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Abstract Terpenoids are enormously diverse, but our knowledge of their biosynthesis and

functions is limited. Here we report on a terpene synthase (DdTPS8)-cytochrome P450 (CYP521A1)

gene cluster that produces a novel C12 trisnorsesquiterpene and affects the development of

Dictyostelium discoideum. DdTPS8 catalyzes the formation of a sesquiterpene discoidol, which is

undetectable from the volatile bouquet of wild type D. discoideum. Interestingly, a DdTPS8

knockout mutant lacks not only discoidol, but also a putative trisnorsesquiterpene. This compound

was hypothesized to be derived from discoidol via cytochrome P450 (CYP)-catalyzed oxidative

cleavage. CYP521A1, which is clustered with DdTPS8, was identified as a top candidate.

Biochemical assays demonstrated that CYP521A1 catalyzes the conversion of discoidol to a novel

trisnorsesquiterpene named discodiene. The DdTPS8 knockout mutant exhibited slow progression

in development. This study points to the untapped diversity of natural products made by D.

discoideum, which may have diverse roles in its development and chemical ecology.

DOI: https://doi.org/10.7554/eLife.44352.001

Introduction
With over 80,000 structures identified, terpenoids constitute the largest class of natural products

made by living organisms (Christianson, 2017). Most terpenoid natural products are known from

plants (Chen et al., 2011), but bacteria (Yamada et al., 2015; Dickschat, 2016) and fungi

(Keller et al., 2005; Schmidt-Dannert, 2015) are also rich sources. Recently we have shown that dic-

tyostelid social amoebae, a class of eukaryotic soil microorganisms, also have the genetic capacity to

produce monoterpenes (C10), sesquiterpenes (C15) and diterpenes (C20) (Chen et al., 2016). Dictyos-

telid social amoebae have a unique life cycle, consisting of both unicellular and multicellular phases.

When their bacterial food supply becomes scarce, amoebae start to aggregate, going through

clearly-defined morphological changes to eventually form fruiting bodies (Kessin, 2001). Dictyoste-

lium discoideum and D. purpureum are among the most extensively investigated species of dictyos-

telid social amoebae. Our recent studies illustrated that the multicellular stages of the life cycle of

both D. discoideum (Chen et al., 2016) and D. purpureum (Chen et al., 2018) are characterized by

the emission of a complex mixture of volatile organic compounds that is dominated by
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sesquiterpenes. While some terpenoids are produced by both species, most appear to be species-

specific (Chen et al., 2018). The biological function of these terpenoids is completely unknown.

The D. discoideum genome contains nine full-length genes (DdTPS1-9) encoding terpene syn-

thases, the pivotal enzymes that create the terpenoid carbon skeleton (Christianson, 2017). All nine

genes are expressed during the multicellular stage, suggesting a role for volatile terpenoid biosyn-

thesis in fruiting body development. Indeed, biochemical characterization of the encoded proteins

DdTPS1-9 revealed terpene synthase activity for all tested enzymes. The sesquiterpene products of

DdTPS1-4, DdTPS6, DdTPS7 and DdTPS9, as well as the diterpene product of DdTPS5, could be

detected in the volatile bouquet of D. discoideum during multicellular development (Chen et al.,

2016; Rabe et al., 2016a; Rinkel et al., 2017). D. discoideum also released the monoterpene linal-

ool that was produced by several recombinant terpene synthases including DdTPS2, DdTPS3 and

DdTPS9, suggesting that at least one of these enzymes functions as a monoterpene synthase in vivo.

In brief, the in vitro products of all DdTPSs except DdTPS8 could be detected in the volatile bouquet

of D. discoideum.

DdTPS8 has sesquiterpene synthase activity, but does not produce mono- or diterpenes in vitro

(Chen et al., 2016). DdTPS8 exhibits the second highest level of expression among all nine DdTPS

genes during development, so it was surprising to see that the major sesquiterpene product of

DdTPS8 was not detected in the D. discoideum volatiles (Chen et al., 2016). One possibility is that

the product of DdTPS8 serves as a substrate for other enzymes, particularly cytochrome P450s

(CYPs). CYPs are heme-containing proteins that catalyze a wide variety of oxidative reactions

(Coon, 2005), often on terpenoid substrates (Hamberger and Bak, 2013). In this context it is inter-

esting to note that the profile of volatiles emitted by D. discoideum contains a number of unknown

compounds that are candidates for derivatives of the DdTPS8 product. Here we present conclusive

evidence that the DdTPS8 sesquiterpene product is modified by a CYP that is physically clustered

with DdTPS8 on chromosome six and produces a novel trisnorsesquiterpene named as discodiene.

A DdTPS8-knockout mutant of D. discoideum, which failed to produce discodiene, showed slower

progression in development than the wild type strain. This raises interesting questions about the

specific biological role of discodiene as one constituent of a bouquet of volatiles produced by D. dis-

coideum during its development.

Results

The product of DdTPS8 is the new sesquiterpene alcohol discoidol
DdTPS8 had been shown to have sesquiterpene synthase activity in previous work (Chen et al.,

2016), but the structure of its product was not identified. In the present study, the coding sequence

of DdTPS8 was cloned into the expression vector pET32a and expressed heterologously in Escheri-

chia coli. After protein purification by Ni2+-NTA affinity chromatography, the recombinant DdTPS8

enzyme was incubated with its substrate farnesyl diphosphate (FDP), resulting in the formation of a

sesquiterpene alcohol as a single product. The compound was purified and structure elucidation by

NMR spectroscopy (Supplementary file 1) revealed a new bicyclic sesquiterpenoid, which was

named discoidol (Figure 1A). Discoidol is a stereoisomer of the known sesquiterpene alcohol jinkoh-

eremol (Nakanishi et al., 1983).

The absolute configuration of discoidol was determined by enzymatic conversion of enantioselec-

tively deuterated (R)- and (S)-(1-13C,1-2H)geranyl diphosphate (Rabe et al., 2017) that were elon-

gated with isopentenyl diphosphate to the corresponding FDP isotopomers using the FDP synthase

from Streptomyces coelicolor (Rabe et al., 2016b). Their conversion by the discoidol synthase

resulted in enantioselectively deuterated discoidol with known absolute configuration at the deuter-

ated carbon (Figure 1B). The absolute configuration of discoidol was then deduced by assignment

of the relative orientation of the two hydrogen atoms at C2 by NOESY (Figure 1C). The additional
13C-NMR label at this carbon was used for a highly efficient analysis by HSQC spectroscopy, giving

an intensive cross-peak for the attached hydrogen (Figure 1—figure supplement 1). These experi-

ments resulted in the assigned absolute configuration of (4S,5S,7S)-discoidol.

The proposed cyclization mechanism of discoidol synthase (Figure 1D) starts with a 1,10-cycliza-

tion of FDP with attack of water to yield the neutral intermediate hedycaryol. A protonation-induced

second cyclization results in cation 1, that upon a 1,2-hydride shift to cation 2, 1,2-methyl group
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migration to cation three and deprotonation reacts to form discoidol. This mechanism was experi-

mentally supported by a series of incubation experiments using isotopically labeled substrates. The

reprotonation of hedycaryol was demonstrated by incubation of (6-13C)FDP (Rabe et al., 2015) with

discoidol synthase in a deuterium oxide enriched buffer, resulting in a triplet in the 13C-NMR spec-

trum of the product cation 1 (Figure 1—figure supplement 2) that indicated a direct 13C-2H connec-

tion. The stereochemical course for the reprotonation was evident from HSQC analysis of the

obtained labeled product (Rabe et al., 2016b), demonstrating reprotonation from the Si face of C6.

The 1,2-hydride shift from cation 1 to cation two was followed with (3-13C,2-2H)FDP

(Klapschinski et al., 2016), resulting in a triplet for C4 of discoidol that demonstrated a direct
13C-2H bond (Figure 1—figure supplement 3). Finally, the stereochemical fate of the terminal gemi-

nal methyl groups of FDP was followed with (12-13C)FDP and (13-13C)FDP (Rabe et al., 2015), show-

ing a stereospecific incorporation of labeling into discoidol (Figure 1—figure supplement 4).
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Figure 1. Structure elucidation of DdTPS8 product and biosynthetic mechanism. (A) Structure of discoidol. (B)

Contiguous spin systems indicated by bold lines observed in discoidol by 1H,1H-COSY NMR, single headed

arrows indicate diagnostic HMBC correlations. (C) important NOESY correlations that are indicated by double

headed arrows observed in discoidol. (D) biosynthetic mechanism from farnesyl diphosphate (FDP) to discoidol

catalyzed by DdTPS8. See also Figure 1—figure supplements 1–4.

DOI: https://doi.org/10.7554/eLife.44352.002

The following figure supplements are available for figure 1:

Figure supplement 1. Determination of the absolute configuration of discoidol.

DOI: https://doi.org/10.7554/eLife.44352.003

Figure supplement 2. Investigation of the reprotonation step in the cyclization mechanism of discoidol.

DOI: https://doi.org/10.7554/eLife.44352.004

Figure supplement 3. Investigation of the 1,2-hydride migration by incubation of (3–13C,2–2H)FDP with DdTPS8.

DOI: https://doi.org/10.7554/eLife.44352.005

Figure supplement 4. Incubation experiments with (12–13C)FDP and (13–13C)FDP and DdTPS8.

DOI: https://doi.org/10.7554/eLife.44352.006
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A DdTPS8 knockout mutant of D. discoideum lacks discoidol and a
putative discoidol metabolite
The absence of the DdTPS8 product discoidol in D. discoideum culture coupled with the high level

of expression of the corresponding gene, suggested that discoidol is produced but further modified

in vivo. If this hypothesis holds true, the disruption of discoidol biosynthesis would abolish the bio-

synthesis of the modified product as well. Therefore, we analyzed a D. discoideum mutant in which

DdTPS8 was disrupted by an insertion of a blasticidin resistance cassette between nucleotides 544

and 545 of the DdTPS8 open reading frame (Figure 2A), which was verified by sequencing (Fig-

ure 2—figure supplement 1). The DdTPS8 mutant was next allowed to develop until the culmina-

tion stage of multicellular development (the ultimate stage in fruiting body formation when the

expression of DdTPS8 is the highest) and subjected to headspace chemical profiling. In comparison
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Figure 2. DdTPS8 insertional mutant and its volatile profile. (A) Schematic presentation of DdTPS8 gene with an insert of 1.6 kb. (B) Volatiles were

collected from the headspace of the cultures and analyzed using GC-MS. Total ion chromatograms are shown. 1, unknown compound; 2, unidentified

compound; 3, unidentified sesquiterpene hydrocarbon; 4, unidentified compound; 5, b-maaliene; 6, aristolene; 7, calarene; 8–10, unidentified

sesquiterpene hydrocarbons; 11, nerolidol. See also Figure 2—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.44352.007

The following figure supplement is available for figure 2:

Figure supplement 1. Verification of DdTPS8 insertion mutant.

DOI: https://doi.org/10.7554/eLife.44352.008
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to the wild type, the DdTPS8 mutant lacked a major peak (peak one in Figure 2B) whose structure

was unknown. This unknown compound appeared to have a molecular mass of 162, consistent with

the mass of a degraded sesquiterpene that had lost a fragment containing three carbon atoms and

one oxygen atom. Based on these findings, we hypothesized that the unknown compound is a puta-

tive C12 trisnorsesquiterpene derived from discoidol through C-C bond cleavage.

The CYP family of D. discoideum: identification and coexpression
analysis with DdTPS8
Among the diverse reactions catalyzed by CYPs with terpenes as substrates are oxidative degrada-

tions (Stanjek et al., 1999; Irmler et al., 2000; Larbat et al., 2009; Lee et al., 2010). This led us to

hypothesize that the cleavage of discoidol to form the unknown compound is catalyzed by a CYP.

Analysis of the D. discoideum genome led to the identification of a total of 54 putative CYP genes.

Among them, 41 were annotated as full-length intact genes whereas the rest were pseudogenes or

partial genes (Supplementary file 2). The 41 full-length genes were assigned to 17 families and 34

subfamilies (Supplementary file 2).

Coexpression analysis of TPS genes and CYP genes has been a useful tool to identify candidate

CYPs that catalyze the modification of TPS products (e.g. Ginglinger et al., 2013). Thus we per-

formed coexpression analysis of CYP genes with DdTPS8 in D. discoideum based on their expression

patterns during the 24 hr of multicellular development that consists of several stages: vegetative

growth, streaming, loose aggregate, mound, Mexican hat, and fruiting body (Figure 3A). Gene

expression data of CYP genes and DdTPS8 were obtained from dictyExpress (http://dictyexpress.

biolab.si) (Parikh et al., 2010) and used to calculate Pearson correlation coefficients (r) between indi-

vidual CYP genes and DdTPS8. Among the 41 CYP genes, three showed significant correlation coef-

ficients with DdTPS8 exhibiting a P value lower than 0.001 (Supplementary file 3): CYP521A1

(r = 0.994), CYP508C1 (r = 0.992) and CYP519C1 (r = 0.951). These three CYP genes, like DdTPS8,

showed a maximal level of expression at 16 hr during multicellular development (Figure 3A). Exami-

nation of gene expression during development revealed that the transcripts of both DdTPS8 and

CYP521A1 were nearly undetectable in vegetatively growing cells. Small amounts of transcripts

accumulated between 4–8 hr of development, continued to accumulate until they peaked at 16 hr,

and declined thereafter (Figure 3A). We also noticed that the top candidate CYP521A1 is located

685 bp away from DdTPS8 in a head-to-head configuration on chromosome 6 (Figure 3B), suggest-

ing a possibility that DdTPS8 and CYP521A1 form a biosynthetic cluster.

CYP521A1 catalyzes the oxidative degradation of discoidol to form the
novel trisnorsesquiterpene discodiene
In our first attempts to characterize the enzymatic activity of CYP521A1, we expressed it together

with yeast or Arabidopsis P450 reductases in Saccharomyces cerevisiae and incubated the resulting

microsome preparations with discoidol. However, no enzymatic activity was detected. Assays con-

taining yeast microsomes, recombinant DdTPS8 produced in Escherichia coli, and (E,E)-FDP showed

no activity either. The lack of activity could be due to the incompatibility of the P450 reductase from

a plant (Arabidopsis) or a fungus (yeast) with a CYP from D. discoideum. As such, we turned to a

P450 reductase from D. discoideum. Among the three P450 reductase genes, redA, redB and redC,

of D. discoideum, redB showed an expression pattern (Gonzalez-Kristeller et al., 2008) similar to

that of DdTPS8 and CYP521A1. Thus, we selected redB for our assays. The open reading frames of

CYP521A1 and redB were inserted into the vector pRSFDuet�1, which allows their coexpression in

E. coli. The resulting constructs, together with another expression vector carrying the complete

open reading frame of DdTPS8, were both introduced into E. coli Bl21 (DE3)-Star. Assuming that the

intrinsic FDP pool of E. coli is sufficient to provide substrate for DdTPS8, we analyzed potential ter-

pene accumulation in the headspace of the resulting E. coli culture (Figure 4A). Indeed, GC-MS

analysis confirmed the formation of both discoidol with a molecular mass of m/z = 222 (Figure 4B)

and the unknown terpenoid with a molecular mass of m/z = 162 (Figure 4C). E. coli cells harboring

DdTPS8, redB, and CYP508C1, another P450 gene highly coexpressed with DdTPS8, produced only

discoidol and no further terpenoids (Figure 4A). When CYP521A1 and redB were expressed in the

absence of DdTPS8, no terpene formation was observed. To test the enzyme activities in a cell-free

system, a crude protein extract made from E. coli expressing CYP521A1, redB, and DdTPS8 was
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incubated with (E,E)-FDP and NADPH. Although product formation was rather low, we were able to

detect discoidol and the P450 metabolite with m/z = 162 in the headspace of the assay (Figure 4—

figure supplement 1).

Production of the unknown P450 oxidation product in all of the assays tested was too low for

NMR analysis. However, the molecular ion at m/z = 162 in the EI mass spectrum (Figure 5A),

pointed to a degradation of discoidol with loss of a fragment representing a molecular weight of 60

Da. The same reaction with completely labeled (13C15)discoidol, obtained from (13C15)FDP

(Rabe et al., 2015) with discoidol synthase, produced a degradation product with incorporation of

twelve 13C atoms (Figure 5B), demonstrating that the degradation product is a trisnorsesquiterpene.

Furthermore, the fragment ion at m/z = 59 observed in the mass spectrum of discoidol (indicative of

its 1-hydroxy-1-methylethyl group) was missing, suggesting that the degradation may have affected

this portion of the molecule. There are two plausible hypotheses for the reaction catalyzed by

CYP521A1 that would be consistent with the observed mass spectrum of the trisnorsesquiterpene

(Figure 5—figure supplement 1). The reactive iron-oxo species of the cytochrome P450 could initi-

ate the degradation reaction by hydrogen abstraction from the carbon originating from C-9 of FPP

with formation of a stabilized allyl radical or from C-1 of FDP leading to a less stable radical (Fig-

ure 5—figure supplement 1). The radical intermediate then can react in the oxygen rebound by the

cleavage of acetone and formation of water, resulting in different C = C double bond positions in

the C12H18 product. To confirm the loss of the 1-hydroxy-1-methylethyl group and to distinguish

between the alternative products, an incubation experiment with (11-13C,1,1-2H2)FDP (Rinkel et al.,

B 

A 
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DdTPS8 CYP521A1 

Figure 3. Cytochrome P450 (CYP) genes associated with DdTPS8. (A) Expression pattern of three CYP genes that

showed highest level of coexpression coefficient with DdTPS8. The cartoons show the six stages of multicellular

development of D. discoideum: individual cells (0 hr), streaming (8 hr), loose aggregate (10 hr), slug (16 hr),

Mexican hat (20 hr) and fruiting bodies (24 hr). (B) DdTPS8 and CYP521A1 are neighbor genes. The number above

the black line indicates the length of the intergenic region in base pairs.

DOI: https://doi.org/10.7554/eLife.44352.009
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2016) was performed (Figure 5—figure supplement 1). This substrate was converted into

(11-13C,6,6-2H2)�1 by the discoidol synthase and degraded by CYP521A1 into a product with a

mass spectrum showing the loss of the 13C label from the 1-hydroxy-1-methylethyl group

(Figure 5C), but retaining both deuterium atoms (Figure 5D). This result is consistent with the mech-

anism that leads to a product with a conjugated double bond system, but not with the mechanism

that would result in a product with the non-conjugated double bonds (Figure 5—figure supplement

1). The tentatively identified compound is a new natural product for which we propose the name dis-

codiene. A full structure elucidation of discodiene by NMR spectroscopy was not possible, because

of the poor conversion of discoidol by CYP521A1. Future structure elucidation may be possible by

synthesis of a reference compound.

The DdTPS8 knockout mutant of D. discoideum displayed delayed
multicellular development
To examine the biological function of discodiene, cells of the DdTPS8 mutant strain and the wild

type parental AX4 strain were grown separately in HL5 medium. They were then starved, deposited

on black nitrocellulose filters, and allowed to develop and their morphologies were compared. Com-

paring their morphologies, the mutant and the wild type developed well on black filters for the first
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See also Figure 4—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.44352.010

The following figure supplement is available for figure 4:

Figure supplement 1. Activity of DdTPS8 and CYP521A1 in cell-free enzyme assays in the presence of (E,E)-FDP.

DOI: https://doi.org/10.7554/eLife.44352.011
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few hours and there were no differences between them. However, a difference was observed after

16 hr of starvation: the multicellular development of the mutant was delayed compared to the wild

type (Figure 6). At this time point, the wild type cells formed fingers, whereas the mutant was mainly

at the tipped aggregate stage. At 20 hr (Figure 6), the wild type began to transition from fingers

into so-called ‘Mexican hats’, so a mix of the two stages was observed, while the mutant was

delayed at the finger stage. It is also worthwhile noting that the mutant fingers were slightly
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Figure 5. Mass spectra (A–C) and structures (D) of DdTPS8 products and CYP521A1 products derived from unlabeled farnesyl diphosphate (FDP) (A),

13C15-FDP (B), and 1,1–2 H2,11–13C-FDP (C + D). The genes were coexpressed in E. coli Bl21-DE3-Star together with the P450 reductase gene RedB.

Crude protein extracts were incubated with unlabeled or labeled (E,E)-FDP and volatile enzyme products were collected from the headspace of the

assays using PDMS tubes. Product analysis was performed with GC-TDU-MS. See also Figure 5—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.44352.012

The following figure supplement is available for figure 5:

Figure supplement 1. Formation of discodiene by CYP521A1.

DOI: https://doi.org/10.7554/eLife.44352.013
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elongated and narrower compared to the wild type. At 24 hr, the wild type began entering the cul-

mination stage, which involves complex cell movements to form a ball of spores carried on top of a

cellular stalk. However, the mutant was still mostly at the finger stage with some Mexican hats visible

(Figure 6). Eventually, both the wild type and the mutant developed into well-proportioned fruiting

bodies, with stalks and spores, and they were largely indistinguishable (Figure 6, 54h). Spore forma-

tion and germination were also compared but no differences were observed between the wild type

and the DdTPS8 mutant. These data suggest that DdTPS8 has a function during later stages of

)* +$,-.,

/(0

120

130

430

Figure 6. Developmental phenotype of the DdTPS8 knockout mutant. Wild type AX4 cells (WT) and mutant DdTPS8 cells (mutant) were grown

separately in HL5 to the log phase, washed in buffer, and plated clonally on dark nitrocellulose filters. The filters were cut in half and placed next to

each other in one dish. The cells were incubated in the dark at 22˚C and photographed from above with a dissecting microscope at the indicated times.

This experiment was independently performed three times with same results and the data shown represent one of the replicates.

DOI: https://doi.org/10.7554/eLife.44352.014
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multicellular development in D. discoideum, during the transition from fingers to Mexican hats,

which is consistent with its temporal expression pattern (Figure 3A).

Other putative TPS-CYP gene clusters in D. discoideum and D.
purpureum
Following the functional validation of the DdTPS8-CYP521A1 gene cluster, we examined other mem-

bers of the TPS and CYP families in D. discoideum and identified two additional putative TPS-CYP

gene clusters (Figure 7A). DdTPS2 is organized in a head-to-head fashion with CYP519C1 and the

two are separated by an intergenic region of 580 bp. Interestingly, the opposite side of CYP519C1

is adjacent to DpTPS11, which encodes a predicted partial terpene synthase (Chen et al., 2016).

DdTPS3 also appear to be part of a gene cluster that contains two CYP genes. The immediate neigh-

bor of DdTPS3 is a partial CYP gene CYP515A2_ps. Nevertheless, in a distance of 3148 bp from the

start codon of DdTPS3 there is an intact CYP512A1 gene, which is arranged in a tail-to-head fashion

with DdTPS3.

As mentioned earlier, D. purpureum is related to D. discoideum and its TPS family has been com-

prehensively characterized in our recent study (Chen et al., 2018). For comparison, we also analyzed

the CYP family in D. purpureum and searched for putative TPS-CYP clusters in this species. We

found a total of 54 putative CYP genes (Supplementary file 4). Among them, 47 were annotated as

full-length intact genes whereas the remaining are partial genes. The 47 full-length genes were

assigned to 12 families and 29 subfamilies. By examining the physical locations of TPS and CYP

genes, two putative TPS-CYP clusters were identified in D. purpureum: DpTPS5 is linked to

CYP5121A1_Dp with an intergenic region of 612 bp and DdTPS12 is linked to CYP919E1_Dp with

an intergenic region of 900 bp (Figure 7B). In the former cluster, DdTPS5 is in a tandem repeat with

DdTPS4.

Discussion
In this study, we identified and characterized a terpene synthase (DdTPS8)-cytochrome P450

(CYP521A1) gene cluster in the social amoeba D. discoideum (Figure 3) that encodes two enzymes

catalyzing consecutive reactions to form the novel trisnorsesquiterpene discodiene (Figure 4, Fig-

ure 5). We also present evidence that the biosynthesis of discodiene has an effect on multicellular

development of D. discoideum (Figure 6). The successful determination of CYP521A1 as discodiene

synthase relied on a number of lines of evidence. First, it was clear that the sesquiterpene product of

DdTPS8, discoidol (Figure 1), does not accumulate (Figure 2) and thus must be further modified
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Figure 7. TPS-CYP gene clusters in D. discoideum (A) and D. purpureum (B). Green blocks depict TPS genes, red

blocks indicate CYP genes. The blue block indicates a non-TPS/CYP gene. The numbers above the black lines

indicate length in base pairs.
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after formation. Second, chemical profiling of the DdTPS8 knockout mutant of D. discoideum in

comparison to the wild type suggested that discoidol is converted into a degradation product (Fig-

ure 2). Third, coexpression analysis and colocalization in the genome implicated CYP521A1 as the

top candidate that acts downstream of DdTPS8 (Figure 3). Fourth, enzyme assays confirmed that

cytochrome CYP521A1 converts discoidol into a trisnorsesquiterpene that was tentatively identified

by an isotopic labeling strategy as discodiene (Figure 5), the same compound that is produced by

the wild type D. discoideum but not the DdTPS8 mutant (Figure 2).

DdTPS8 is a microbial terpene synthase that shares many mechanistic features of other typical

plant terpene synthases, such as a protonation-induced cyclization of a neutral intermediate, a 1,2-

hydride shift and a methyl group migration (Degenhardt et al., 2009). DdTPS8 catalyzes the forma-

tion of a new sesquiterpene alcohol, discoidol (Figure 1). It is interesting to note that the most

closely related terpene synthase in D. discoideum, DdTPS4, also forms a sesquiterpene alcohol

(Chen et al., 2016). However, the product of DdTPS4, (E)-nerolidol, is an acyclic compound in con-

trast to the cyclic product of DdTPS8. Based on evolutionary relatedness, the encoding genes can

be inferred to have arisen from a gene duplication event. It will be interesting to determine the

mechanism underlying the functional divergence of DdTPS4 and DdTPS8 in forming acyclic and

cyclic sesquiterpene alcohols, respectively. It is also interesting to note that a stereoisomer of discoi-

dol known as jinkoh-eremol has been previously isolated from an agarwood (Aquilaria sp.), a eudico-

tyledon flowering plant (Nakanishi et al., 1983). Since the biosynthesis of jinkoh-eremol in

agarwood is most likely catalyzed by typical plant terpene synthases, which are only distantly related

to the microbial type terpene synthases that include D. discoideum TPSs (Jia et al., 2016), conver-

gent evolution has occurred in D. discoideum and plants for the biosynthesis of similar terpenes.

Such convergence has been previously reported, as in the recent discovery that the fungal diterpene

phomopsene is the product of a bacterial terpene synthase (Lauterbach et al., 2018). However, bac-

terial terpene synthases are frequently observed to make the opposite enantiomers of terpenes

found in plants (Rabe et al., 2016a), which clearly points to different evolutionary origins in these

cases.

Discodiene, the degradation product of discoidol, is a novel trisnorsesquiterpene natural product.

Another important member of this group is geosmin, a particularly widespread compound in soil

microorganisms that exhibits the smell of earth. While it was initially speculated that geosmin may

be formed by oxidation of a terpene synthase product (Spiteller et al., 2002; Cane and Watt,

2003), it became later evident from feeding experiments (Dickschat et al., 2005) and characteriza-

tion of the enzyme (Jiang et al., 2007) that a bifunctional terpene synthase catalyzes the formation

of this compound involving initial cyclization to an enantiomer of hedycaryol followed by a second

cyclization and oxidative cleavage of a 1-hydroxy-1-methylethyl unit. Trisnorsesquiterpenes with loss

of the same 1-hydroxy-1-methylethyl unit as in discodiene have been reported from the myxobacte-

rium Chondromyces crocatus (Schulz et al., 2004) and from streptomycetes (Citron et al., 2012),

but the enzymology and mechanism of their formation are unclear. Oxidative dealkylations such as

the reaction catalyzed by CYP521A1 converting discoidol into discodiene are known from a few

other cytochrome P450s, including angelicin synthase (CYP71AJ4) from Ammi majus (Larbat et al.,

2009), secologanin synthase (CYP72A1) from Catharanthus roseus (Irmler et al., 2000), DMNT/

TMTT synthase (CYP82G1) from Arabidopsis (Lee et al., 2010), and the degradation of (+)-marmesin

to psoralene by the psoralene synthase (Stanjek et al., 1999). All these enzymes are derived from

plants, belonging to different CYP families. The fact that D. discoideum and plants belong to differ-

ent kingdoms suggests convergent evolution of CYPs for catalyzing oxidative cleavage reactions.

D. discoideum morphogenesis is a tightly regulated developmental process that begins with the

aggregation of individual cells into a mound of approximately 50,000 cells and ends with the forma-

tion of a fruiting body that consists of spores and a stalk (Kessin, 2001). The culmination stage,

which is marked by the onset of stalk formation, occurs at the end of development, between 16 and

24 hr after the process begins. The DdTPS8 knockout mutant exhibited delayed development at the

culmination stage (Figure 6), around the same time that DdTPS8 and CYP521A1 exhibited their

maximal level of expression, suggesting a potential role of discodiene in regulating D. discoideum

development. A number of metabolites have been demonstrated to regulate Dictyostelium develop-

ment, such as the polyketides DIF-1 (Thompson and Kay, 2000) and 4-methyl-5-pentylbenzene-1,3-

diol (Anjard et al., 2011), gamma-aminobutyric acid, the nucleotide cyclic diguanylate, the cytokinin

discadenine and an unidentified steroid (Loomis, 2014; Schaap, 2016). One major difference
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between discodiene and these metabolites is that discodiene is a volatile. Since disrupting DdTPS8

did not fully block the development of D. discoideum, discodiene might be merely a component of

the volatile bouquet needed for development. It is also possible that discodiene may not control

developmental programs directly, but rather influence them indirectly by acting as an ‘aggregation/

culmination pheromone’ as already speculated for volatile terpenoids in D. discoideum (Chen et al.,

2016).

The organization of terpenes synthase genes and CYP genes involved in the same biochemical

pathway as metabolic gene clusters has been documented in a growing number of cases including

bacteria (Nett et al., 2017), fungi (Quin et al., 2014), and plants (Boutanaev et al., 2015). Our find-

ings add the Dictyostelium social amoebae to this list. With only 9 TPS genes in D. discoideum, it is

unlikely that the clustering of with CYP genes (Figure 3B and Figure 7A) is accidental. It is equally

intriguing to observe that D. purpureum contains two TPS-CYP clusters (Figure 7B). With the evolu-

tionary relationship of TPS genes from D. discoideum and D. purpureum recently determined

(Chen et al., 2018), we are able to examine the relatedness of these TPS-CYP gene clusters. The

ortholog of DdTPS8 in D. purpureum is DpTPS6 (Chen et al., 2018), which is not clustered with any

CYP gene. Moreover, D. purpureum lacks an ortholog of CYP521A1, implying that the D. purpureum

may not produce discodiene, consist with the volatile profiling of this species (Chen et al., 2018).

DdTPS2-CYP519C1 and DpTPS2-CYP919E1_Dp appear to be species-specific. In contrast, DdTPS3-

CYP515A1 and DpTPS5-CYP515A1_Dp are an orthologous pair based on the orthology of the

respective TPS genes (DdTPS3 and DpTPS5) (Chen et al., 2018) and CYP genes (CYP515A1 and

CYP515A1-Dp are in the same subfamily). Taken together, these TPS-CYP clusters suggest the bio-

synthesis of both shared as well as species-specific terpenoids in D. discoideum and D. purpureum.

Besides terpenoids, dictyostelid social amoebae produces many other types of natural products

(Barnett and Stallforth, 2018), including polyketides. Polyketide synthases (PKSs) are pivotal

enzymes for polyketide biosynthesis (Khosla, 2009) and the production of some polyketides involves

CYPs (e.g., Bedewitz et al., 2018). The D. discoideum genome contains 40 PKS genes

(Zucko et al., 2007). With the demonstration of the DdTPS8-CYP521A1 cluster catalyzing consecu-

tive reactions to produce a novel natural product, the potential for generating chemical diversity of

natural products in D. discoideum using the building blocks derived from 9 TPSs, 41 CYPs and 40

PKSs is enormous, which can be envisioned to be a fruitful future research direction. It would be

interesting to know what functions these natural products have, especially in chemical communica-

tions between the organism and its environment.

Materials and methods

Strains of D. discoideum and mutant analysis
The wild type AX4 strain of D. discoideum (DBS0237637) was obtained from the Dictybase Stock

Center (http://dictybase.org/). The DdTPS8 mutant was obtained from the gridded collection of the

Genome Wide Dictyostelium Insertion (GWDI) Project (https://remi-seq.org). The mutant stain was

cultured clonally and the genotype was verified by diagnostic PCR with insertion (Blasticidin resis-

tance gene) specific and gene specific primers (Supplementary file 5), followed by characterization

with gene-insert specific primers to verify the location of the insertion. To characterize the develop-

mental progression of the mutant, we grew both wild type (AX4) and DdTPS8 mutant in HL5 liquid

medium to the mid-log growth phase. We then collected the cells by centrifugation, washed them

and deposited them on black nitrocellulose filters (Shaulsky and Loomis, 1993). We examined

developmental morphology and photographed the structures from above using a dissecting micro-

scope. This experiment was repeated three times.

Headspace collection and GC-MS analysis
Culturing of the wild type AX4 and the DdTPS8 mutant strain of D. discoideum, headspace collec-

tion and chemical identification using GC-MS were performed as previously reported (Chen et al.,

2016) with three biological replicates.
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CYP gene search and gene co-expression analysis
Proteome sequences of D. discoideum and D. purpureum were downloaded from Dictybase (http://

dictybase.org) and were used as dataset for identifying CYP genes. A HMM model of P450 gene

family (PF00067) downloaded from Pfam 31.0 (http://pfam.xfam.org) was used to search putative

p450 genes against the downloaded protein dataset using HMMER 3.1b two with an e-value cutoff

of 1e�2. CYPs were blast searched against named CYPs from all protists. Sequences were sorted

based on best blast hit percent ID and named based on the Standardized Cytochrome P450 nomen-

clature rules (Nelson et al., 1996).

Expression data of CYP genes in D. discoideum during its 24 hr developmental program were

obtained from online web-interface program DictyExpress (https://dictyexpress.research.bcm.edu).

Pearson correlation coefficients (PCCs) between the expression of DdTPS8 and that of CYP genes of

D. discoideum were calculated using IBM SPSS (v.25, https://www.ibm.com).

Cloning of two CYP genes, redB gene and vector construction
Full-length cDNAs for two CYP genes, CYP521A1 and CYP508C1, and one cytochrome p450 reduc-

tase gene (DDB_G0269912, known as redB) were cloning by RT-PCR. Approximately 0.1 g tissue of

D. discoideum at the culmination stage was collected and disrupted by TissueLyser II (https://www.

qiagen.com). Total RNA was isolated using RNeasy Plant Mini Kit (https://www.qiagen.com) and

converted to cDNAs using the First strand cDNA synthesis kit (https://www.gelifesciences.com). Full-

length cDNAs for each of the three genes were amplified by PCR using gene-specific primers

(Supplementary file 5), cloned into pGEM-T Easy vector (https://www.promega.com), and fully

sequenced. Next, the redB gene was added with the NdeI and KpnI restriction sites using PCR and

ligated into the NdeI and KpnI site of the second MSC of the vector pRSFDuet1 (http://www.emd-

millipore.com) to produce pRSFDuet1::redB. Then CYP521A1 and CYP508C1 were cloned into the

BamH1 and PstI sites of the first MSC of pRSFDuet1::redB to produce two plasmids pRSFDuet1::

CYP521A1::redB and pRSFDuet1:: CYP508C1::redB.

DdTPS8 protein purification and product isolation
A full-length cDNA for DdTPS8 was cloned into the pET32a vector. E. coli BL 21 harboring

pET32a_DdTPS8 was inoculated in a LB liquid preculture containing ampicillin (50 mg/L). For protein

isolation the preculture was used to inoculate large scale 2YT liquid cultures (8 � 1 L) containing

ampicillin (50 mg/L). Cells were grown to an OD600 = 0.4 at 37˚C and 160 rpm, followed by cooling

of the cultures to 18˚C. IPTG (0.4 mM) was added and the culture was further incubated at 18˚C and

160 rpm over night. Cells were harvested by centrifugation at 4˚C and 3600 rpm for 30 min. The

supernatant was discarded and the cell pellet was resuspended in 80 mL binding buffer (20 mM

Na2HPO4, 0.5 M NaCl, 20 mM imidazole, 1 mM MgCl2, pH 7.0). Cell disruption was done by ultra-son-

ication on ice for 8 � 60 s. The cell debris was removed by repeated centrifugation (2 � 10 min) at

4˚C and 11000 rpm to yield the soluble enzyme fractions. Protein purification was performed by

Ni2+-NTA affinity chromatography with Ni2+-NTA superflow (Qiagen) using binding buffer (4 � 20

mL; 20 mM Na2HPO4, 0.5 M NaCl, 20 mM imidazole, 1 mM MgCl2, pH 7.0) and elution buffer (4 � 20

mL; 20 mM Na2HPO4, 0.5 M NaCl, 20 mM imidazole, 1 mM MgCl2, pH 7.0). The enzyme fractions

were used for enzyme reactions with the natural substrate FDP (50 mg, final concentration c = 0.2

mg/mL). The incubation experiment was performed at 28˚C for 3 hr and was extracted three times

with hexane. The combined organic layers were dried over MgSO4 and concentrated under reduced

pressure. Column chromatography on silica gel (pentane: diethyl ether 5:1) yielded the terpene alco-

hol (5.0 mg) as colorless oil.

E. coli expression and headspace analysis
The two plasmids pEXP5-CT/TOPO::DdTPS8 and pRSFDuet1:: CYP:: redB were cotransformed into

E. coli Bl21. The resultant strain was cultured overnight and then induced for protein expression by

adding isopropyl b-D-1-thiogalactopyranoside. Volatiles emitted from the E. coli culture were col-

lected by solid phase microextraction for 1 hr, and analyzed by GC-MS. Protein expression and

headspace collections were repeated three times.
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Enzyme reactions with isotopically labeled substrates
Incubation experiments with DdTPS8 and labeled substrates were performed with the pure protein

fractions obtained from 300 mL E. coli BL 21 pET32a_DdTPS8 liquid culture as reported above. All

incubation experiments were done with the isotopically labeled substrate (0.6–1 mg, c = 0.1 mg/mL)

at 28˚C for 3 hr. The reaction mixtures were extracted with benzene-d6 (0.8 mL), the organic layers

were separated and directly analyzed by GC/MS and NMR. For the determination of the absolute

configuration of the DdTPS8 product (R)-(1-13C,1-2H) and (S)-(1-13C,1-2H)geranyl diphosphate (each

0.8 mg) were elongated with FDP synthase and isopentenyl diphosphate (0.5 mg) in the same reac-

tion vessel and extracted after 3 hr incubation at 28˚C.
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Larbat R, Hehn A, Hans J, Schneider S, Jugdé H, Schneider B, Matern U, Bourgaud F. 2009. Isolation and
functional characterization of CYP71AJ4 encoding for the first P450 monooxygenase of angular furanocoumarin
biosynthesis. Journal of Biological Chemistry 284:4776–4785. DOI: https://doi.org/10.1074/jbc.M807351200,
PMID: 19098286

Lauterbach L, Rinkel J, Dickschat JS. 2018. Two bacterial diterpene synthases from Allokutzneria albata produce
bonnadiene, phomopsene, and allokutznerene. Angewandte Chemie International Edition 57:8280–8283.
DOI: https://doi.org/10.1002/anie.201803800, PMID: 29758116

Lee S, Badieyan S, Bevan DR, Herde M, Gatz C, Tholl D. 2010. Herbivore-induced and floral homoterpene
volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. PNAS 107:21205–21210.
DOI: https://doi.org/10.1073/pnas.1009975107, PMID: 21088219

Loomis WF. 2014. Cell signaling during development of Dictyostelium. Developmental Biology 391:1–16.
DOI: https://doi.org/10.1016/j.ydbio.2014.04.001, PMID: 24726820

Nakanishi T, Yamagata E, Yoneda K, Miura I, Mori H. 1983. Jinkoh-eremol and jinkohol II, two new sesquiterpene
alcohols from agarwood. Journal of the Chemical Society, Perkin Transactions 1 1:601–604. DOI: https://doi.
org/10.1039/p19830000601

Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon
MJ, Estabrook RW, Gunsalus IC, Nebert DW. 1996. P450 superfamily: update on new sequences, gene
mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42. DOI: https://doi.org/10.1097/
00008571-199602000-00002, PMID: 8845856

Nett RS, Montanares M, Marcassa A, Lu X, Nagel R, Charles TC, Hedden P, Rojas MC, Peters RJ. 2017.
Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nature Chemical Biology 13:
69–74. DOI: https://doi.org/10.1038/nchembio.2232, PMID: 27842068

Chen et al. eLife 2019;8:e44352. DOI: https://doi.org/10.7554/eLife.44352 16 of 17

Research article Biochemistry and Chemical Biology

https://doi.org/10.1002/cbic.201100641
http://www.ncbi.nlm.nih.gov/pubmed/22213220
https://doi.org/10.1146/annurev.pharmtox.45.120403.100030
http://www.ncbi.nlm.nih.gov/pubmed/15832443
https://doi.org/10.1016/j.phytochem.2009.07.030
https://doi.org/10.1016/j.phytochem.2009.07.030
http://www.ncbi.nlm.nih.gov/pubmed/19793600
https://doi.org/10.1021/jo050449g
http://www.ncbi.nlm.nih.gov/pubmed/15960521
https://doi.org/10.1039/C5NP00102A
https://doi.org/10.1039/C5NP00102A
http://www.ncbi.nlm.nih.gov/pubmed/26563452
https://doi.org/10.1105/tpc.113.117382
http://www.ncbi.nlm.nih.gov/pubmed/24285789
https://doi.org/10.1186/1471-213X-8-8
http://www.ncbi.nlm.nih.gov/pubmed/18218133
https://doi.org/10.1098/rstb.2012.0426
https://doi.org/10.1098/rstb.2012.0426
https://doi.org/10.1046/j.1365-313x.2000.00922.x
https://doi.org/10.1046/j.1365-313x.2000.00922.x
http://www.ncbi.nlm.nih.gov/pubmed/11135113
https://doi.org/10.1073/pnas.1607973113
http://www.ncbi.nlm.nih.gov/pubmed/27791023
https://doi.org/10.1038/nchembio.2007.29
http://www.ncbi.nlm.nih.gov/pubmed/17873868
https://doi.org/10.1038/nrmicro1286
http://www.ncbi.nlm.nih.gov/pubmed/16322742
https://doi.org/10.1021/jo9012089
http://www.ncbi.nlm.nih.gov/pubmed/19711990
https://doi.org/10.1002/anie.201605425
https://doi.org/10.1002/anie.201605425
http://www.ncbi.nlm.nih.gov/pubmed/27403888
https://doi.org/10.1074/jbc.M807351200
http://www.ncbi.nlm.nih.gov/pubmed/19098286
https://doi.org/10.1002/anie.201803800
http://www.ncbi.nlm.nih.gov/pubmed/29758116
https://doi.org/10.1073/pnas.1009975107
http://www.ncbi.nlm.nih.gov/pubmed/21088219
https://doi.org/10.1016/j.ydbio.2014.04.001
http://www.ncbi.nlm.nih.gov/pubmed/24726820
https://doi.org/10.1039/p19830000601
https://doi.org/10.1039/p19830000601
https://doi.org/10.1097/00008571-199602000-00002
https://doi.org/10.1097/00008571-199602000-00002
http://www.ncbi.nlm.nih.gov/pubmed/8845856
https://doi.org/10.1038/nchembio.2232
http://www.ncbi.nlm.nih.gov/pubmed/27842068
https://doi.org/10.7554/eLife.44352


Parikh A, Miranda ER, Katoh-Kurasawa M, Fuller D, Rot G, Zagar L, Curk T, Sucgang R, Chen R, Zupan B, Loomis
WF, Kuspa A, Shaulsky G. 2010. Conserved developmental transcriptomes in evolutionarily divergent species.
Genome Biology 11:R35. DOI: https://doi.org/10.1186/gb-2010-11-3-r35, PMID: 20236529

Quin MB, Flynn CM, Schmidt-Dannert C. 2014. Traversing the fungal terpenome. Natural Product Reports 31:
1449–1473. DOI: https://doi.org/10.1039/C4NP00075G, PMID: 25171145

Rabe P, Barra L, Rinkel J, Riclea R, Citron CA, Klapschinski TA, Janusko A, Dickschat JS. 2015. Conformational
analysis, thermal rearrangement, and EI-MS fragmentation mechanism of (1(10)E,4E,6S,7R)-germacradien-6-ol
by (13)C-labeling experiments. Angewandte Chemie International Edition 54:13448–13451. DOI: https://doi.
org/10.1002/anie.201507615, PMID: 26361082
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