.33 J/mol/K. Since the equilibrium constant is practically independent of temperature,
the enthalpy of the reaction is close to zero.

In addition, the enthalpy and entropy of activation were calculated for the epimerization
reaction using the Eyring equation, in the same way as for nitrogen inversion. Energy parameters of
∆H, = 121.50 ± 2.5 kJ/mol and ∆S, = 29.6 ± 6.2 J/mol/K (Figure 7) were obtained.

2.5. Homolysis of Alkoxyamines in the Presence of Scavengers

The decomposition of alkoxyamines 2RS/SR, 2RR/SS, and 3 was studied in the presence of three
different scavengers—TEMPO, PhSH, and BME.

Heating of 3 with TEMPO as an alkyl radical scavenger leads to a complete decomposition of
the alkoxyamine (Scheme 4, SI p. S187, S188). TEMPO is not the best scavenger to use in such a
case, as TEMPO-based alkoxyamines carrying a tertiary alkyl fragment with a functional group in
general exhibit an Ea lower than 120 kJ/mol[20]. Here, TEMPO is efficient due to the H-abstraction
from the tertiary alkyl radical converting it to an olefin [39]. The signals of the reaction products
nitroxide 1• and tert-butylmetacrylate 5 in stoichiometric amounts are present in the NMR spectra
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(SI p. S39–S43). The absence of signals of the hydroxylamine TEMPO-H in NMR is likely due to the
fast exchange—TEMPO + TEMPO-H� TEMPO-H + TEMPO—on the NMR time scale.Molecules 2020, 25, x FOR PEER REVIEW 8 of 20 
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Scheme 4. The mechanism of decomposition of alkoxyamine 3 in the presence of TEMPO.

In sharp contrast to the results observed for 3, the reaction of 2RS/SR with an excess of TEMPO
at 347 K does not reach completion. Even when the experiment is performed at 367 K in the
presence of TEMPO for 8 h, decomposition is not complete, and an equilibrium is observed with the
epimerization product 2RR/SS. Moreover, a steady-state is also observed between 2RS/SR + 2RR/SS and
the TEMPO-based alkoxyamine 6 (SI p. S44–S61). This additional equilibrium (Scheme 5) is established
substantially faster than the epimerization of alkoxyamine 2, its equilibrium constant being 0.3.

Thus, when the Ea of TEMPO-based alkoxyamines is lower than that of the starting material,
the use of TEMPO must comply with the requirement: the presence of a hydrogen at the carbon atom
in the α-position to the radical center in the released alkyl radical to favor the conversion of the latter
into an olefin.

Unexpectedly, least-squares fitting of the kinetics data for the reversible reaction of 2RS/SR

with TEMPO revealed that the rate constants for the direct epimerization 2RS/SR � 2RR/SS became
significantly lower (SI, p. S189). In the presence of TEMPO, the diastereomers of 2 are transformed into
each other via the intermediate formation of 6 only. Such unusual behavior could be explained by an
unfavorable recombination of chiral 1• and prochiral 7• in the opposite diastereomeric configuration,
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while still in the solvent cavity. Let us assume that the opposite diastereomer can be formed either in
the cavity after reorientation of the radicals or after leaving the cavity. Although steric hindrances
could prohibit reorientation in the cavity, free radical 7• out of the cavity would be rapidly scavenged
by the more active TEMPO.
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Scheme 5. The equilibrium between alkoxyamines 2 and TEMPO.

In the case of PhSH as a scavenger, monoexponential kinetics were observed (Figure 8) for
2 and 3 (SI p. S190–S193). In contrast to TEMPO, PhSH reduces the radicals 1•, 4•, and 7• from the
homolysis reaction, converting itself into diphenyldisulfide. As the result, alkyl radicals 4• and 7•

would obtain an additional H-atom from the scavenger, while nitroxide 1• would be reduced mainly
to the corresponding amine 8 (Scheme 6, SI p. S62–S91). The same amine is formed in the reduction of
pure nitroxide 1• with PhSH, with a much faster rate (Table 1, SI p. S92–S113, S194). Additional minor
products were also detected by NMR in the reaction mixtures, such as adducts of the nitroxide 1• with
the scavenger.
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Figure 8. Kinetic curves of alkoxyamines decomposition of 2RS/SR and 2RR/SS at 347 K in toluene-d8 in
the presence of spin trap PhSH.

When BME was used as the radical scavenger, bi-exponential kinetics were observed for
alkoxyamines 2RS/SR and 2RR/SS (Figure 9), and 3 (SI p. S195–S197). For 2RS/SR and 2RR/SS, the decay
was fit with a 4-reaction kinetic scheme:

2RS/SR
→ 2RR/SS kAB

2RR/SS
→ 2RS/SR kBA

2RS/SR
→ Products kAP

2RR/SS
→ Products kBP
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where kAB, kBA are the epimerization rate constants for the two diastereomers; and kAP, kBP are the rate
constants of the reactions of each diastereomer with BME. To solve the kinetic equations, we assume
relationships K = kAB/kBA and kP = kAP/kBP and obtained the constants (at 347 K): kAB = (8.29 ± 0.58)
× 10−5 s−1, K = 1.33 ± 0.2, kAP = (8.27 ± 6.1) × 10−5 s−1, and kP = 3.25 ± 0.75.
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Our numerous experiments on the destruction kinetics of the alkoxyamines in the presence of
BME showed several contradicting but systematically reproducible features which were not observed
either with PhSH or with TEMPO (Table 1). 

• The rate constants for the reaction of 2RS/SR and 2RR/SS with PhSH are slightly higher than the 
rate constants for their epimerization. This is not surprising and can be explained by the 
influence of the different medium with a large excess of the spin trap. In contrast, the rate 
constants for the reaction of 2RS/SR and especially of 2RR/SS with BME are substantially lower 
than the epimerization rate constants. 

• In contrast to the behavior of 2RS/SR and 2RR/SS (see item above), the rate constant for the 
reaction of 3 with BME is significantly higher than rate constant for its reaction with PhSH. 

• Quite unexpected is the much lower reactivity of 2RR/SS with BME in comparison with its
diastereomer 2RS/SR. It can hardly be explained by steric differences in the substrates: the 
starting diastereomers have very similar energies, and the transition states should be close to 
the corresponding alkyl and nitroxide radicals, which are identical for both diastereomers.

• The decay rates of the alkoxyamines monotonically increase with increasing BME 
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Figure 9. Kinetic curves for decomposition of 2RS/SR and 2RR/SS at 347 K in toluene-d8 in the presence of
spin trap BME. (a) Initial mole fraction of 2RS/SR is equal to 1 while of 2RR/SS is equal to zero. (b) Initial
mole fraction of 2RR/SS is equal to 1 while of 2RS/SR is equal to zero.

Our numerous experiments on the destruction kinetics of the alkoxyamines in the presence of
BME showed several contradicting but systematically reproducible features which were not observed
either with PhSH or with TEMPO (Table 1).

• The rate constants for the reaction of 2RS/SR and 2RR/SS with PhSH are slightly higher than the
rate constants for their epimerization. This is not surprising and can be explained by the influence
of the different medium with a large excess of the spin trap. In contrast, the rate constants for the
reaction of 2RS/SR and especially of 2RR/SS with BME are substantially lower than the epimerization
rate constants.
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• In contrast to the behavior of 2RS/SR and 2RR/SS (see item above), the rate constant for the reaction
of 3 with BME is significantly higher than rate constant for its reaction with PhSH.

• Quite unexpected is the much lower reactivity of 2RR/SS with BME in comparison with its
diastereomer 2RS/SR. It can hardly be explained by steric differences in the substrates: the starting
diastereomers have very similar energies, and the transition states should be close to the
corresponding alkyl and nitroxide radicals, which are identical for both diastereomers.

• The decay rates of the alkoxyamines monotonically increase with increasing BME concentration
but do not reach a plateau even at a 100-fold excess of BME.

These unexpected results clearly point out that the reactions of alkoxyamines with PhSH and BME
have different mechanisms. It may even be possible that BME reacts with alkoxyamines without a
preceding homolysis step. This supposition forced us to perform a thorough NMR study on the products
formed in the decomposition of 2RS/SR, 3, and 1• in the presence of BME. The structures and the complete
NMR signal assignments for all the main components of the reaction mixtures, including assignments for
nuclei that differ from each other only in their spatial configuration, were unambiguously determined
by 2D NMR (HSQC, HMBC, 1H-15N HMBC, COSY, NOESY, and DOSY); see SI.

Decay of 2RS/SR and 2RR/SS with an excess of BME afforded products analogous to those of the
reaction with PhSH. However, the reaction with BME proceeds much less selectively (SI p. S114–S138).
The alkyl radical 7• formed by decomposition of the alkoxyamine tends to disproportionate, giving the
expected ethyl-2-phenylacetate 7 along with oxidized forms 9 and 10 (7:9:10 = 1:0.7:0.9) (Chart 2).
The nitroxide radical 1•, as in the case of PhSH, was mainly reduced to the corresponding amine 8
along with minor adducts with BME. Similar adducts of nitroxide radicals with thiols were reported
earlier [48]. Surprisingly, a substantial additional product 1,3-dimethylimidazo [1,5-a]pyridine 11 was
detected in the reaction mixture (8:adducts:11 = 1:0.6:0.5). The heterocyclic skeleton of 11 is completely
different from that of the original alkoxyamine (Chart 2), and even traces of this heterocycle were not
observed after the homolysis of 2 with PhSH.
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For the case of decay of alkoxyamine 3 in the presence of BME, tert-butylisobutyrate 4 and
amine 8 were also detected in the reaction mixture, as expected. However, the main products of
alkoxyamine decay were now the same heterocycle 11, which was already observed in the case of 2RS/SR

and 2RR/SS, and tert-butyl-2-methyl-2-(pentan-3-ylideneaminooxy)propanoate 12 (11,12:4,8 = 1:0.6)
(Chart 3, SI p. S139–S157). It is important to note that the structure of product 12 precludes every
mechanism proceeding through homolysis of the substrate to alkyl and nitroxide radicals. Oxime ether
12 can be formed only through rearrangement of the original alkoxyamine 3. A minor amount of
diethylketone 13 was additionally observed, which originated apparently from oxime ether 12.
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A small amount of compound 11 and diethylketone 13 (10%) were detected even in the reaction
of nitroxide 1• with BME, along with the expected major reduction products (SI p. S158–S179, S198).
An analogous product mixture was also observed after the thermolysis of alkoxyamines at 150 ◦C in
DMSO or o-dichlorobenzene in the absence of scavengers (SI, p. S199).

Apparently, the essential side reaction of either alkoxyamine 2 or 3, or nitroxide 1•with BME breaks
the imidazoline ring followed by cyclization with the nitrogen of the pyridine residue. The mechanism
of this unexpected rearrangement will be the subject of a more detailed study in the future. However,
it is clear that this side reaction complicates the reaction mixtures and significantly shifts the numeric
results of kinetics measurements. Instead of the expected alkoxyamine homolysis kinetics, the data
reflect some aggregate of parallel homolysis and heterocyclic rearrangement under the influence
of BME.

Hence, the choice of scavenger is crucial for a reliable and accurate estimate of the true homolysis
rate constant.

Thus, the upward deviation in EPR kinetics obtained with a less efficient scavenger is ascribed to
the time needed to reach a pseudo-equilibrium in the reaction. Then, after this pseudo-equilibrium is
reached, a mono exponential decay is observed. When the experiment is performed in the presence of a
really efficient radical scavenger, free of side processes, such as PhSH (vide infra), a mono-exponential
decay in 1H NMR and a mono-exponential nitroxide growth in EPR provide the same rate constant
as expected.

3. Experimental

Routine 1H and 13C-NMR spectra were recorded on Bruker AV-300, AV-400, and DRX-500
instruments. The structures, including spatial structure, and the complete NMR signal assignments of
alkoxyamines and their decomposition products were determined by 2D NMR (COSY, HSQC, HMBC,
1H-15N HMBC, NOESY, ROESY, and DOSY) on a Bruker Avance-III 600 instrument at 600.30 MHz,
150.96 MHz and 60.85 MHz for 1H, 13C and 15N, respectively. Chemical shifts were measured for 1H
and 13C relative to the residual signals of solvents (CDCl3: δH 7.24 ppm, δC 76.9 ppm; toluene-d8:
δH 2.13 ppm, δC 20.1 ppm; DMSO: δH 2.51 ppm), and for 15N relative to an external NH3 standard
(δN = 0 ppm).

IR spectra were acquired on an FTIR spectrometer in KBr or neat and are reported in wavenumbers
(cm−1). Reactions were monitored by TLC using UV light (254 nm) and/or aqueous permanganate for
visualization. Column chromatography was performed on silica gel 60, (70–230 Mesh).

Synthesis (Scheme 7)

5,5-Diethyl-2,4-dimethyl-2-(pyridin-2-yl)-2,5-dihydro-1H-imidazol 1-oxyl (1•). Synthesis was in analogy
to the literature procedures [49]. To a stirred solution of 3-hydroxylamino-3-ethylpentan-2-one
hydrochloride (14; 2.50 g, 13.8 mmol) in MeOH (20 mL), ammonia acetate (3.18 g, 41.3 mmol)
and 2-acetylpyridine (1.87 g, 15.1 mmol) were added. The reaction mixture was stirred at +60 ◦C for 4 h;
then, it was cooled to room temperature and allowed to stand overnight. Then, the mixture was diluted
with 20 mL of H2O and kept at −10 ◦C overnight. A crystalline precipitate of 5,5-diethyl-2,4-dimethyl-
2-(pyridin-2-yl)-2,5-dihydro-1H-imidazol 1-ol (15) was filtered off and washed with cold H2O. To a stirred
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suspension of 15 in CHCl3 (25 mL), MnO2 (7 g, 80.5 mmol) was added portion-wise. After the reaction
was complete (monitored by TLC analysis; CHCl3 + CH3OH 20:1), the manganese oxides were filtered
off, and the solvent was removed in vacuum to yield radical 1• as a yellow crystals.

5,5-diethyl-2,4-dimethyl-2-(pyridin-2-yl)-2,5-dihydro-1H-imidazol 1-ol (15): Yield 60%, colorless crystals,
m.p. 187 ◦C (decomp.). 1H-NMR (400 MHz, CDCl3 + CD3OD): δ = 0.61 (t, 3H, J = 7.32 Hz, CH3),
1.01 (t, 3H, J = 7.44 Hz, CH3), 1.50 (m, 1H, CH2), 1.59 (m, 1H, CH2), 1.71 (m, 1H, CH2), 1.73 (s, 3H, CH3),
1.99 (m, 1H, CH2), 2.02 (s, 3H, CH3), 4.35 (s, 1H, OH), 7.23 (m, 1H, Py), 7.60 (m, 1H, Py), 7.73 (m, 1H, Py),
8.51 (m, 1H, Py). 13C-NMR (100 MHz, CDCl3 + CD3OD): δ = 8.85 (CH3CH2), 10.74 (CH3CH2), 26.64
(CH3CH2), 30.26 (CH3CH2), 80.86 (CEt2), 95.11 (NCN), 121.43, 122.88 (CH, 3-Py and 5-Py),
137.66 (CH, 4-Py), 148.54 (CH, 6-Py), 165.50 (CH, 2-Py), 177.85 (C=N). UV (EtOH):
λmax (log ε) = 260 (3.99). IR (neat): 756, 795, 991, 1043, 1095, 1352, 1385, 1431, 1462, 1568,
1581, 1651, 2877, 2904, 2966, 2995, 3047, 3144 cm−1. Anal. calcd. for C14H21N3O: C, 67.98; H, 8.56; N,
16.99; found: C, 68.26; H, 8.45; N, 16.93.

5,5-Diethyl-2,4-dimethyl-2-(pyridin-2-yl)-2,5-dihydro-1H-imidazol 1-oxyl (1•): Yield 90%, yellow crystals,
m.p. 51–52 ◦C (hexane). UV (EtOH): λmax (log ε) = 260 (3.57). IR (neat): 754, 787, 876, 924, 997,
1049, 1095, 1146, 1178, 1257, 1300, 1358, 1387, 1433, 1462, 1572, 1587, 1641, 2879, 2937, 2964, 2978,
3059 cm−1. Anal. calcd. for C14H20N3O: C, 68.26; H, 8.18; N, 17.06; found: C, 68.46; H, 8.23; N, 17.25.
1H-NMR spectrum (600 MHz): SI, p S24. EPR spectrum: SI, p S217; hyperfine coupling 1.351 mT,
g = 2.00608.

Synthesis of alkoxyamines 2 and 3 (General procedure). The alkoxyamines were prepared using the
method developed by Matyjaszewski et al. [50] (Scheme 7). A mixture of the nitroxide 1• (2.2 mmol),
2-bromo-2-methylpropionic acid tert-butyl ester (2.25 mmol) or 2-bromo-2-phenylacetatic acid ethyl
ester (2.25 mmol), Cu powder (140 mg, 2.25 mmol), 4,4’-di-tert-butyl-2,2’-bipyridine (24 mg, 0.09 mmol),
Cu(OTf)2 (8 mg, 0.023 mmol), and benzene (5 mL) was placed into a Schlenk flask and degassed by
three freeze–pump–thaw cycles. The solution was stirred for 24 h at 50 ◦C. Benzene was removed in
vacuum, and the residue was separated by column chromatography (silica gel, hexane-diethyl ether
1:6 for 2 and hexane–ethyl acetate 2:1 for 3).
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(R,R)-Ethyl-2-(5,5-diethyl-2,4-dimethyl-2-(pyridin-2-yl)-2,5-dihydro-1H-imidazol-1-yloxy)-2-phenylacetate
(2RR/SS): Yield 30%, colorless oil. 1H-NMR (400 MHz, CDCl3): δ = 0.37 (t, 3H, J = 7.3 Hz, CH3),
1.04 (t, 3H, J = 7.3 Hz CH3), 1.12 (t, 3H, J = 7.3 Hz, CH3), 1.48 (ABq, 1H, J = 7.3, 14 Hz, CH2),
1.67 (ABq, 1H, J = 7.3, 14 Hz, CH2), 1.73 (s, 3H, CH3), 1.81 (ABq, 1H, J = 7.3, 14 Hz, CH2), 1.98 (s, 3H, CH3),
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2.47 (ABq, 1H, J = 7.3, 14 Hz, CH2), 3.97 (ABq, 1H, J = 7.0, 17.9 Hz, CH2-O), 4.10 (ABq, 1H, J = 7.0,
17.9 Hz, CH2-O), 6.04 (s, 1H, CH-Ph), 7.11–7.15 (m, 1H, Py), 7.30–7.37 (m, 3H, Ph), 7.38–7.41 (m, 1H,
Py), 7.49–7.54 (m, 2H, Ph), 7.55–7.59 (m, 1H, Py), 8.64–8.68 (m, 1H, Py). 13C NMR (CDCl3, 125 MHz):
δ = 8.75, 10.79 (2*CH3, Et), 13.88 (CH3, EtO), 16.63 (CH3-CNN), 23.59 (CH3-C=N), 27.17, 29.71 (2*CH2,
Et), 60.29 (CH2, EtO), 82.01 (CEt2), 83.32 (CH-O-N), 96.87 (Py-C-CH3), 119.91, 121.55, 127.45, 128.19,
128.29 (Ar), 135.47 (CH, 4-Py), 135.60 (iPh), 148.58 (CH, 2-Py), 164.82 (iPy), 172.51 (C=O), 174.25 (C=N).
UV (EtOH): λmax (log ε) = 256 (4.28). IR(neat): 623, 696, 750, 789, 1063, 1095, 1180, 1205, 1273, 1375,
1431, 1454, 1468, 1587, 1664, 1747, 2875, 2935, 2962. Anal. calcd. for C24H31N3O3: C, 70.39; H, 7.63;
N, 10.26; found: C, 70.49; H, 7.58; N, 10.18. NMR assignments (600 MHz): SI, p S3–S8.

(R,S)-Ethyl-2-(5,5-diethyl-2,4-dimethyl-2-(pyridin-2-yl)-2,5-dihydro-1H-imidazol-1-yloxy)-2-phenylacetate
(2RS/SR): Yield 45%, colorless crystals, m.p. 81–83 ◦C (hexane). 1H-NMR (400 MHz, CDCl3): δ = 0.38
(t, 3H, J = 7 Hz, CH3), 1.02 (t, 3H, J = 7 Hz CH3), 1.19 (t, 3H, J = 7 Hz, CH3), 1.25–1.33 (m, 2H, CH2),
1.53 (ABq, 1H, J = 7, 14 Hz, CH2), 1.82 (ABq, 1H, J = 7, 14 Hz, CH2), 1.95 (s, 3H, CH3), 2.00 (s, 3H, CH3),
4.04 (ABq, 1H, J = 7, 17.9 Hz, CH2-O), 4.13 (ABq, 1H, J = 7, 17.9 Hz, CH2-O), 5.74 (s, 1H, CH-Ph),
7.18-7.22 (m, 1H, Py), 7.30–7.35 (m, 3H, Ph), 7.36–7.41 (m, 2H, Ph), 7.48–7.53 (m, 1H, Py), 7.61–7.67 (m,
1H, Py), 8.69–8.73 (m, 1H, Py). 13C-NMR (100 MHz, CDCl3): δ = 8.68, 10.50 (2*CH3, Et), 13.80 (CH3,
EtO), 16.74 (CH3-CNN), 23.30 (CH3-C=N), 27.42, 29.86 (2*CH2, Et), 60.59 (CH2, EtO), 81.20 (CEt2),
84.81 (CH-O-N), 96.34 (Py-C-CH3), 119.84, 121.62, 128.01, 128.07, 128.29 (Ar), 135.62 (CH, 4-Py), 137.37
(iPh), 148.53 (CH, 2-Py), 164.99 (iPy), 170.81 (C=O), 173.47 (C=N). UV (EtOH): λmax (log ε) = 255 (4.27).
IR (neat): 623, 696, 752, 791, 1066, 1086, 1176, 1201, 1331, 1371, 1433, 1468, 1585, 1659, 1741, 2874, 2933,
2978 cm−1. Anal. calcd. for C24H31N3O3: C, 70.39; H, 7.63; N, 10.26; found: C,70.55; H, 7.84; N, 10.29.
NMR assignments (600 MHz): SI, p. S9–S23.

(tert-Butyl-2-((5,5-diethyl-2,4-dimethyl-2-(pyridin-2-yl)-2,5-dihydro-1H-imidazol-1-yl)oxy)-2-methylpropanoate)
(3). Yield 84%. Colorless oil. 1H NMR (500 MHz, CDCl3): δ = 0.71 (t, 3H, J = 7.3 Hz, EtCH3),
0.98 (t, 3H, J = 7.3 Hz EtCH3), 0.99 (s, 3H, CH3), 1.23 (s, 3H, CH3), 1.32 (s, 9H, 3*CH3),
1.60 (ABq, 1H, J = 7.3, 14 Hz, CH2), 1.66-1.77 (m, 2H, CH2), 1.86 (s, 3H, CH3), 1.93 (s, 3H, CH3),
2.00 (ABq, 1H, J = 7.3, 14 Hz, CH2), 7.04–7.08 (m, 1H, Py), 7.40–7.43 (m, 1H, Py), 7.49–7.54 (m, 2H, Ph),
7.52–7.57 (m, 1H, Py), 8.49–8.52 (m, 1H, Py). 13C-NMR (CDCl3, 125 MHz): δ = 9.05, 10.80 (2*CH3, Et),
17.26 (CH3-CNN), 21.73, 24.15, 24.70 (3*CH3), 27.35, 28.97 (2*CH2, Et), 27.67 (3*CH3, tBu), 80.53, 81.12,
81.85 (CMe2, CEt2, CtBu), 95.70 (Py-C-CH3), 121.33, 121.66 (2*CH, Py), 135.45 (CH, 4-Py), 147.74 (CH,
2-Py), 163.94 (iPy), 173.36, 173.53 (C=O, C=N). NMR assignments (600 MHz): SI, p S25–S38.

UV (EtOH): λmax (log ε) = 256 (3.51).

IR(neat): 750, 788, 848, 1099, 1138, 1160, 1254, 1292, 1367, 1431, 1468, 1572, 1587, 1662, 1728, 2877,
2933, 2978.

Anal. calcd. for C22H35N3O3: C, 67.83; H, 9.06; N, 10.79; found: C, 67.69; H, 8.89; N, 10.51.

XRD analysis of alkoxyamine 2RS/SR. XRD data were obtained at room teperature on a Bruker Kappa Apex
II CCD diffractometer using ϕ, ω scans of narrow (0.5◦) frames with Mo Kα radiation (λ = 0.71073 Å),
and a graphite monochromator. Absorption corrections were applied empirically using SADABS
programs [51]. The structures were solved by direct methods and refined by full-matrix least-squares
method against all F2 in anisotropic approximation (beside the atoms H) using the SHELX-97 programs
set [52]. The H atoms positions were calculated with the riding model (Figure 10).

Crystallographic data for 2RS/SR: T 296(2) K, C24H31N3O3, FW = 409.52, monoclinic, P21/c, a = 9.9606(4),

b = 20.3503(8), c = 11.7648(5)Ǻ, β = 108.819(2)◦, V = 2257.3(2)Å3, Z = 4, Dcalc = 1.205 g cm−3,
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µ(Mo-Kα) = 0.080 mm−1, F(000) = 880, 72,240 measured reflections (θmax = 27.19◦, completeness
99.4%), 5005 independent (Rint = 0.0388), 285 parameters, R1 = 0.0616(for 3991 observed I > 2σ(I)),
wR2 = 0.2000 (all data), GooF = 1.03, largest diff. peak and hole 0.61 and −0.47 e.A−3. The C7-methyl
group is disordered by two positions C7a and C7b with 0.55:0.45(3) occupation ratio.

CCDC 1,829,288 contain the supplementary crystallographic data for this paper. These data can
be obtained free of charge via http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi, or from the Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223 336 033;
or e-mail: deposit@ccdc.cam.ac.uk.

Molecules 2RS/SR adopt conformations that are stabilized by two weak intramolecular hydrogen
bonds: one between the nitrogen of the pyridine moiety and the methynic proton (dH····N = 2.59,
dC····N = 3.172(3) Åand <NHC> = 118◦) [26,53–56] and the other one between the ortho proton of
the pyridyl moiety and the imino function (dH····N = 2.44, dC····N = 2.777(3) Åand <NHC> = 102◦).
The intermolecular interactions governing the crystal packing include the π . . . π interaction of phenyl
groups (the separation of molecular planes within the stacks is 3.453(1) and the distance between ring
centers Cg . . . Cg 4.148 (2) Å), which leads to the formation of the centrosymmetric dimers.
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EPR experiments. All the EPR experiments were performed on the Bruker Elexys E540 X-band
spectrometer, using toluene (0.2 mL) as solvent. The concentration of species in all the experiments
was 2 × 10−4 M. These solutions have been prepared by the dilution method, from the stock solution of
10−2 M (1 mL of toluene, 4 mg of alkoxyamine or 2.5 mg of radical 1•). EPR of radical 1•: g-factor
of radical 1• was calculated from the reference spectrum of TEMPO, g(TEMPO) = 2.00623 [57].
The EPR spectrum of 1• was recording at the following parameters: microwave power 2 mW,
resolution—1024 points, number of scans 24, conversion time 20.74 ms, modulation amplitude 0.5 G,
time constant 20.48 ms.

Kinetics of alkoxyamine homolysis by EPR: to perform the experiments, the oxygen that is in the
solvent was used as an alkyl radical trap. The kinetic data were collected as a growing second intergral
EPR signal of forming nitroxyl radical. The EPR spectra of all the alkoxyamines were recorded at the
following parameters: microwave power 2 mW, resolution—1024 points, conversion time 19.55 ms,
modulation amplitude 1 G, time constant 20.48 ms.

Homolysis of alkoxyamines in the absence of scavengers (Epimerization). The epimerization reaction was
investigated by NMR. The experiments were performed as follows: 0.01 mmol (≈5 mg) of alkoxyamine

http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi
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2 was solved in 0.58 mL of toluene-d8 in NMR tube. The solution was blown with Ar, the tube was
sealed with a PTFE cap, and a heat-shrinkable tube. The process of epimerization was carried out at
345 K directly in the probe head of the NMR spectrometer.

Homolysis of alkoxyamines in the presence of scavengers. Experiments were performed by the above
procedure with 0.50 mL toluene-d8 and 1 mmol of scavenger (0.080 mL BME or 0.115 mL PhSH) as the
reaction medium.

The experimental kinetic data were evaluated by numerical integration of the differential equations
followed by a nonlinear least square fitting of the involved rate constants. The complete processing
algorithm was implemented in the form of SciLab[58] script [59] (SI p. S200–S204).

Quantum chemical calculations. These were performed using a fast DFT code implemented in
the PRIRODA program [60] and employing a PBE functional [61] with full-electron basis Λ01 [62]
(similar to the cc-pVDZ basis) as a gas-phase model. The transition states were connected with
corresponding minima using the intrinsic reaction coordinate (IRC) procedure. Conformational
analysis was performed with the computer program scan from Tinker package (MMFF94 force
field) [63] and with the CREST program (GFN2-xTB method) [64]. Then, the geometries of all the
conformers were optimized on the DFT/PBE/Λ01 level.

4. Conclusions

We synthesized three alkoxyamines based on the imidazoline radical with a pyridine functional
group capable of complexation with metals. EPR and NMR were used to investigate the thermolysis of
chiral alkoxyamines 2RR/SS, 2RS/RS, and the results were compared with those for non-diastereomeric
alkoxyamine 3. For NMR experiments, we used three different scavengers, namely β-mercaptoethanol,
thiophenol, and TEMPO, to show the importance of choosing an appropriate radical trap. For EPR
measurements, we used oxygen as a radical scavenger possessing different rate constants with alkyl
radicals formed during the decay of alkoxyamines. That revealed that oxygen can produce incorrect
results due to its low recombination rate constant with alkyl radicals. The biexponential growth of
nitroxide can be obtained if additional processes such as isomerization occur with comparable rates.
It is shown that only a careful analysis by NMR provides valid conclusions about the processes that
take place. Careful analysis of the thermolysis products of the investigated alkoxyamines differentiated
between N-inversion, epimerization, and reactions with radical scavengers. Kinetic measurements
at different temperatures determined the activation energy of N-inversion and the rate constants for
homolysis. Additional side reactions of alkoxyamines with BME were detected and identified.

The alkoxyamine chirality affected our experiments with more than a two-fold difference in
the homolysis rates for the two diastereomers (Table 1). The influence of alkoxyamine chirality on
polymerization needs further study.

Supplementary Materials: The following are available online. NMR and EPR study of Diastereomeric
Alkoxyamine’s Homolysis.
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