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ABSTRACT Cervical cancer disproportionally affects women in low- and middle-income countries, in part
due to the difficulty of implementing existing cervical cancer screening and diagnostic technologies in low-
resource settings. Single-board computers offer a low-cost alternative to provide computational support for
automated point-of-care technologies. Here we demonstrate two new devices for cervical cancer prevention
that use a single-board computer: 1) a low-cost imaging system for real-time detection of cervical precancer
and 2) a low-cost reader for real-time interpretation of lateral flow-based molecular tests to detect cervical
cancer biomarkers. Using a Raspberry Pi computer to provide real-time image collection and processing,
we developed: 1) a low-cost, portable high-resolution microendoscope system (PiHRME); and 2) a low-cost
automatic lateral flow test reader (PiReader). The PiHRME acquired high-resolution (4.4 µm) images of the
cervix at half the cost of existing high-resolution microendoscope systems; image analysis algorithms based
on convolutional neural networks were implemented to provide real-time image interpretation. The PiReader
acquired and analyzed images of a point-of-care human papillomavirus (HPV) serology test with the same
contrast and accuracy as a standard flatbed high-resolution scanner coupled to a laptop computer, for less than
one-fifth of the cost. Raspberry Pi single-board computers provide a low-cost means to implement point-of-
care tools with automatic image analysis. This work demonstrates the promise of single-board computers to
develop and translate low-cost, point-of-care technologies for use in low-resource settings.

INDEX TERMS Cervical cancer prevention, low-cost medical technology, point-of-care, Raspberry Pi.

I. INTRODUCTION
Cervical cancer continues to disproportionally affect women
in low-resource settings. According to the most recent 2018
GLOBOCAN estimates, the incidence and mortality rate
of cervical cancer in Low/Medium Human Development
Index (HDI) regions are 18.2 per 100,000 and 12.0 per
100,000 respectively, nearly double the incidence rate and
triple the mortality rate of that in High/Very High HDI
regions [1]. One reason for this disparity is the diffi-
culty of implementing existing cervical cancer prevention,

screening, and detection technologies (e.g. HPV vaccination,
Pap and HPV testing, and colposcopy) in low-resource
settings [2]–[4].

To address this disparity, a number of point-of-care tech-
nologies to improve cervical cancer prevention, screening,
and detection are in development [5]–[8]. Broadly, these
strategies include: 1) new imaging tools to improve real-
time detection of high-grade cervical precancer; and 2) new
molecular assays for point-of-care detection of cervical can-
cer biomarkers.
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FIGURE 1. PiHRME system: A) device photo, B) device photo of inner components (labeled), C)
schematic of the optical and computational components, and D) cost of materials.

A number of high-resolution imaging technologies have
been developed to provide real-time detection of high-grade
cervical precancer without the need for biopsy [9]–[11]. For
example, the high-resolutionmicroendoscope (HRME) is one
low-cost technology that has been developed to provide in
vivo imaging of the cervix at the point-of-care [12]–[14].
Image segmentation algorithms have been developed to char-
acterize the size and shape of nuclei within the field-of-
view, [8], [15], [16] demonstrating diagnostic performance on
par with expert colposcopy for detecting high-grade cervical
precancer and cancer [10]. However, these algorithms are
often implemented on Windows PC systems that rely on
proprietary and computationally heavy software frameworks
(LabVIEW/MATLAB) and contribute significantly to the
overall cost of the device. The latest version of the HRME
system ($2,450) relies on a computer tablet, which accounts
for 33% of the total cost.

Similarly, a number of lateral flow-based tests have been
developed to detect biomarkers associated with cervical can-
cer [17]–[19]. Flatbed scanners are often used to capture and
quantitatively analyze such tests, but these systems are not
portable and require a computational interface [20]. Alterna-
tively, lower-cost cell phone-based readers have been devel-
oped [21], [22], but it can be difficult to control parameters
such as image gain for quantitative test interpretation, espe-
cially with rapid updates to cell phone operating systems that
may affect image capture [23], [24].

Single-board computers, such as the Raspberry Pir, have
recently proven to be an effective way to reduce the cost and
size of medical and scientific instruments, without sacrific-
ing performance [25]–[29]. The low-cost and availability of
open-source software frameworks make these computers a
versatile tool in the development of point-of-care devices for
use in low-resource settings.

Here we demonstrate the use of a Raspberry Pi single-
board computer to integrate imaging and quantitative

computational analysis in two low-cost, portable imag-
ing systems for cervical cancer prevention. The first is
a high-resolution imaging system with real-time analysis
software and the second is a low-cost, portable lateral flow
test reader to automatically read a point-of-care diagnostic
test. Using a Raspberry Pi computer and open-source soft-
ware frameworks, we reduced the cost of the HRME imaging
system by half while maintaining image quality and still pro-
viding real-time image analysis support. Similarly, we used
this platform to develop a low-cost reader for a lateral flow
HPV serology test to assess whether a patient had received
multiple doses of the HPV vaccine [30]; using a Raspberry Pi
computer, we reduced the cost of the computer scanner sys-
tem by 85% without sacrificing image contrast or accuracy.

II. METHODS AND PROCEDURES
A. PiHRME
We developed and evaluated the PiHRME, a High-Resolution
Microendoscope designed to capture and analyze high-
resolution images of cervical epithelium in real-time; changes
in nuclear morphometry are analyzed to detect the presence
of high-grade cervical precancer.

1) HARDWARE
Fig. 1 shows a schematic diagram and photograph of the
exterior and interior of the PiHRME, a portable fiberop-
tic fluorescence microscope system based on a Raspberry
Pi computer. The optical setup was designed to match the
optical performance of HRME systems previously described
in Pierce et al. [31] and Quang et al. [16] with the main
difference being that images were captured using a PiCamera
sensor linked to a single-board Raspberry Pi computer rather
than using a CCD camera sensor linked to a PC computer
system. A high-power blue LED provides illumination at a
center wavelength of 460 nm; illumination light is directed
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through a 475 nm shortpass filter and an aspheric condenser
lens, which focuses the light on the back aperture of a 10x
objective (Olympus PlanCAchromat). Illumination light then
propagates through a coherent optical fiber bundle (Fujikura
Imaging Fiber, FIGH-30-850N) to illuminate the sample. The
fluorescent signal emitted from the sample is captured by
the same optical fiber bundle and objective. The emitted
fluorescence then passes through a 485 nm longpass dichroic
before being focused onto the Raspberry Pi v2 camera sensor
(8 MP CMOS) by a tube lens (f = 60 mm). A 500 nm
longpass filter is located immediately in front of the camera
sensor to reject scattered light. The Raspberry Pi v2 camera is
connected to a Raspberry Pi v3 computer board and integrated
touchscreen display. The Raspberry Pi computer powers the
camera and displays a live video feed via the touchscreen
display. All images taken during an imaging session are saved
on the Raspberry Pi computer in a folder identified by the date
and time.

The optical system and Raspberry Pi computer are encased
within a 30 × 25.5 × 8 cm aluminum enclosure which can
easily fit within a backpack for transport. The entire system
is powered by a 6.4 V lithium ion battery that is connected to
both the LED driver and Raspberry Pi via a custom-designed
PCB board. The main power switch automatically powers the
LED and Raspberry Pi computer. The cost of material goods
for the PiHRME was $1,226.

2) IMAGE ANALYSIS
Previous versions of the HRME have incorporated image
analysis software that relies on image segmentation to quan-
tify changes in nuclear morphometry due to high-grade cer-
vical precancer and early cancer [10], [15], [16]. This is
consistent with current clinical guidelines for screening and
treatment of cervical cancer and its precursors [32]. High-
grade cervical precancer is at greater risk of progressing to
cervical cancer than low-grade precancer or normal cervical
tissue, therefore the early detection and treatment of high-
grade precancer is important in preventing cervical cancer.
Due to limitations in processing speed and availability of pro-
prietary software frameworks on the Raspberry Pi, deploy-
ment of real-time image analysis using previously developed
nuclei segmentation algorithms was not practical. As a proof
of principle, real-time image analysis was accomplished on
the PiHRME by employing a transfer learning approach to
retrain a light weight convolutional neural network (CNN)
(MobileNetV2) [33] to predict the output of the pre-existing
HRME image analysis algorithm being validated in previous
and ongoing clinical trials [10], [11].

A dataset consisting of 4,053 cervical images from an
ongoing clinical study approved by the Institutional Review
Boards at TheUniversity of TexasMDAndersonCancer Cen-
ter, Rice University, and Barretos Cancer Hospital in Brazil
was organized with binary class labels (i.e. HRME posi-
tive or HRME negative) as defined by the pre-existing HRME
algorithm. The class distribution of the dataset was 1,214
(30%) HRME positive and 2,839 (70%) HRME negative

images. Open-source code for retraining TensorFlow models
was then used to extract a feature vector of each image using
the pre-trained network model to optimize the parameters
of the final network layer to predict the new label (in this
caseHRMEpositive or HRMEnegative) [34]. Default param-
eters for learning rate (0.01), train/validation/test fractions
(0.8/0.1/0.1 respectively), training batch size (100 images
per batch), and number of training iterations (4000 training
steps) were used. All model optimizations were performed
on a desktop computer (Linux) using TensorFlow 1.11, after
which final model parameters were saved to a disk and trans-
ferred to the PiHRME file system to be used for real-time
inference on newly acquired images.

To evaluate the feasibility of using the model for real-time
inference, the PiHRME frame rate was benchmarked with
and without model inference on each frame. A simple user
interface was developed to display the following information
over each frame in the video feed on the PiHRME: image
frame number, probability output of the CNN prediction
(from 0 to 1.00), and speed of classification (reported in
frames per second, FPS).

3) IN VITRO EVALUATION
Image quality of the PiHRME was compared to the cur-
rent tablet-based HRME system. Image resolution was deter-
mined by imaging a 1951 US Air Force Resolution Target.
Image contrast was compared by plotting the intensity
changes that occurred across the three vertical bars of Group 6
Element 1 of the same resolution target.

To evaluate the ability of the CNN algorithm to support
real-time image analysis of images acquired with the
PiHRME, we created and imaged fluorescent calibration tar-
gets that were representative of normal and precancerous cer-
vical nuclear morphology. The calibration targets consist of
small circular patterns (8-23µm in size) against a black back-
ground that resemble cervical nuclei when imaging. While
imaging these targets, the CNN image analysis algorithmwas
implemented so that a probability score appeared at the top
of the touchscreen display and updated in real-time as new
calibration targets were imaged.

4) EX VIVO CERVICAL IMAGING
Ex vivo images of LEEP specimens (excised cervical tissue
concerning for high-grade cervical precancer) were obtained
using the PiHRME under a protocol approved by the Insti-
tutional Review Boards at The University of Texas MD
Anderson Cancer Center and Rice University. Before imag-
ing, LEEP specimens were stained with 0.01% proflavine
solution, a topical antiseptic solution that has been used to
fluorescently stain cervical nuclei for imaging, and Lugol’s
iodine, to increase image contrast. Similar staining has
been performed previously to acquire high-resolution images
of the cervix using HRME imaging systems [10], [11].
All images were analyzed using the CNN image analysis
algorithm.
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FIGURE 2. PiReader device: A) labeled device photos, B) (top) photo of inner components with microscope removed, (bottom) labeled diagram
layout of inner components, and C) cost of materials.

5) IN VIVO CERVICAL IMAGING
High-resolution in vivo imaging of the cervix using the
PiHRME was performed in a low-resource setting in accor-
dance with the protocol approved by the Comité Nacional
de Ética de la Investigación en Salud (National Ethics
Committee of Health Research) in El Salvador and the
Institutional Review Boards at The University of Texas
MD Anderson Cancer Center and Rice University. Women
undergoing a routine colposcopy examination for cervical
cancer prevention in El Salvador were imaged with the
PiHRME. All visible lesions on the cervix along with one
normal area were imaged and all visibly abnormal areas
were biopsied. Before imaging, 0.01% proflavine solution
and Lugol’s iodine were applied. Following image acquisi-
tion, images were analyzed using the CNN image analysis
algorithm.

B. PiReader
We developed and evaluated the PiReader, a scanner designed
to capture and analyze images of lateral flow-based tests.

1) HARDWARE
Fig. 2 shows a schematic diagram and photos of the PiReader.
The PiReader was designed to create a portable imaging
system that could scan and interpret HPV vaccination test
results at the point-of-care. The system consists of an LED
illuminator, a lateral flow test holder, and a USB digital
microscope (5MP, interpolated 220x magnification, video
rate of 30 FPS), all enclosed in a 3D printed case (roughly
16 × 16 × 20 cm in size). Lateral flow tests are inserted into
the enclosed reader and illuminated by two white LED-panel

FIGURE 3. Images of the paper-based HPV vaccination test. A) Image of
the HPV vaccination test strip. Size: 5.5 × 13 cm. Images of the test after
running samples from human subjects who received B) three doses of
HPV vaccine, C) one dose of HPV vaccine, and D) zero doses of HPV
vaccine.

backlights (3V, 20mA). The bottom of the chamber is lined
with white paper to provide even background for imaging.
The microscope is controlled by a Raspberry Pi v3 single-
board computer, which captures and analyzes the images of
lateral flow tests. The system is powered by a 6.4V recharge-
able battery. Images and results are displayed on a Raspberry
Pi 7’’ touchscreen display. The total cost of material goods
for the PiReader is $305.

The PiReader image analysis software was developed
in Python and incorporates Open Source Computer Vision
Library software (OpenCV). When the PiReader is switched
on, the home screen appears and allows the user to select
the type of lateral flow test they would like to analyze. Once
selected, a live view from the microscope is displayed on the
touchscreen, and fiducial marks are displayed to indicate that
a test has been properly inserted into the reader. Once the test
is in place, the user presses the ‘‘Start Analysis’’ button on
the touchscreen. Test results appear on the touchscreen within
one second.
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FIGURE 4. Flow diagram summarizing the image analysis performed by the PiReader with representative images. The intensity value
corresponding to the 90th percentile of pixel intensity values of the control zone (orange box) and each of the three test zones (green boxes) are
compared to the average background intensity (blue boxes) of the test strip to calculate the signal-to-background ratios (SBRs) for
each. If two or more of the test zones have positive marks (SBRs ≥ 1.6), then the tested sample is identified as having received 2-3 doses of HPV
vaccine, otherwise the test sample is identified as having received < 2 doses of HPV vaccine.

2) IMAGE ANALYSIS
The PiReader was initially designed to automatically evaluate
the results of a lateral flow HPV serology test previously
described by Grant et al, Fig. 3 [30]. The test detects the
presence of HPV antibodies in the blood to help health care
providers identify whether patients have received two ormore
doses of the HPV vaccine. This is especially important in
low-resource settings where medical records may be hard to
obtain or do not exist. The lateral flow test has four read-
out areas, including a control zone and three HPV antibody
capture zones (three test zones). The control zone presents
with a positive signal to indicate that the test has run correctly.
The test is designed so that the number of positive antibody
capture zones correlates to the amount of HPV antibody in
a patient’s blood. If a patient received two or more doses of
vaccine, then 2-3 of the test zones will present with a positive
signal. If the patient has received zero or a single dose of
vaccine, then only 0-1 of the test zones are positive.

Fig. 4 shows the image analysis steps along with example
images. Once the user presses ‘‘Start Analysis’’, the displayed
image from the live view is captured and saved for analysis.
The green channel is selected and a background image is sub-
tracted out to account for non-uniformities in illumination.
Next, feature detection algorithms from OpenCV, are used
to find the sample inlet on the test strip. The detected inlet
serves as a reference point from which the positions of the
control zone and test zones are identified. The intensity value
corresponding to the 90th percentile of pixel intensity values
within the control zone and test zones are calculated and
compared to the average pixel intensity value between the test
zones. The signal-to-background ratio (SBR) for each zone is
calculated by dividing the signal from the zone by the average
background signal. A zone is deemed positive if the recorded

SBR for that zone is greater than or equal to the preset SBR
threshold. The final results are displayed on the touchscreen
display.

All images generated during image analysis are saved onto
the Raspberry Pi in a file identified by the date and time of
the reading. The final result, along with SBR calculations, are
saved in a text file within the same folder.

3) IN VITRO EVALUATION
To compare performance of the PiReader to a flatbed
computer scanner, test strips were prepared using plasma
from a non-vaccinated volunteer spiked with different
concentrations of HPV16 antibody and scanned using both
systems. The concentrations tested were 0, 0.5, 1, 2, 4, 8, 16,
and 32 µg/mL. Each concentration was run on three separate
test strips. Each paper strip was read using the original com-
puter scanner described in Grant et al. [30] and read three
separate times using the PiReader.

According to Villa et al, those naturally infected with HPV
exhibit plasma concentrations of anti-HPV16 ranging from
50-100 milli-Merck Units per milliliter (mMU/mL), while
those vaccinated against HPV exhibit levels greater than
800 mMU/mL [35]. Opalka et al showed that 50 ng/mL is
approximately equal to 4.6 mMU/mL [36]. Using this con-
version, it was calculated that individuals previously infected
with HPV would be expected to have plasma antibody levels
between 0.5-1.0 µg/mL, while those fully vaccinated against
HPV would be expected to have levels above 8 µg/mL.
Therefore, the test should distinguish samples with anti-
HPV16 concentrations of 8 µg/mL and above (positive for
HPV vaccination) from samples with anti-HPV16 concen-
trations of 1 µg/mL or less (negative for HPV vaccination).
In order to determine the SBR threshold for distinguishing a
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FIGURE 5. Air Force resolution target images taken using A) the original
tablet HRME system and B) the PiHRME. Both have a final resolution
of 4.4 µm. C) Plot of the intensity values across the three vertical bars of
Group 6 Element 1 when using the PiHRME vs the tablet HRME
demonstrate similar image contrast.

positive from negative result, the average SBR for a negative
control zone and negative test zones were calculated. The
final threshold was set three standard deviations above the
average SBR for a negative result.

4) CLINICAL EVALUATION
To evaluate the ability of the PiReader to accurately analyze
HPV serology tests from patient samples, we used the reader
to re-read tests obtained in a previously reported clinical
evaluation by Grant et al. [30]. Nine tests were read and inter-
preted by the PiReader three separate times. For comparison,
the image analysis described in Grant et al. was performed
on the tests again using the same high-resolution computer
scanner.

III. RESULTS
A. PiHRME
The lightweight CNNmodel was able to successfully transfer
learn the binary output of the existing HRME image analysis
algorithm with high accuracy. Initial model accuracy of the
MobileNetV2 on the first training/validation batches were
57% and 50% respectively. Upon completion of 4,000 train-
ing iterations, the training and validation of the final batches
improved to 93% and 92% respectively. Final accuracy for
the 405 images in the test set was 90%. Whereas the raw
numerical output of the pre-existing algorithm is a metric
ranging from 0 to 417 with a positivity threshold of 120,
the output of the retrained CNN ranged from 0 to 1 with
a binary threshold for positivity of 0.50. In deployment,
the CNN required an average of 5.2 seconds to perform
inference on a single frame. The frame rate of the PiHRME
system was much slower with real-time inference activated
(30 FPS vs 0.19 FPS). Although the image processing time
was not ideal for real-time inference, it was still faster than the
pre-existing algorithm running on a PC tablet which requires
∼8 seconds per frame.

FIGURE 6. PiHRME images of two LEEP specimens showing the
probability score provided by the CNN image analysis algorithm. A)
Images taken of LEEP specimen #1 of a visible lesion at i) 6:00 and of a
visibly normal area at ii) 8:00. B) Images taken of LEEP specimen #2 of
two visibly normal areas at i) 1:00 and at ii) 8:00. Final pathology
diagnosis for both LEEP specimens was negative for high-grade precancer
(CIN1).

Video 1. Video of real-time PiHRME imaging of calibration targets. HRME
probability score changes in real-time. Scores less than 0.50 indicate that
the image is likely representative of normal/benign cervical tissue, while
a score of 0.50 and above indicates the image is likely representative of
high-grade cervical precancer or cancer.

1) IN VITRO EVALUATION
Fig. 5 shows images of an Air Force target imaged with
both the original tablet-based HRME system (Fig. 5A)
and PiHRME system (Fig. 5B). Both can resolve Group 6
Element 6 of the target, indicating a lateral spatial resolution
of 4.4µm. Fig. 5C shows a plot of the intensity profile across
the three vertical bars of Group 6 Element 1 by both the
PiHRME and tablet HRME. The similar intensity profiles
indicate similar image contrast is achieved by both HRME
systems.

Video 1 shows real-time imaging results obtained from
different calibration targets with the PiHRME running the
CNN algorithm. The beginning of the video shows a
PiHRME image obtained from a calibration target simulat-
ing the morphology of high-grade cervical precancer. The
CNN algorithm reports a 0.67 probability score, correctly
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FIGURE 7. In vivo PiHRME images of the cervix showing the probability score provided by the CNN image analysis algorithm at the top of each image.
A & B) Images taken of a cervical lesion suspicious for high-grade precancer at two separate sites. C) Image taken of a visibly normal area of the cervix.
All images were categorized by the CNN image analysis algorithm as being of normal/benign tissue. The final pathology diagnosis for this patient was
chronic inflammation.

FIGURE 8. Signal-to-background ratios (SBRs) of plasma spiked with different concentrations of HPV16 antibody read by A) computer scanner
and B) PiReader. Each sample was scanned three separate times by the PiReader. The average SBR is shown in (B) with error bars reflecting one
standard deviation. The threshold for positivity is a SBR at or above 1.6. The HPV vaccine test was consistently read as positive by both imaging
methods when running samples containing HPV antibody concentrations of 8 µg/mL or more.

identifying image features that represent high-grade precan-
cer. Next, the video shows images acquired from a calibra-
tion target representative of normal cervix. The probability
score updates in real-time to 0.22, correctly identifying image
features representative of normal epithelium. The probability
score continues to update with different image frames, accu-
rately identifying each.

2) EX VIVO EVALUATION
Fig. 6 shows images from two different LEEP specimens
taken with the PiHRME. The first LEEP specimen had one
visible lesion at 6:00 by colposcopy, while the second LEEP
specimen had no visible lesions. Images of the lesion and one
visibly normal area of the first LEEP specimen and images
at two visibly normal areas from the second LEEP specimen
were collected. All images received scores of< 0.50 using the

CNN image analysis algorithm. These results were consistent
with the histopathologic diagnosis for both LEEP specimens
which were negative for high-grade cervical intraepithelial
neoplasia and cancer.

3) IN VIVO EVALUATION
Fig. 7 shows PiHRME images collected from awoman under-
going a cervical examination for cervical cancer screening
and diagnosis in El Salvador. During the examination, a visi-
ble lesion was noted by the clinician as concerning for high-
grade cervical precancer. PiHRME images were taken of
the lesion at two different sites and cervical biopsies were
collected. An image was also taken of a visibly normal area.
The two images taken of the lesion and the image taken of
the visibly normal area all received scores< 0.50: 0.02, 0.41,
and 0.01 respectively (all HRME negative). This diagnosis by
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FIGURE 9. Signal-to-background ratios (SBRs) of HPV vaccine tests read by A) computer scanner vs. B) PiReader. Each test
was scanned three separate times by the PiReader. The average SBR is show in (B) with error bars reflecting one standard
deviation. The threshold for positivity is a SBR at or above 1.6. Tests contained samples from human subjects where three
received zero doses of HPV vaccine, three received one dose of HPV vaccine, and three received three doses of HPV vaccine.

the PiHRME corresponded with the patient’s final pathologic
diagnosis of chronic inflammation.

B. PiReader
1) IN VITRO EVALUATION
Fig. 8 shows the average SBR readings for plasma samples
spiked with different concentrations of anti-HPV16 using the
computer scanner and PiReader. The average test zone SBR
for the samples containing no anti-HPV16 was 1.20 ± 0.13.
Similarly, the average SBR for a negative control zone was
found to be 1.16 ± 0.14, therefore the same SBR threshold
for positivity was set for both the control and test zones at
≥ 1.6. At this threshold, both devices reliably read all samples
with anti-HPV16 concentrations of 8 µg/mL and above as
positive, while all samples with concentrations of 2 µg/mL
and below are read as negative. This appropriately separates
the two groups we want to distinguish, fully vaccinated indi-
viduals (anti-HPV16 concentrations of 8 µg/mL and above)
from those not vaccinated or who have been previously
infected with HPV (anti-HPV16 concentrations of 1 µg/mL
and below).

2) CLINICAL EVALUATION
Fig. 9 shows the SBR readings of the test zones for each of
the nine HPV vaccination tests when read using the original
high-resolution computer scanner versus the PiReader. The
nine tests were performed using blood collected from human
subjects in which three were never vaccinated for HPV,
three had only received one dose of HPV vaccine, and three
had received three doses of HPV vaccine (fully vaccinated).
A horizontal line across each graph indicates the threshold for
positivity (SBR≥ 1.6). The dynamic range of SBR is smaller
for the PiReader than for the flatbed scanner. Nevertheless,
both the computer scanner and PiReader correctly identified
the number of positive test zones in all nine tests.

IV. CONCLUSION
The work described here demonstrates the utility of single-
board computers for developing low-cost, point-of-care tech-
nologies for cervical cancer prevention. Using a Raspberry Pi
computer, a low-cost HRME system (PiHRME) was devel-
oped ($1,226) at half the cost of the current tablet HRME
system ($2,450), while still being able to accurately classify
and provide high-resolution imaging of the cervix. In addi-
tion, a low-cost, portable lateral flow assay reader (PiReader)
was developed to read a point-of-care HPV serology test with
the same accuracy as a computer and high-resolution scanner.

The value of using single-board computers, such as the
Raspberry Pi, to create biomedical devices for point-of-care
diagnostics includes their low cost as well as a number of
other advantages. Because of their small size and low-power
requirements, they allow devices to be portable and battery
powered. They can also be programmed with easy-to-use
interfaces to automate analysis of results. These advantages
are particularly important when developing medical devices
for use in low-resource settings, where electrical power is
not always available, where devices often must be operated
by local medical personnel with limited clinical laboratory
expertise, and where there is limited availability of support
for preventive or reparativemaintenance. Larger scale clinical
field studies are needed to verify these advantages for the
PiHRME and PiReader; however, the results presented here
indicate that these technologies have the potential to meet the
cost, usability, and effectiveness constraints associated with
low-resource settings.

The PiHRME was able to provide real-time visualiza-
tion of cervical nuclei and accurately classify images,
which was confirmed by the final histopathology diagnosis.
Real-time image analysis when examining the cervix can
help clinicians either reject or confirm suspected cases of
high-grade precancer or cancer, especially in low-resource
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areas where expert physicians may not always be available.
In order to accomplish real-time image classification for the
PiHRME system we leveraged recently developed Tensor-
Flow libraries for the Raspberry Pi (MobileNetV2). Future
work will explore using more efficient processors for accel-
erated neural network computation on embedded systems
in addition to other state of the art deep learning models
for semantic segmentation and classification using nuclear
features. Additionally, the usability and frame-rate could
be improved by automatically rejecting low-quality frames
(frames with motion blur or not in contact with tissue), and
only running inference on high-quality frames.

Ongoing development of TensorFlow Lite can potentially
extend this approach even more broadly to microcon-
trollers and edge computing devices [37]. Image classifi-
cation using this low-cost ARM architecture was achieved
in ∼5-6 seconds per frame. The time for analysis can be
significantly reduced using hardware acceleration for Tensor-
Flow on field-programmable gate arrays (FPGAs), graphics
processing units (GPUs), tensor processing units (TPUs), and
Intel processors [38]–[40].

The PiReader demonstrates how real-time imaging can
help make lateral flow test interpretation easier to perform at
the point-of-care. The PiReader was designed using a low-
cost USB microscope with lower resolution (96 dpi) com-
pared to a commercial flatbed scanner (800 dpi). However,
even with lower resolution, there was enough detail within
the images to accurately determine the presence and absence
of positive signals. We demonstrated the accuracy of the
PiReader by interpreting the results of an HPV serology test.
The algorithms used here can be applied to read other lateral
flow tests that rely on colorimetric changes to distinguish
positive and negative results.

Further clinical work is ongoing to validate the utility
of these technologies for cervical cancer prevention in
low-resource settings. Taken together this work demon-
strates the great promise single-board computers have
for the development of low-cost, point-of-care medical
technologies.
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