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Over half a century of converging clinical and animal research indicates that early life
experiences induce enduring neuroplasticity of the HPA-axis and the developing brain.
This experience-induced neuroplasticity is due to alterations in the frequency and inten-
sity of stimulation of pups’ sensory systems (i.e., olfactory, somatosensory, gustatory)
embedded in mother–infant interactions. This stimulation provides “hidden regulators”
of pups’ behavioral, physiological, and neural responses that have both immediate and
enduring consequences, including those involving the stress response. While variation in
stimulation can produce individual differences and adaptive behaviors, pathological early
life experiences can induce maladaptive behaviors, initiate a pathway to pathology, and
increase risk for later-life psychopathologies, such as mood and affective disorders, suggest-
ing that infant-attachment relationships program later-life neurobehavioral function. Recent
evidence suggests that the effects of maternal presence or absence during this sensory
stimulation provide a major modulatory role in neural and endocrine system responses,
which have minimal impact on pups’ immediate neurobehavior but a robust impact on
neurobehavioral development. This concept is reviewed here using two complementary
rodent models of infant trauma within attachment: infant paired-odor-shock conditioning
(mimicking maternal odor attachment learning) and rearing with an abusive mother that
converge in producing a similar behavioral phenotype in later-life including depressive-like
behavior as well as disrupted HPA-axis and amygdala function.The importance of maternal
social presence on pups’ immediate and enduring brain and behavior suggests unique pro-
cessing of sensory stimuli in early life that could provide insight into the development of
novel strategies for prevention and therapeutic interventions for trauma experienced with
the abusive caregiver.
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INTRODUCTION
Both animal and human research demonstrate that early life expe-
riences interact with genetics to program the central nervous
and endocrine systems, including the hypothalamus–pituitary–
adrenal (HPA)-axis (1–5). Infant experiences typically occur
within the context of the mother and the quality of caregiving
by the mother, determined by the patterning and intensity of
maternal stimulation of pups’ sensory systems, is a key regula-
tor of HPA-axis neuroplasticity in the neonatal period (6–10).
Dissecting the mother–infant dyad has characterized maternal
control over infant brain and behavior through “hidden regu-
lators” present during mother–infant interactions (11, 12). Lack
or loss of typical parental stimulation is a potent stressor dur-
ing early life (13, 14), and removal of these hidden regulators
through maternal deprivation, modulation of maternal behavior,
and/or traumatic interactions with the mother, produce imme-
diate changes in pups and result in wide-spread dysregulation
of physiological and behavioral responses during development
(15–26). Within the range of typical parenting, normal variations

in maternal care during infancy program individual differences
in behavioral and endocrine responses to stress in rodents and
humans; although pathological experiences, including abuse and
neglect, produce vulnerability to later-life psychiatric disorders (7,
27–37).

Here, we focus on infant experiences and the effects of early life
stress and HPA-axis activation as experienced within the mother–
infant dyad, as well as the pups’ attachment to the caregiver
and learning about the caregiver. We review two complementary
rodent models of infant trauma within attachment: infant paired-
odor-shock conditioning and rearing with an abusive mother,
which converge in producing a similar neurobehavioral pheno-
type in later-life consisting of depressive-like behavior as well
as disrupted HPA-axis and amygdala function, thus enabling us
to explore both the immediate and enduring effects of abusive
attachment as well as role of the HPA-axis and the stress hormone
corticosterone (CORT). Although infant trauma resulting from
abusive attachment affects neural substrates of stress vulnerabil-
ity and resilience, these can be engaged by sensory cues learned
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during infancy (i.e., artificial or natural maternal odor), which
have the ability to normalize adult neurobehavioral dysregulation
stemming from early life trauma.

ATTACHMENT
Attachment is a psychosocial process referring to the deep and
enduring emotional bond that connects two individuals across
space and time, with an individual deriving security from physi-
cal and psychological contact with the attachment figure (38–40).
Attachment requires experience-dependent learning of the sen-
sory stimuli associated with infant–caregiver interactions, and a
strong attachment to the caregiver is crucial for survival in altri-
cial species, including humans (41–48). In children, attachment
is characterized by specific behaviors such as seeking proximity
to the caregiver, whom provides a sense of safety and security
for the infant (49–51). Like humans, infants from altricial species
also exhibit attachment related behaviors to their caregiver shortly
after birth that elicit nurturing and attachment from the care-
giver, which entails responding appropriately to the infant’s needs
by providing nourishment, protection, and warmth necessary for
survival (51–53). Thus, infant-attachment is an adaptive and rec-
iprocal process consisting of a dynamic and complex exchange of
mother–infant behavioral interactions that enhance the infant’s
chance of survival by maintaining contact with the caregiver.

The mother–infant attachment bond is among the strongest
social attachments formed by most mammals (54). As such,
human infants seek proximity to and maintain contact with the
caregiver despite the quality of care they receive (55), including
attachment to an abusive caregiver. This paradoxical phenomenon
also occurs in dogs, chicks, and non-human primates, suggesting
a phylogenetically preserved system (32, 41, 43, 56–63). From an
evolutionary perspective, attachment to an abusive caregiver is
thought to be adaptive because it provides immediate benefits,
as the infant still has access to some care (48, 64). Albeit infant
organisms are biologically predisposed to attach to their caregiver
and possess behavioral systems that allow them to rely on these
bonds for survival (38), clinical and preclinical studies suggest that
adverse parental care compromises brain development and has
longstanding effects in stress-responsive neurobiological systems,
including the HPA-axis, neurotransmitter systems, as well as cor-
tical and limbic structures such as the prefrontal cortex, amygdala,
and hippocampus (65–75). Moreover, traumatic early life expe-
riences involving the caregiver increase the risk for a wide-range
of deleterious mental health and behavioral outcomes, including
developmental psychopathology, affective, and mood disorders
(37, 72, 76–86). Therefore, perturbations in infant-attachment
appear to induce immediate neurobiological changes that shape
subsequent development and lead to neurobehavioral dysregu-
lation associated with compromised emotionality and increased
vulnerability to psychopathology during later-life, suggesting that
the quality of an infant’s first social relationships programs the
infant’s emotional and cognitive capabilities to adapt to later-life
environments.

Despite the fact that childhood abuse remains a major public
health concern (87–91), the mechanisms by which infant trauma
initiates the pathway to psychopathology are poorly understood,
although the stress axis is evidently implicated. However, animal

models have provided some insight into the mechanisms by
which disruptions in parental care alter the development of stress
response systems (92, 93), which may contribute to our under-
standing of resilience following infant trauma (62, 94–98). For
example, research using animal models of maternal deprivation in
rodents and non-human primates parallel human imaging stud-
ies suggesting that disruptions in infant-attachment also produce
long-term alterations in the limbic system and the stress axis that
may compromise the development of emotion- and attention-
regulatory systems, which has been used to explain the heightened
risk of behavioral and affective disorders in human children expe-
riencing adverse parental care (13, 31, 32, 75, 93, 99–108). Overall,
these studies demonstrate that parental care affects the matura-
tion of these brain areas and offers potential sites to understand the
damaging effects of early life abuse on subsequent neurobehavioral
development (31, 70, 71, 74, 84, 94, 109–115). For these reasons,
we employ rodent models of abusive attachment and study the
infant’s immediate response to trauma as well as the neurobiolog-
ical sequelae leading to later-life neurobehavioral dysregulation to
better understand the infant mechanisms that initiate the pathway
to later-life psychopathologies.

THE STRESS-HYPORESPONSIVE PERIOD AND MATERNAL REGULATION
OF THE HPA-AXIS
In rats, infant-attachment occurs within a unique developmen-
tal context – the stress-hyporesponsive period (SHRP) – during
which neonates show low basal plasma concentrations of CORT
and reduced stress-reactivity, as indexed by limited adrenocor-
ticotropic hormone (ACTH) and CORT responses to stressful
stimuli compared to older animals, as well as low levels of corti-
costeroid binding globulin (CBG), which regulates glucocorticoid
(GC) access into the brain (92, 116–123). Thus, the neuroen-
docrine stress response of the neonatal rat is characterized by
attenuated hormonal responses and altered gene regulation in
response to stress compared to adults due to hyporesponsiveness
at all levels of the HPA-axis, namely: (1) a blunted pituitary ACTH
secretion, resulting from a combination of immaturity of neural
inputs to the corticotropin releasing hormone (CRH) neurons,
(2) decreased pituitary peptide content or decreased sensitivity to
CRH stimulus; and (3) an adrenal gland hyporesponsive to cir-
culating ACTH levels (18, 119, 121, 124–130). Accumulating evi-
dence suggests that human infants exhibit a period of dampened
cortisol reactivity analogous to the rodent SHRP, which develops
gradually over the course of the first year of life (~6–12 months),
although it remains unclear how long it extends (131–135). In
both humans and rodents, the SHRP is thought to protect the
developing brain from the detrimental effects of elevated HPA-axis
activity and excess GC exposure, and the sensitivity and respon-
siveness from the caregiver appears critical in maintaining low
cortisol activity and controlling the offspring’s physiological and
behavioral responses to stressors during this period (3, 30, 32, 68,
100, 122, 127, 129, 136–140).

However, the SHRP during development appears to be stres-
sor specific, since the HPA-axis is fully capable of responding to
stimuli that may be considered stressful to a neonatal rat such
as cold or saline injection (141–145). Indeed, the HPA-axis and
CORT receptors are functional at birth, but are modulated by
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the sensory stimulation provided by the mother (100, 119, 126,
146–152). Moreover, the mother is able to directly regulate the
pups’ CORT levels through hidden regulators embedded in typical
mother–infant interactions, such as the sensory, motor, nutrient,
and thermal events associated with caregiving, which exert regu-
latory influence over the infant’s immediate and long-term behav-
ioral and physiological responses by affecting sleep-wake states,
cardiac rates, and HPA-axis function (6, 10–12, 17, 129, 153, 154).
Removal of maternal sensory stimulation during the SHRP, such
as that occurring when the pups are separated from the mother for
a prolonged period of time (i.e., maternal deprivation paradigm),
increases CORT secretion (16), elevates CORT levels in pups (11,
12, 129), and enables higher CORT/ACTH responses to acute stress
(15, 19, 100, 145, 155). Importantly, these changes are similar to
those induced by normal variations in maternal care (i.e., maternal
high/low licking paradigm) (7, 27, 29) as well as atypical or abu-
sive maternal care (20, 144, 156), suggesting that the hypothalamic
mechanisms controlling physiological stress responses in the pup
are regulated by elements of maternal care. Taken together, these
findings suggest that maternal deprivation, variations in maternal
care, and abusive maternal care influence the development and
function of the HPA-axis (8, 9, 30, 112, 114, 157–160). In summary,
maternal stimulation modulates the infant’s HPA-axis and main-
tains the SHRP, although potent stressors involving disruptions
in maternal stimulation (i.e., cold, maternal deprivation, atypical
maternal care) can activate the HPA-axis and override maternal
control of the SHRP.

ATTACHMENT LEARNING DURING A SENSITIVE-PERIOD IN
RAT PUPS
Infants possess a predisposition to approach the mother as well
as specific sensory cues associated with her care, such as her odor
and vocalizations (161, 162). Within an evolutionary context, the
infant-attachment system serves to establish a preference for the
mother regardless of whether or not she is associated with pain
or pleasure (48, 64). This type of survival-dependent learning is
known as imprinting, has wide phylogenetic representation, and is
temporally confined to a sensitive-period in development (50, 161,
163) typically involving a hypofunctioning HPA-axis – the prin-
cipal pathway of the mammalian stress response that regulates
the production of GCs (cortisol in humans, CORT in rodents)
(40, 164). In rats, we refer to this period of enhanced attach-
ment/preference learning as the “sensitive-period,” or postnatal
(PN) days 1–9 (see Figure 1). As we will discuss below, sensitive-
period learning is due to the pup’s unique learning circuit, pre-
sumably one sculpted through evolution to provide infants with
the neural circuitry required to survive and maximize attachment
to a caregiver (48).

Intriguingly, the sensitive-period for attachment learning in
rat pups overlaps with the SHRP, suggesting that low levels of
CORT and reduced HPA-axis responsiveness may contribute to the
neonate’s unique neural circuitry for attachment learning. How-
ever, in order for infant-attachment to occur, the rat pup must
first learn to identify the caregiver and exhibit the social behaviors
necessary for survival such as orienting to and approaching the
caregiver, grasping the nipple and nursing (50, 168, 169). Infant-
attachment learning in rodents revolves around the pup’s ability

to learn and develop a preference for the mother’s odor, which is
diet dependent and can change postnatally (47, 170–174). Since
rat pups are born deaf and blind, they must rapidly learn their
mother’s odor, which conveys distal and proximal information
about the mother’s location, and helps the pups orient to the
mother, approach her and elicit care (169, 175). The maternal
odor is critical in guiding infant-attachment; without it, pups show
reduced contact with the mother, are unable to nipple attach and
exhibit low survival rates (25, 176). Moreover, any neutral odor
can acquire properties of the natural maternal odor and act as a
new maternal odor by simply being placed on the mother, in a
cage during mother-infant interactions (177–182) or learned in
classical conditioning paradigms (i.e., odor-stroke, odor-shock)
performed outside the nest in the absence of the mother (111, 165,
171, 183–188).

Our lab uses infant olfactory classical conditioning in which an
artificial odor (i.e., peppermint) is paired with a 0.5 mA shock
as a rodent model of abusive attachment. While the adult rat
responds to shock with a robust CORT response, the neonatal
rat does not (9, 100, 189). Unlike older animals, which readily
learn odor aversions to painful stimuli paired with an odor, rat
pups actually exhibit an odor preference and approach the odor
(111, 165, 190–193). This odor preference, however, is not due to
the inability of pups to feel pain, since the pain threshold varies lit-
tle during the neonatal period and pups emit vocalizations to the
shock, suggesting that they are experiencing distress (165, 190,
194–197). Instead, infant paired-odor-shock conditioning pro-
duces a new artificial maternal odor that acquires the ability to
regulate pup behaviors typically controlled by the maternal odor;
it induces proximity-seeking/approach responses in pups (distal
cues), guides mother–infant interactions by facilitating contact
with the mother and nipple attachment (proximal cues), and acti-
vates the same neural circuitry as the natural maternal odor (25,
111, 165, 169), suggesting that this odor has comparable quali-
ties to the natural maternal odor. Importantly, infant odor-shock
conditioning is a useful experimental paradigm for understanding
how early life trauma (i.e., pain-shock) can support and maintain
attachment and provide insights into the particular ways the infant
brain processes painful stimuli and its relationship to the endur-
ing effects of this experience due to the well documented neural
circuitry underlying this type of learning (198–202). Three brain
structures have been shown to play a role in the neonatal rat’s
sensitive-period for enhanced odor learning: the olfactory bulb
(OB), the noradrenergic locus coeruleus (LC), and the amygdala
(50, 203).

NEUROBIOLOGY OF INFANT-ATTACHMENT AND THE ROLE OF
THE HPA-AXIS IN TERMINATING ATTACHMENT LEARNING
Neonatal odor learning produces changes in the OB, which can
be induced both naturally in the nest and experimentally in con-
trolled learning experiments outside the nest (182, 186, 204–210).
For example, both natural and learned odors produce a simi-
lar enhancement of OB responding during the sensitive-period,
which has been assessed through a variety of techniques includ-
ing 2-deoxy-glucose (2-DG) uptake, c-Fos immunoreactivity (ir),
CREB phosphorylation, electrophysiology, and optical imaging
(205–208, 211–214). Thus, olfactory-based attachment learning
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FIGURE 1 |The neural circuitry underlying pup attachment learning
changes over development. During the earliest days of life, pups have a
sensitive-period in which odor-shock conditioning produces an odor
preference. At 10 days of age, pups begin the transitional sensitive-period,
when pups endogenous CORT levels have increased sufficiently to enable
amygdala-dependent fear/avoidance learning. However, with the mother

present at this age, pups will revert back to preference learning and the neural
circuitry of the sensitive-period. Thus, the mother’s presence socially buffers
pups (i.e., attenuates pups shock-induced CORT release) and pups learn a
preference. As pups mature and enter the post-sensitive-period, odor-shock
conditioning induces amygdala-dependent fear and odor avoidance learning
(25, 165–167).

in neonatal rats is associated with the acquisition of odor-specific
neural changes in the OB, which can only be acquired during the
sensitive-period, and are retained throughout development (111,
201, 215–218).

Infant rats (PN1–9) readily learn an odor preference to neu-
tral odors paired with pleasant (i.e., milk, stroking) (47, 171, 179,
183–185, 219) or painful stimuli, such as 0.5 mA shock or tail
pinch (111, 165, 190, 191, 201), which is partly due to a uniquely
large noradrenergic input to the OB from the LC, the sole source
of norepinephrine (NE) for the OB (220, 221), which prompts
abundant release of NE into the OB (203, 222). Furthermore,
the neonatal LC shows prolonged stimulus-evoked excitation and
greater NE release to odors during the sensitive-period compared
to later-life due to the immaturity of the LC alpha-2 inhibitory
autoreceptors, which functionally emerge around PN10 and cause
a shift from prolonged excitatory alpha-1 mediated responses to
inhibitory alpha-2 mediated responses, resulting in brief excitation
due to inhibited LC firing and decreased NE output (203, 222–
227). Importantly, NE release from the LC is both necessary and
sufficient for odor preference learning during the sensitive-period
(228–232).

Experimental evidence indicates a lack of amygdala participa-
tion in the neural circuitry underlying infant paired-odor-shock
conditioning during the sensitive-period, as suggested by amyg-
dala lesions, 2-DG, and c-Fos-ir (111, 201, 203, 216, 232), although
the amygdala is strongly implicated in adult classical conditioning
(198–200, 202, 233). These data suggest that the infant amygdala
is not part of the sensitive-period learning circuit during which
aversions are difficult to learn because of its failure to exhibit the
plasticity required for this type of learning (234–236), although the
amygdala is responsive to odors and other environmental stimuli
by PN10 (165, 201, 237). Like the infant amygdala, the infant HPA-
axis is limited in function, resulting in reduced shock-induced
CORT release during the neonatal sensitive-period (189), which
limits pups’ ability to acquire learned odor aversions (201, 238).
Endogenous CORT levels increase gradually and reach a critical
level by PN10 (92, 136, 239, 240), at which time stressful or painful
stimuli are able to elicit a sufficient CORT response that permits

infant amygdala plasticity and avoidance learning (Figure 1) (201,
218, 241).

Indeed, the natural increase of stress-induced CORT release
marks the end of sensitive-period learning (165, 201, 203, 238),
which has been demonstrated experimentally by increasing CORT
systemically (3 mg/kg, i.p.) or through intra-amygdala CORT
infusions (50–100 ng) prior to odor-shock conditioning, which
enables sensitive-period pups to learn an odor aversion and exhibit
learning-evoked neural activity (i.e., enhanced 2-DG uptake)
in the amygdala, while preventing the acquisition of learning-
induced changes in the OB (201, 238, 241, 242). In contrast, CORT
depletion (via adrenalectomy or social buffering, discussed below)
in PN12 pups results in shock-induced odor preference learning
and acquisition of OB neural changes. Thus, within the context of
paired-odor-shock conditioning, CORT appears to play a modu-
latory role on infant learning by switching whether the amygdala
learns attraction or avoidance: if CORT is low, pups learn a pref-
erence to an odor paired with shock due to a lack of amygdala
involvement; if CORT is high, the amygdala is activated by odor-
shock conditioning and pups learn an avoidance. Recently, we have
identified a role for amygdala dopamine (DA) in mediating these
infant learning transitions, as conditions that block aversion/fear
learning are associated with downregulated DA function (243).
Altogether, these findings suggest that neonatal rat pups have
unique learning capabilities that aid olfactory-based attachment
to the mother, which are dependent on low levels of CORT.

In summary, the infant learning circuit is characterized by an
enhanced ability to learn odor preferences to aversive stimuli, due
to a hyper-functioning LC, as well as a decreased ability to learn
odor aversions that may interfere with proximity-seeking during
the sensitive-period due to a hypo-functional amygdala, suggest-
ing that the infant brain is specialized for maximizing attachment
to a caregiver (Figure 1) (41, 165, 186, 221, 225, 229, 234, 235, 244–
247). As the sensitive-period ends, owing to the natural emergence
of CORT, odor aversions can be learned because of changes in the
infant learning circuit, including maturation of LC autoinhibition,
which reduces NE release and greatly attenuates rapid odor pref-
erence learning, but also due to the functional emergence of the
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amygdala, all of which enable the plasticity required for aversion
learning (50, 165, 223, 225, 229, 232, 241).

MATERNAL MODULATION OF HPA-AXIS FUNCTION AND
SENSITIVE-PERIOD DURATION
Empirical evidence suggests that social support is a powerful mod-
ulator of individual differences in response to potentially stressful
events in both humans and animals (248–253). In rodents, mater-
nal presence is known to blunt CORT release to stressful and
painful stimuli in older pups (>PN12) through olfactory and
somatosensory cues (9, 148, 152, 166, 167, 254, 255). The process
by which the presence of a social companion and/or social sen-
sory cues can dampen HPA responses to stressors (i.e., decrease
CORT levels) is termed “social buffering” and has been reported in
humans and other species (139, 249, 250, 253, 256–259). Our lab
has identified a transitional sensitive-period in pups from PN10–
15, during which odor-shock conditioning produces either olfac-
tory preference or aversion in infant rats depending on social con-
text (166, 260). In the absence of the mother, paired-odor-shock
conditioning yields a learned odor avoidance that is accompanied
by amygdala activation. However, maternal presence is able to sup-
press amygdala activity and block aversion learning induced by
odor-shock conditioning, indicating that maternal presence reen-
gages the sensitive-period attachment circuitry to reinstate odor
preference learning through modulation of CORT (see Figure 1),
and therefore CORT regulation of amygdala activity. Importantly,
these animal data are consistent with the principles of attach-
ment theory (38), in which access to a secure base provided by
the attachment figure reduces the probability of HPA/CRF stress
reactions that could have unfavorable long-term consequences on
brain development (9, 137, 261).

Yet, human parental care is disturbed under conditions of
chronic stress (262), which can be modeled in rodents by creating
an abnormal rearing environment that alters maternal behavior
(20, 23, 111) and mimics the effects of a stressful environment as a
risk factor for potentiating infant abuse, including humans (62, 77,
263, 264). Because bedding type and volume are important com-
ponents of the dam’s nesting environment, limiting the amount
of bedding available constitutes a continuous stressor for the dam
and her pups, disrupts mother–pup interactions, and alters the
development of the pup’s HPA-axis by reducing the frequency of
positive maternal behaviors (i.e., licking, grooming, nursing) and
increasing the frequency of negative maternal behaviors that are
painful to the pup and elicit vocalizations, such as stepping, drag-
ging, and rough handling of the pups (20, 25, 111, 156, 188, 265).
Thus, one could conceptualize a stressed dam as a poor regulator,
which is supported by findings showing that ICV infusion of cor-
ticotropin releasing factor (CRF) reduces maternal responsivity
(266).

Furthermore, because maternal stimulation of pups modulates
pups’ endogenous CORT, maternal care quality alters sensitive-
period duration. Pups reared with a stressed mother (i.e., poor
regulator) exhibit a precocious emergence of CORT, which is
delivered through the mother’s milk (267), that facilitates aver-
sion learning and engages the amygdala, as indexed by increased
odor-shock-induced amygdala neural activity (188), suggesting
that experience with a stressed mother prematurely ends the SHRP

and the sensitive-period for attachment learning. In addition, this
procedure results in striking changes in the expression and activ-
ity patterns of key regulatory elements of the neuroendocrine
stress response, which result in persistent alterations of HPA-axis
function such as elevated basal GC concentrations, impaired GC
feedback, and modifications in CRF-receptor regulation (20, 25,
114, 156, 174). Since the mother serves as a primary link between
the environment and the infant, environmentally driven alter-
ations in maternal care could transduce an environmental signal to
the pups, alter the development of central CRF systems activating
behavioral, endocrine and autonomic responses to stress, as well
as systems regulating CRF and HPA-axis activity, which may serve
to increase or decrease stress-reactivity in the offspring, so that it
mirrors that of the mother.

IMMEDIATE AND ENDURING EFFECTS OF EARLY LIFE STRESS
Responses to stressors, or conditions that threaten or are per-
ceived to threaten physiological equilibrium, are mediated by the
activation of stress-responsive neurobiological systems that help
preserve allostasis, or stability through change, thereby making
the stress response an essential endocrine mechanism for survival
(268–270). Stressors, which can include psychological and physi-
cal challenges, increase the amount of hypothalamic CRF that is
released into the anterior pituitary gland, stimulating ACTH secre-
tion in the anterior pituitary and resulting in GC production in
the adrenal gland (268, 271, 272). GCs facilitate the mobilization
of substrates for energy sources, potentiate the release of cate-
cholamines, and enhance cardiovascular tone while suppressing
“non-essential systems” for immediate survival, such as immu-
nity, growth, and reproduction (273–276). Stress-induced HPA-
axis activation is associated with acute release of stress-related
neuropeptides, hormones, and neurotransmitters, including NE,
serotonin (5-HT), and DA, in cortical and limbic structures (21, 27,
277–289). Although acutely elevated GCs help orchestrate physi-
ological and behavioral responses that promote allostasis, chronic
activation of the HPA-axis, and prolonged elevations of GCs and
CRF increase the risk of stress-related disorders and psychological
illnesses during later-life (269, 290–292).

The effects of HPA-axis activation depend on multiple factors,
including the developmental stage in which the insult occurs,num-
ber of exposures, and type of adversity (71, 293–297). Numerous
behavioral, endocrine, and clinical studies have shown that vari-
ous early life stressors cause a premature increase in CORT levels
(129) that produces profound alterations in growth and develop-
ment and negatively affects mental health (40, 72, 135, 298, 299).
Moreover, repeated exposure to early life stressors, both physical
and psychological, induce changes in endocrine (HPA-axis), neu-
rotransmitter (DA, 5-HT), and brain memory systems, including
the hippocampus, amygdala, and PFC that persist throughout the
life-span (8, 67, 101, 300, 301). Furthermore, the HPA-axis is mod-
ulated by limbic and cortical regions such as the amygdala, hip-
pocampus, and the PFC (269, 302), which enable the activation of
stress responses by psychosocial stressors (303–307). Importantly,
the timing of early life stress may affect brain regions undergoing
specific growth spurts during that time (308, 309), so that brain
regions rich in GC receptors and characterized by extended PN
development, such as the amygdala, hippocampus, and PFC, are
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particularly susceptible to the long-term effects of stress (71, 92),
which affects later-life memory, cognitive, executive, and affective
function as well as stress-reactivity in humans (296, 297). Alter-
ations in stress-sensitive neurobiological systems, including regu-
lation of GCs and CRF, have been posited as mechanisms through
which early life stress, including inadequate/disorganized parental
care, increases the likelihood of psychopathology by influencing
HPA hyperreactivity to stressors and promoting the development
of stress-induced illnesses throughout life (31, 40, 290, 310–312).

Early life adversity may lead to a maladaptive outcome to a
given later environmental context. Depression is a common out-
come of childhood abuse, and children with a comorbid history
of depression and abuse have elevated CRF levels in the cere-
brospinal fluid (313) as well as an increased ACTH response to
a CRF challenge compared to children with depression without
abuse, suggesting excessive CRF release (3, 314, 315). Additional
clinical evidence indicates that severe early life stressors in child-
hood are associated with the long-term HPA-axis disturbances in
depressed patients (316–319), which is supported by preclinical
studies of non-human primates showing that poor rearing con-
ditions and conditions that disrupt responsive maternal care have
a long-term impact on the neurobiology of stress and negative
emotionality (21, 31, 32, 109, 158). For example, variable foraging
paradigms that result in neglectful maternal care produce adult
offspring that are more fearful, low in dominance, have elevated
levels of CRF in the CSF and high in brain levels of CRH, exhibit
persistent alterations in metabolites of 5-HT, DA, and NE, as well
as changes in noradrenergic and serotonergic responses to stress
(99, 320–324). Given the importance of noradrenergic and sero-
tonergic systems in mood disorders, these findings postulate a
mechanism by which early life stress may predispose an individual
to later-life depression (32, 300, 325–327).

CONVERGENCE OF BOTH ABUSIVE ATTACHMENT MODELS
IN PRODUCING A DEPRESSIVE-LIKE BEHAVIORAL
PHENOTYPE DURING LATER-LIFE
Recently, our lab has demonstrated that both rodent models of
abusive attachment (paired-odor-shock, abusive mother) during
infancy result in later-life depressive-like behavior in the Forced
Swim Test (FST), a measure of behavioral despair in rodents (328,
329), that is accompanied by changes in amygdala function and
preceded by disruptions in social behavior (26). When employed
from PN8–12, these two complementary rodent models of early
life abuse produced a reduction in sociability, as indexed by spend-
ing significantly less time in a social chamber compared to control
animals reared with a normal mother – a behavioral pattern that
was observable prior to weaning (PN23) and maintained in adoles-
cence (PN45). However, animals experiencing early life abuse only
showed depressive-like behavior in the FST during adolescence
(PN45), as indicated by immobility – the passive state in which
the animal makes only those movements necessary to keep its
head above water (328, 330). In addition, depressive-like behavior
in the FST in animals experiencing early life abuse was associated
with increased c-Fos-ir in the basal, lateral, and central amygdala
nuclei, suggesting that increased neural activity in these structures
may contribute to the expression of depressive-like behavior in
the FST (26). A causal relationship between amygdala function
and depressive-like behavior in the FST was suggested through

temporary inactivation (i.e., muscimol) of amygdala function
during the FST, which normalized these behaviors to a level com-
parable to controls (26). Collectively, these findings suggest that
the expression of depressive-like behavior in the FST following
early life abuse is characterized by a hyper-functioning amygdala.
Thus, abusive attachment appears to disrupt the developmental
trajectory of the amygdala and modify the way that it responds
to future stressors, which is supported by our work using rodent
models of early life abuse.

Our findings are in accordance with clinical and animal liter-
ature indicating that early life adversity constitutes a prime risk
factor for the development of psychopathologies characterized by
dysregulated HPA-axis function (1, 5, 24, 32, 133, 319, 331–334),
such as mood and affective disorders (37, 93, 335, 336), which
also exhibit a developmental delay (309, 337, 338) Thus, these
rodent models of early life abuse allow us to explore the ontogeny
of depressive-like behavior and amygdala dysregulation, which is
of clinical relevance because abnormal amygdala function and
social behavior deficits as well as their relationship to later-life
depressive-like behaviors have been documented in individuals
with a history of early life abuse (71, 310, 331, 336).

MODULATION OF ADULT NEUROBEHAVIORAL FUNCTION BY
INFANT-ATTACHMENT RELATED CUES
An ample body of evidence suggests that the quality of infant-
attachment relationships results in long-term adaptations that
have the ability to program subsequent behavioral, endocrine, and
neural function (28, 109, 261, 310, 336). Results from our lab-
oratory have shown that infant paired-odor-shock conditioning
results in reduced fear learning and attenuated related amygdala
function, dysregulation in neural networks underlying olfactory
learning, and depressive-like behavior during adulthood (339–
342). Importantly, attachment related sensory cues learned during
infancy can play a critical role in modulating neurobehavioral
responses during later-life. In humans, for example, cues associ-
ated with early life abuse elicit strong attraction and feelings of
comfort (343). In rodents, presentation of an artificial maternal
odor, resulting from infant paired-odor-shock conditioning, is able
to reverse the behavioral effects of abusive attachment in rodent
measures of depressive-like behavior, such as the sucrose con-
sumption test and the FST (342). Specifically, the odor increased
the latency to immobility and reduced the time spent immobile
in the FST, but also increased the percentage of sucrose consumed
during a sucrose preference test to levels comparable to controls.
Furthermore, these restorative effects of a learned infant maternal
odor on adult function were also observable at electrophysiological
level, as odor presentation also normalized paired-pulse inhibition
deficits in the amygdala. Collectively, these data suggest that early
life experiences are able to shape adult neural circuits underlying
behavior and that adult behaviors can be modified under envi-
ronmental conditions in which learned infant cues are present.
The discovery that infant cues can retain their value throughout
the life-span and regulate later-life behaviors controlled by cir-
cuits implicated in emotion, learning, and social behavior is of
great interest because it provides an opportunity for interven-
tion and possibly correction of maladaptive outcomes related to
psychopathology induced by adverse early life experiences within
attachment. Thus, it appears that the enduring neurobehavioral

Frontiers in Endocrinology | Neuroendocrine Science March 2014 | Volume 5 | Article 33 | 6

http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science/archive


Rincón-Cortés and Sullivan Early life trauma and attachment

dysregulation stemming from early life abuse can be positively
modulated by learned sensory cues related to infant-attachment.

CONCLUSION
In species requiring parental care, evolution has ensured that
infants quickly learn and express robust preferences to the care-
giver, regardless of the quality of care (48, 50). However, trauma
within attachment leaves the infant particularly vulnerable to adult
psychiatric disorders, behavioral changes in fear and anxiety, and
alterations in neural circuits, particularly those regulating stress
and emotion (71, 133, 334, 344, 345). In addition, early life stress
can have negative effects on the neurobiology of the develop-
ing brain that are comparable to those induced by disruptions in
infant-caregiver interactions (25, 346) Thus, early life experiences
have enduring effects on the neuroplasticity of the HPA-axis, sug-
gesting the HPA-axis is programmable via multiple environmental
sources across development. In early development, stressors and
maternal care jointly program HPA-axis responses and later-life
function. The HPA-axis, however, remains modifiable during later
stages of development during which infant-attachment related
cues can exert a positive modulatory effect on later-life HPA-axis
function as well as behavioral and endocrine responses to stress.
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