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ARTIFICIAL INTELLIGENCE

Exploring the conformational 
diversity of proteins
An artificial intelligence- based method can predict distinct conforma-
tional states of membrane transporters and receptors.

AVNER SCHLESSINGER AND MASSIMILIANO BONOMI

The human body contains a vast number 
of different proteins that carry out distinct 
roles. Proteins are made up of combinations 

of 20 amino acids, each with different physico-
chemical properties. The number and sequence 
of amino acids in a protein determine how it will 
fold into the specific three- dimensional structure 
or shape that the protein needs to perform its 
role.

Several proteins, including membrane 
proteins, do not simply fold into a single confor-
mation. Instead, they need to be able to ‘flip’ 
between different conformations to do their 
job. Innovations in the experimental techniques 
used to determine protein structures – such as 
cryo- electron microscopy, nuclear magnetic reso-
nance spectroscopy or X- ray crystallography –
have provided valuable insights into the different 
conformations of many membrane proteins. 
However, these methods are costly and time 
consuming.

Using computational methods to predict the 
structures of proteins could allow scientists to fill 
the gap between protein sequence and structural 
knowledge, without having to rely on expensive 
experimental methods (Baker and Sali, 2001). 
Recently, an artificial intelligence- based method 

to predict protein structures, called AlphaFold2 
(AF2), has taken structural biology by storm 
(Jumper et al., 2021).

AF2 emerged as a valuable tool for predicting 
the structures of proteins from their sequences 
with an accuracy comparable to that obtained 
by experimental techniques at a fraction of their 
time and costs, as shown for various biological 
problems (Evans et  al., 2021; Mosalaganti 
et  al., 2021; Tunyasuvunakool et  al., 2021; 
McCoy et  al., 2022). Now, in eLife, Diego del 
Alamo, Davide Sala, Hassane Mchaourab and 
Jens Meiler report how AF2 can also predict 
different conformations of membrane proteins 
(Del Alamo et al., 2022).

To do so, the researchers – based at Vanderbilt 
University and Leipzig University – used a set of 
eight membrane proteins representing different 
structural classes and mechanisms of action. This 
included five unique transporters (LAT1, ZnT8, 
MCT1, STP10, and ASCT2), whose structures had 
been previously experimentally determined in 
both inward- and outward- facing conformations 
(Figure  1), and three representative G- protein- 
coupled receptors (CGRPR, PTH1R, and FZD7), 
whose structures had been solved experimen-
tally in active and inactive states. None of these 
proteins were part of the original AF2 training 
set, which included structures located in the 
Protein Data Bank (PDB).

The researchers then tested the ability of 
AF2 to model distinct conformational states by 
varying different parameters of the predictor, 
such as the number of models generated, and by 
using known structures of protein homologues as 
templates. One key feature of AF2 is its ability to 
generate a multiple sequence alignment (MSA) of 
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evolutionarily related sequences, which is critical 
for accurate modeling. These MSAs, which can 
include thousands of sequences, are used by AF2 
to identify residues that have co- evolved, thereby 
highlighting the contacts critical for defining the 
three- dimensional fold of the protein.

Remarkably, del Alamo et al. demonstrated 
that by reducing the size of the input MSA or 
alignment depth from 5,120 to as few as 16 
sequences, the conformational diversity explored 
by AF2 increased, thereby capturing the structures 
that were experimentally determined in different 
conformations. This procedure also generated 
misfolded or outlier models, which were identi-
fied by the lack of structural similarity to other 
models and excluded from further analysis. This 
provides an important step to distinguish struc-
tural models that represent biologically relevant 
states. Moreover, in some cases using templates 
as input increased the conformational diversity of 
the generated models when MSAs with reduced 
number of aligned sequences (shallow MSAs) 
were used. Taken together, these results suggest 
that minor modifications to the input parameters 
allow AF2 to explore a larger area of the confor-
mational space of proteins to capture distinct, 
biologically relevant states.

However, the analysis was performed on a rela-
tively small benchmark set of proteins, due to the 

limited number of membrane protein structures 
not included in the AF2 training set and resolved 
in multiple states. Furthermore, del Alamo et al. 
did not identify a one- size- fits- all protocol that 
could accurately model the conformational diver-
sity of all the membrane proteins in their bench-
mark set. A more generalized approach would 
be useful to study a larger variety of proteins 
that adopt different conformations, including 
enzymes and transcription factors. Finally, given 
the significant role of membrane proteins as drug 
targets, it will be crucial to assess whether the 
models generated with the proposed approach 
can be used for rational drug design, which typi-
cally requires accurate modeling of the protein’s 
amino acid sidechains.

In conclusion, the work by del Alamo et al. 
extends the scope of AF2 beyond structure 
prediction of a single state to the exploration 
of the conformational diversity of proteins. Even 
though determining the populations of alterna-
tive conformations and the interconversion path-
ways between them still appears to be out of 
reach, this work represents a crucial step towards 
describing the dynamic nature of proteins with 
modern artificial intelligence- based structure 
predictors.

Figure 1. Conformational changes of the alanine- serine- cysteine transporter 2 (ASCT2). An artificial intelligence- 
based programme, called AF2, can predict the conformational diversity of membrane proteins, such as ASCT2, by 
modifying the depth of the input multiple sequence alignment. Shown are the cryo- electron microscopy structures 
of ASCT2 in conformations facing inside (blue) and outside of the cell (yellow). ASCT2 uses an elevator- type 
alternating access mechanism to transport molecules, which involves a change in the relative orientation of the 
scaffold (dark tones) and transport domains (light tones) of the protein.

Image credit: inward-facing structure, PDB 6RVX (Garaeva et al., 2019); outward-facing structure, PDB 7BCQ (Garibsingh et al., 2021) (CC BY 4.0).
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