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Abstract
We studymodel embeddability, which is a variation of the famous embedding problem
in probability theory, when apart from the requirement that the Markov matrix is the
matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the
model structure. We provide a characterisation of model embeddable Markov matri-
ces corresponding to symmetric group-based phylogenetic models. In particular, we
provide necessary and sufficient conditions in terms of the eigenvalues of symmetric
group-based matrices. To showcase our main result on model embeddability, we pro-
vide an application to hachimoji models, which are eight-state models for synthetic
DNA. Moreover, our main result on model embeddability enables us to compute the
volume of the set of model embeddable Markov matrices relative to the volume of
other relevant sets of Markov matrices within the model.
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1 Introduction

The embedding problem for stochasticmatrices, also known asMarkovmatrices, deals
with the question of deciding whether a stochastic matrix M is the matrix exponential
of a rate matrix Q. A rate matrix, also known as a Markov generator, has non-negative
non-diagonal entries and row sums equal to zero. If a stochastic matrix satisfies such
a property and can be expressed as a matrix exponential of a rate matrix, namely M =
eQt , then M is called embeddable. Applications of the embeddability property vary
from biology and nucleotide substitution models (Verbyla et al. 2013) to mathematical
finance (Israel et al. 2001). For a first formulation of the embedding problem see
Elfving (1937). An account of embeddable Markov matrices is provided in Davies
(2010). The embedding problem for 2×2matrices is due toKendall and first published
by Kingman (1962), for 3 × 3 matrices is fully settled in a series of papers Carette
(1995), Chen and Chen (2011), Cuthbert (1973), Israel et al. (2001) and Johansen
(1974), while for 4 × 4 stochastic matrices has been recently solved in Casanellas
et al. (2020b). In general, when the size n of the stochastic matrix is greater than
4, the work Casanellas et al. (2020b) establishes a criterion for deciding whether a
generic n × n Markov matrix with distinct eigenvalues is embeddable and proposes
an algorithm that lists all its Markov generators. In the present paper we study a
refinement of the classical embedding problem, called the model embedding problem
for a class of n × n stochastic matrices coming from phylogenetic models.

Phylogenetics is the field that aims at reconstructing the history of evolution of
species. A phylogenetic model is a mathematical model used to understand the evo-
lutionary process given genetic data sets. The most popular phylogenetic models are
nucleotide substitution models which use aligned DNA sequence data to study the
molecular evolution of DNA. A comprehensive treatment of phylogenetic methods
is given by Felsenstein, who is considered the initiator of statistical phylogenet-
ics, in his seminal book Felsenstein (2003). Algebraic and geometric methods have
been employed with great success in the study of phylogenetic models leading to an
explosion of related research work and the establishment of the field of phylogenetic
algebraic geometry, also known as algebraic phylogenetics; see Allman and Rhodes
(2003), Baños et al. (2016), Casanellas and Fernández-Sánchez (2007), Cavender and
Felsenstein (1987), Gross and Long (2018), Evans and Speed (1993), Lake (1987),
Pachter and Sturmfels (2004) and Sturmfels and Sullivant (2005) for a non-exhaustive
list of publications.

To build such a phylogenetic model, we first require a phylogenetic tree T , which is
a directed acyclic graph comprising of vertices and edges representing the evolutionary
relationships of a group of species. The vertices with valency 1 are called the leaves
of the tree. The tree is considered rooted and the direction of evolution is from the
root towards the leaves. On each vertex of the tree T , we associate a random variable
with k possible states, where in phylogenetics k is often taken to be 2, for the binary
states {0, 1}, or 4, to represent the four types of DNAnucleotides {A, C, G, T}.We
also require a transition matrix (also known as a mutation matrix) M (e) corresponding
to each edge e of the tree, where the entries of this k × k matrix M (e) represent the
probabilities of transition between states. In a phylogenetic tree, the leaves correspond
to extant species and so the random variables at the leaves are observed, while the
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interior vertices correspond to possibly extinct species and so the random variables at
the interior vertices are hidden.

In this paper we are focusing on symmetric group-based substitution models. Sub-
stitution models are a class of phylogenetic models which use a Markov process to
describe the substitution of nucleotides over time in a given DNA sequence and for
which the transition matrices along an edge e are stochastic matrices of the form
M (e) = exp

(
teQ(e)

)
. Group-based models are a special class of substitution models,

in which the matrices Q(e) can be pairwise distinct, but they can all be simultaneously
diagonalizable by a linear changeof coordinates givenby thediscreteFourier transform
of an abelian group, also called a commutative group. For example, the Cavender–
Farris–Neyman (CFN) model (Cavender 1978; Farris 1973; Neyman 1971), as well
as the Jukes–Cantor (JC) (Jukes and Cantor 1969), the Kimura-2 parameter (K2P)
(Kimura 1980) and the Kimura-3 parameter (K3P) (Kimura 1981) models for DNA
are all group-based phylogenetic models. In Sturmfels and Sullivant (2005), it is estab-
lished that through the discrete Fourier transform group-based models correspond to
toric varieties, which are geometric objects with nice combinatorial properties. We are
interested in symmetric group-based substitution models. Namely, apart from distinct
and simultaneously diagonalizable, the transition matrices Q(e) are also symmetric
square matrices. The symmetricity assumption guarantees that the eigenvalues of rate
and transition matrices of a group-based model are real, a property that we use in
the proof of our main theorem. Symmetric models are a subset of a special class of
models called time-reversible models, where the Markov process appears identical
when moving forward or backward in time. Our results apply to group-based models
following an ergodic time-reversible Markov process, as in this case the rate matrices
Q are symmetric according to Pachter and Sturmfels (2004, Lemma 17.2).

The classical embedding problem is concerned with deciding which squareMarkov
matrices are embeddable, namely given a Markov matrix M whether there exists a
rate matrix Q such that M = exp(Q). A variant of the embedding problem that asks
for a reversible Markov generator for a stochastic matrix is studied in Jia (2016).
When we impose the assumption that the rate matrix Q follows the corresponding
model conditions, we arrive at a different refined notion of embeddability calledmodel
embeddability. The embeddability of circulant and equal-input stochastic matrices is
studied in Baake and Sumner (2020). In the current paper, we focus on the (G, L)-
embeddability for n×nmatrices corresponding to symmetric group-based substitution
models. The (G, L)-embeddability means that we require that the rate matrices Q pre-
serve the symmetric group-based structure imposed by the abelian group G and the
symmetric labelling L , which we define at the beginning of Sect. 2. Model embed-
dability for symmetric group-based models is relevant both for homogeneous and
inhomogeneous time-continuous processes, as group-based models are Lie Markov
models, and hence multiplicatively closed (Sumner et al. 2012; Verbyla et al. 2013).
A study of the set of embeddable and model-embeddable matrices corresponding to
the Jukes–Cantor, Kimura-2 and Kimura-3 DNA substitution models, which are all
symmetric group-based models, is undertaken in Casanellas et al. (2020a) and Roca-
Lacostena and Fernández-Sánchez (2018). In particular, a full characterisation of the
set of embeddable 4× 4 Kimura 2-parameter matrices is provided in Casanellas et al.
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(2020a), which together with the results of Roca-Lacostena and Fernández-Sánchez
(2018) fully solve the embedding problem for the Kimura 3-parameter model as well.
Although model embeddability, which is a refined notion of embeddability imposed
by the model structure, implies classical embeddability, the converse is generally not
true (see also Roca-Lacostena and Fernández-Sánchez 2018, Example 3.1).

The main result of this paper is a characterization of (G, L)-embeddability for any
abelian group G equipped with a symmetric G-labeling function L in Theorem 1.
We provide necessary and sufficient conditions which the eigenvalues of the stochas-
tic matrix of the model need to satisfy for the matrix to be (G, L)-embeddable. To
showcase our result, we first introduce three group-based models with the underlying
group Z2 ×Z2 ×Z2, based on the hachimoji DNA system introduced in Hoshika et al.
(2019). Hachimoji, a Japanese word meaning “eight letters”, is used to describe a
synthetic analog of the nucleic acid DNA, where we have the four natural nucleobases
{A,C,G,T} and furthermore an additional four synthetic nucleotides {P,Z,B,S}.
We then apply Theorem 1 to characterise the model embeddability for the three hachi-
moji DNA models. The three models are called hachimoji 7-parameter, hachimoji
3-parameter and hachimoji 1-parameter models, which can be thought of as generali-
sations of the Kimura 3, Kimura 2 and Jukes–Cantor models respectively. Finally, the
characterisation of model embeddability in terms of eigenvalues enables us to com-
pute the volume of the (G, L)-embeddable Markov matrices and compare this volume
with volumes of other relevant sets of Markov matrices. For the general Jukes–Cantor
model, which includes the hachimoji 1-parameter model, the volumes can be derived
exactly; for the hachimoji 3-parametermodel and for the hachimoji 7-parametermodel
symbolically and numerically.

The outline of the paper is the following. Section 2 gives amathematical background
covering notions such as the labeling functions, group-based models and the discrete
Fourier transform. Section 3 introduces symmetric G-compatible labelings which is
a class of labeling functions with particularly nice properties. Section 4 presents the
main result of this paper about the model embedding problem for symmetric group-
based models equipped with a certain labeling function. Then in Sect. 5 we focus on
the hachimoji DNA and provide exact characterisation of the model embeddability in
termsof eigenvalues of theMarkovmatrix for the hachimoji 7-parameter, the hachimoji
3-parameter and the hachimoji 1-parameter models. Finally, Sect. 6 presents results on
the volume of stochastic matrices that are (G, L)-embeddable for the three hachimoji
group-basedmodels. The code for the computations in this paper is available at https://
github.com/ardiyam1/Model-Embeddability-for-Symmetric-Group-Based-Models.

2 Preliminaries

In this section, we give background on group-based models and the discrete Fourier
transform.

Definition 1 Let G be a finite additive abelian group and L a finite set. A labeling
function is any function L : G → L.
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In the group-based model with underlying finite abelian group G, states are in
bijection with the elements of the group G. Fundamental in the definition of a group-
based model associated to a finite additive abelian group G and a labeling function L
is that the rate of mutation from a state g to state h depends only on L(h − g): That
is, the entries of a rate matrix Q are

Qg,h = ψ(h − g)

for a vectorψ ∈ R
G satisfying

∑
g∈G ψ(g) = 0,ψ(g) ≥ 0 for all non-zero g ∈ G and

ψ(g) = ψ(h), whenever L(g) = L(h). We say that such Q is a (G, L)-rate matrix. In
this paper, the rate matrices in group-based models are assumed to be symmetric, i.e.,
ψ(−g) = ψ(g) for every g ∈ G. Since the matrix exponential of a symmetric matrix
is again symmetric, then the entries of a transition matrix P = exp(Q) are

Pg,h = f (h − g)

for a vector f ∈ R
G satisfying

∑
f (g) = 1, f (g) ≥ 0 for all g ∈ G and f (g) =

f (−g) for all g ∈ G. As we see in Example 2, in general it is not true that f (g) = f (h)

whenever L(g) = L(h). In Sect. 3, we introduce G-compatible labeling functions
which guarantee this property and then we say that P is a (G, L)-Markov matrix.

Example 1 Let G = Z2 × Z2 and L = {0, 1, 2, 3}. We identify nucleotides with
the group elements of Z2 × Z2 as A = (0, 0),T = (0, 1),C = (1, 0) and G =
(1, 1). TheKimura 3-parameter, theKimura 2-parameter and the Jukes–Cantormodels
correspond to the following labeling functions

L((0, 0)) = 0, L((0, 1)) = 1, L((1, 0)) = 2, L((1, 1)) = 3,

L((0, 0)) = 0, L((0, 1)) = L((1, 0)) = 1, L((1, 1)) = 2,

L((0, 0)) = 0, L((0, 1)) = L((1, 0)) = L((1, 1)) = 1,

respectively. The Kimura 3-parameter rate and transition matrices have the form

⎛

⎜⎜
⎝

a b c d
b a d c
c d a b
d c b a

⎞

⎟⎟
⎠ . (2.1)

In the case of the Kimura 2-parameter model additionally b = c, after choosing the
ordering A,T,C,G of nucleotide bases. This will be further explained in Example 3.
The Jukes–Cantor model is the submodel when b = c = d.

Example 2 Let G = Z7 and L be a labeling function such that L(1) = L(2) = L(5) =
L(6) and L(3) = L(4). Consider the (G, L)-rate matrix
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Q =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

− 1 0.125 0.125 0.25 0.25 0.125 0.125
0.125 − 1 0.125 0.125 0.25 0.25 0.125
0.125 0.125 − 1 0.125 0.125 0.25 0.25
0.25 0.125 0.125 − 1 0.125 0.125 0.25
0.25 0.25 0.125 0.125 − 1 0.125 0.125
0.125 0.25 0.25 0.125 0.125 − 1 0.125
0.125 0.125 0.25 0.25 0.125 0.125 − 1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

In this rate matrix, ψ(1) = ψ(2) = ψ(5) = ψ(6) = 0.125 and ψ(3) = ψ(4) =
0.25. By direct computation, we get

P = eQ =

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

0.41305 0.0858551 0.0834148 0.124205 0.124205 0.0834148 0.0858551
0.0858551 0.41305 0.0858551 0.0834148 0.124205 0.124205 0.0834148
0.0834148 0.0858551 0.41305 0.0858551 0.0834148 0.124205 0.124205
0.124205 0.0834148 0.0858551 0.41305 0.0858551 0.0834148 0.124205
0.124205 0.124205 0.0834148 0.0858551 0.41305 0.0858551 0.0834148
0.0834148 0.124205 0.124205 0.0834148 0.0858551 0.41305 0.0858551
0.0858551 0.0834148 0.124205 0.124205 0.0834148 0.0858551 0.41305

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

.

The matrix P is not a (G, L)-Markov matrix, since 0.0858551 = f (1) = f (6) �=
f (2) = f (5) = 0.0834148. The entries of P induce a labeling function L ′ such that
L ′(1) = L ′(6) �= L ′(2) = L ′(5) and L ′(3) = L ′(4). In this case, the matrix P is a
(G, L ′)-Markov matrix.

Example 2 shows that thematrix exponential does not necessarily preserve the label-
ing function associated to a rate matrix. Conversely, Example 3.1 of Roca-Lacostena
andFernández-Sánchez (2018) suggests that aKimura 3-parameterMarkovmatrix can
be embeddable, despite the fact that it does not have any Markov generator satisfying
Kimura 3-parameter model constraints.

Let C∗ denote the multiplicative group of complex numbers without zero. A group
homomorphism from G to C

∗ is called a character of G. The characters of G form a
group undermultiplication, called the character group ofG and denoted by Ĝ. Here the
product of two characters χ1, χ2 of the group G is defined by (χ1χ2)(g) = χ1(g)χ2(g)
for every g ∈ G. The character group Ĝ is isomorphic toG. Given a group isomorphism
between G and Ĝ, we will denote by ĝ ∈ Ĝ the image of g ∈ G. For a finite group G,
the values of characters are roots of unity.

Lemma 1 (Pachter and Sturmfels 2005, Lemma 17.1) Let g, h ∈ G and k ∈ Z. Then
ĝ(−h) = ĝ(h) and k̂g(h) = ĝ(kh), where a denotes the complex conjugate of a ∈ C.

Given a function a : G → C, its discrete Fourier transform is a function ǎ : G → C

defined by

ǎ(g) :=
∑

h∈G
ĝ(h)a(h).

Lemma 2 (Matsen 2008, Section 2) For any real-valued function a : G → C, the
identity ǎ(−g) = ǎ(g) holds for all g ∈ G. Moreover, if a(−g) = a(g) for all g ∈ G,
then ǎ(−g) = ǎ(g) for all g ∈ G and ǎ is a real-valued function.
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In the proof of Theorem 1, we will use that ψ̌ and f̌ are real-valued. For this reason,
in this paper we consider only group-based models that are equipped with symmetric
labeling functions, i.e. L(g) = L(−g) for all g ∈ G. In other words, a symmetric
group-based model assumes that the transition matrices are real symmetric matrices.

The discrete Fourier transform is a linear endomorphism onCG . We will denote its
matrix by K . In particular, the entries of K are Kg,h = ĝ(h) for g, h ∈ G. The matrix
K is symmetric for any finite abelian group (Luong 2009, Section 3.2). The inverse
of the discrete Fourier transformation matrix is K−1 = 1

|G|K
∗, where K ∗ denotes the

adjoint of K (Luong 2009, Corollary 3.2.2).
The following lemma describes the relation between functionals f and ψ in the

case f (−g) = f (g) and ψ(−g) = ψ(g) for all g ∈ G.
Lemma 3 (Matsen 2008, Lemma 2.2) Let Q be determined by ψ ∈ R

G and P be
determined by f ∈ R

G as described earlier in this section such that P = eQ. Fur-
thermore, assume that ψ(g) = ψ(−g) and f (g) = f (−g) for all g ∈ G. Then,
f̌ (g) = eψ̌(g) for all g ∈ G.
Lemma 4 Let Q be determined by ψ ∈ R

G and P be determined by f ∈ R
G

as described earlier in this section. Furthermore, assume that ψ(g) = ψ(−g)
and f (g) = f (−g) for all g ∈ G. Let Kg denote the column of the discrete
Fourier transform matrix labeled by g. The eigenpairs of Q (resp. P) are (ψ̌(g), Kg)

(resp. ( f̌ (g), Kg)) for g ∈ G.
Proof This result is stated in the proof of Matsen (2008, Lemma 2.2).

In particular, in the case of a Markov matrix, the column vector of ones is an
eigenvector with eigenvalue one. In the case of a rate matrix, the column vector of
ones is an eigenvector with eigenvalue zero. A direct consequence of Lemma 4 is that
Q and P are diagonalizable by K , i.e. Q = K D1K−1 and P = K D2K−1 where
D1 and D2 are diagonal matrices with diagonals given by the vectors ψ̌ and f̌ of RG
respectively.

3 G-compatible labeling functions

In this section, we introduce a class of labeling functions with the property that the
symmetries of the probability vector are preserved under the discrete Fourier trans-
formation. This property is required for any result that is proven using the discrete
Fourier transform. Notably, labeling functions for all common group-based models
(CFN, K3P, K2P, and JC models) are G-compatible.

Definition 2 Let G be a finite additive abelian group, L a set and L : G → L a
labeling function. Let K be the discrete Fourier transformation matrix for G and xL be
the column vector of length |G| whose g-th component is the indeterminate xL(g). We
say that L is a G-compatible labeling function if for every g, h ∈ G with L(g) = L(h),
we have that Kg,: ·xL = Kh,: ·xL and (K−1)g,: ·xL = (K−1)h,: ·xL . HereMa,: denotes
the row of M indexed by group element a.
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A labeling function that maps every group element to a different label is trivially
G-compatible.

Remark 1 In the definition of a G-compatible labeling, we require that the matrices K
and K−1 preserve the symmetries of the vector of labels xL . For symmetric group-
based models, it is enough to require that only K or K−1 preserves the symmetries of
the vector of labels xL . Recall that

K−1 · xL = 1

|G| · K ∗ · xL = 1

|G| · K · xL .

The property ĝ(−h) = ĝ(h) implies Kg,−h = Kg,h and Kg,−h = Kg,h . If−h = h,
this means Kg,h = Kg,h for all g ∈ G. If −h �= h, then taking into account that
xL(−h) = xL(h) gives Kg,h · xL(h) + Kg,−h · xL(−h) = Kg,h · xL(h) + Kg,−h · xL(−h).
Hence K−1 · xL = 1/|G| · K · xL .
Remark 2 If a labeling function L is symmetric G-compatible and Q is a (G, L)-rate
matrix, then aMarkovmatrix P = eQ is a (G, L)-Markovmatrix, i.e. Pg,h = f (h−g)
for a vector f ∈ R

G and f (g) = f (h) whenever L(g) = L(h).

Example 3 Let G = Z2 × Z2. The discrete Fourier transformation matrix for G is

K =

⎛

⎜⎜
⎝

1 1 1 1
1 − 1 1 − 1
1 1 − 1 − 1
1 − 1 − 1 1

⎞

⎟⎟
⎠ .

To show G-compatibility for the three labeling functions from Example 1, it is
enough to check that K preserves the symmetries of xL . The labeling function of the
Jukes–Cantor model is G-compatible, since

K ·

⎛

⎜⎜
⎝

x0
x1
x1
x1

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

x0 + 3x1
x0 − x1
x0 − x1
x0 − x1

⎞

⎟⎟
⎠ .

The labeling function of the Kimura 2-parameter model is G-compatible, since

K ·

⎛

⎜
⎜
⎝

x0
x1
x1
x2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

x0 + 2x1 + x2
x0 − x2
x0 − x2

x0 − 2x1 + x2

⎞

⎟
⎟
⎠ .

In the literature, usually L((1, 0)) = L((1, 1)) in the Kimura 2-parameter model.
However, here we assume that L((1, 0)) = L((0, 1)) which is simply due to the
fact that we consider the identification A = (0, 0),T = (0, 1),C = (1, 0) and G =
(1, 1). To be more precise, nucleotide bases fall into two categories depending on
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the molecular mechanisms of the base; purines (A or G) and pyrimidines (C or T).
A transition occurs when a purine is substituted by a purine, or a pyrimidine by a
pyrimidine.A change fromapurine to a pyrimidine, or vice versa, is a transversion. The
Kimura 2-parameter model of sequence evolution distinguishes between transitions
and transversions to account for the biological fact that transitions occur at higher rate
than transversions (Kimura 1980, 1981). The rate and transition matrix of the Kimura
2-parameter model have the form

A T C G

A
T
C
G

⎛

⎜⎜
⎝

a b b d
b a d b
b d a b
d b b a

⎞

⎟⎟
⎠ .

The reason for choosing this identification and ordering is that we can use the
discrete Fourier transform matrix in a format, which better demonstrates that it is the
Kronecker product of discrete Fourier transformation matrices for Z2. The labeling
function of the Kimura 3-parameter is G-compatible, because each group element
maps to a different label.

Sturmfels and Sullivant consider a different class of labeling functions, called
friendly labelings (Sturmfels and Sullivant 2005). Group-based models with friendly
labeling functions are equivalent to G-models defined by Michałek (2011, Remark
5.2). G-models are constructed using an arbitrary group G that has a normal, abelian
subgroupHwhich acts transitively and freely on the finite set of states. The importance
of G-models is that they are toric. We explore connections between friendly labelings
and G-compatible labelings in “Appendix A”. We conjecture that every symmetric
G-compatible labeling is a friendly labeling, but not vice versa.

The following lemma provides a necessary condition for G-compatible labeling
functions.

Lemma 5 Let G be a finite additive abelian group, L a set and L : G → L a labeling
function. If L is G-compatible, then L(0) �= L(g) for any g �= 0.

Proof Let K be the discrete Fourier transformation matrix for G. The entries of K
are ĝ(h) for g, h ∈ G, which are roots of unity. The row K0,: consists of ones. On
the other hand, no other row of K consists of ones only, as this would contradict the
uniqueness of the identity element in the character group. In particular, every other
row of K contains at least one element whose real part is strictly less than one. Thus
it is impossible that K0,: · xL = Kg,: · xL for g �= 0.

Table 1 summarizes up to isomorphism all possible symmetric G-compatible label-
ing functions for additive abelian groups of order up to eight. In the table, two group
elements receive the same label if they belong to the same subset in a partition of G.

We saw in Example 3 that the labeling function of the Jukes–Cantor model that
assigns the same label to each nonzero element of the group G = Z2 × Z2 is a
G-compatible labeling. This example can be generalized to other groups.
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Table 1 Symmetric G-compatible labelings for abelian groups of order n ≤ 8 up to isomorphism

n Group Symmetric G-compatible labelings

2 Z2 {{0},{1}}

3 Z3 {{0},{1,2}}

4 Z4 {{0},{1,2,3}},{{0},{1,3},{2}}

4 Z2 × Z2 {{(0,0)},{(0,1),(1,0),(1,1)}},{{(0,0)},{(0,1),(1,0)},{(1,1)}},
{{(0,0)},{(0,1)},{(1,0)},{(1,1)}}

5 Z5 {{0},{1,2,3,4}}, {{0},{1,4},{2,3}}

6 Z2 × Z3 {{(0,0)},{(0,1),(0,2),(1,0),(1,1),(1,2)}},
{{(0,0)},{(0,1),(0,2)},{(1,0)},{(1,1),(1,2)}}

7 Z7 {{0},{1,2,3,4,5,6}},{{0},{1,6},{2,5},{3,4}}

8 Z8 {{0},{1,2,3,4,5,6,7}},{{0},{1,3,5,7},{2,6},{4}},
{{0},{1,7},{2,6},{3,5},{4}}

8 Z2 × Z4 {{(0,0)},{(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3)}},
{{(0,0)},{(0,1),(0,3),(1,1),(1,3)},{(0,2)},{(1,0),(1,2)}},
{{(0,0)},{(0,1),(0,2),(0,3)},{(1,0)},{(1,1),(1,2),(1,3)}},
{{(0,0)},{(0,1),(0,3),(1,0)},{(0,2),(1,1),(1,3)},{(1,2)}},
{{(0,0)},{(0,1),(0,3)},{(0,2)},{(1,0)},{(1,1),(1,3)},{(1,2)}}

8 Z2 × Z2 × Z2 {{(0,0,0)},{(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}},
{{(0,0,0)},{(0,0,1)},{0,1,0),(1,0,0),(1,1,0)},{(0,1,1),(1,0,1),(1,1,1)}},
{{(0,0,0)},{(0,0,1),(1,0,0),(1,0,1)}, {(0,1,0)},{(0,1,1),(1,1,0),(1,1,1)}},
{{(0,0,0)},{(0,0,0),(0,1,0),(0,1,1)},{(1,0,0)},{(1,0,1),(1,1,0),(1,1,1)}},
{{(0,0,0)},{(0,0,1),(0,1,0),(1,0,1),(1,1,0)},{(0,1,1)},{(1,0,0),(1,1,1)}},
{{(0,0,0)},{(0,0,1),(0,1,0),(1,0,0)},{(0,1,1),(1,0,1),(1,1,0)},{(1,1,1)}},
{{(0,0,0)},{(0,0,1),(1,1,1)},{(0,1,0),(0,1,1),(1,0,0),(1,0,1)},{(1,1,0)}},
{{(0,0,0)},{(0,0,1),(0,1,1),(1,0,0),(1,1,0)},{(0,1,0),(1,1,1)},{(1,0,1)}},
{{(0,0,0)},{(0,0,1)},{(0,1,0),(1,0,0)},{(0,1,1),(1,0,1)},{(1,1,0)},{(1,1,1)}},
{{(0,0,0)},{(0,0,1),(0,1,0)},{(0,1,1)},{(1,0,0)},{(1,0,1),(1,1,0)},{(1,1,1}},
{{(0,0,0)},{(0,0,1),(1,0,0)},{(0,1,0)},{(0,1,1),(1,1,0)},{(1,0,1)},{(1,1,1}},
{{(0,0,0)},{(0,0,1)},{(0,1,0)},{(0,1,1)},{(1,0,0)},{(1,0,1)},{(1,1,0)},{(1,1,1)}}

Lemma 6 Let G be a finite abelian group. Let L : G → {0, 1} be a labeling function
such that and L(0) = 0 and L(g) = 1 for g �= 0. Then the labeling function L is
symmetric G-compatible.

Proof Clearly the labeling function L is symmetric. Let K be the discrete Fourier
transformation matrix for G. By Luong (2009, Corollary 3.2.1), we have

∑

h∈G
Kg,h =

{
n, g = 0
0, g �= 0

.

Hence

Kg,: · xL =
{
x0 + (n − 1)x1, g = 0
x0 − x1, g �= 0

.

Hence L is a G-compatible labeling function.
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We call the model in Lemma 6 the general Jukes–Cantor model. We finish this
section with giving another class of labeling functions that are G-compatible for every
finite abelian group G.
Lemma 7 Let G be a finite additive abelian group, L a finite set and L : G → L a
labeling function such that for any two distinct elements g, h ∈ G, L(g) = L(h) if
and only if g = −h. Then L is G-compatible.
Proof By Lemma 1, the identity −̂g(h) = ĝ(−h) holds for all g, h ∈ G. Then

K−g,: · xL =
∑

h∈G
−̂g(h)xL(h) =

∑

h∈G
ĝ(−h)xL(h)

=
∑

h∈G
ĝ(h)xL(−h) =

∑

h∈G
ĝ(h)xL(h) = Kg,: · xL .

Thus, the labeling function L is G-compatible as xL is the column vector of inde-
terminates xL(g).

The converse of Lemma 7 is not true in general. Two examples are given by the
labeling functions for the Kimura 2-parameter and the Jukes–Cantor model.

4 Model embeddability

The following theorem is the main result of this paper. It characterizes (G, L)-
embeddable transition matrices in terms of their eigenvalues.

Theorem 1 Fix a finite abelian group G, a finite set L, and a symmetric G-compatible
labeling function L : G → L. Let P be a (G, L)-Markov matrix. Then P is (G, L)-
embeddable if and only if the vector λ ∈ R

G of eigenvalues of P is in the set

{λ ∈ R
G :λ0 = 1,

∏

h∈G
λ
Re((K )g,h)

h ≥ 1 for all nonzero g ∈ G,

λg > 0 for all g ∈ G, and λg = λh whenever L(g) = L(h)}.

Proof We start by summarizing the idea of the proof. We consider the set �G,L that
consists of vectors ψ that determine (G, L)-rate matrices. Our goal is to characterize
the set F̌G,L of eigenspectra ofMarkovmatrices that arematrix exponentials of (G, L)-
rate matrices determined by vectorsψ in�G,L . The first step is to consider the discrete
Fourier transform of the set �G,L , which we denote by �̌G,L . By Lemma 4, this set
is the set of eigenvalues of the (G, L)-rate matrices. The second step is to consider
the image of the set �̌G,L under coordinatewise exponentiation. This set is precisely
F̌G,L , because (G, L)-ratematrices are diagonalizable by the discreteFourier transform
matrix K by the discussion after Lemma 4 and thus if a (G, L)-rate matrix Q is
determined by ψ ∈ R

G then

P = eQ = K · ediag(ψ̌) · K−1 = K · diag(eψ̌ ) · K−1,
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where ψ̌ is the vector of eigenvalues of Q and eψ̌ is the vector of eigenvalues of P .
More specifically, let

�G,L = {ψ ∈ R
G :

∑

g∈G
ψ(g) = 0, ψ(g) ≥ 0 for all nonzero g ∈ G, and

ψ(g) = ψ(h) whenever L(g) = L(h)}.

The vectors in the set �G,L are in one-to-one correspondence with (G, L)-rate
matrices. The image of �G,L under the discrete Fourier transform is the set

�̌G,L = {ψ̌ ∈ R
G :ψ̌(0) = 0, (K−1ψ̌)(g) ≥ 0 for all nonzero g ∈ G, and

ψ̌(g) = ψ̌(h) whenever L(g) = L(h)}.

By Lemma 4, this set is the set of eigenvalues of the (G, L)-rate matrices.
The image of �̌G,L under the coordinatewise exponentiation is the set of eigenvalues

of the (G, L)-Markov matrices, which we denote by F̌G,L . We claim that F̌G,L is equal
to the set

{ f̌ ∈ R
G : f̌ (0) = 1,

∏

h∈G
( f̌ (h))(K

−1)g,h ≥ 1 for all nonzero g ∈ G,

f̌ (g) > 0 for all g ∈ G, and f̌ (g) = f̌ (h) whenever L(g) = L(h)}.
(4.1)

Indeed, let f̌ = exp(ψ̌). Then f̌ > 0 because the image of the exponentiation
map is positive. The inequality aT x ≥ 0 is equivalent to exp(aT x) ≥ 1. Hence, the
equation ψ̌(0) = 0 gives f̌ (0) = 1 and the inequalities (K−1ψ̌)(g) ≥ 0 give

∏

h∈G
( f̌ (h))(K

−1)g,h =
∏

h∈G
(e(ψ̌(h)))(K

−1)g,h = e
∑

h∈G ψ̌(h)(K−1)g,h = e(K−1ψ̌)(g) ≥ 1

(4.2)

for all nonzero g ∈ G. Hence f̌ is in the set (4.1). Conversely, let f̌ be a vector in the
set (4.1). Then under coordinatewise logarithm, log( f̌ ) ∈ �̌G,L and f̌ = exp(log( f̌ )).
Hence f̌ is in the image of �̌G,L . Thus F̌G,L is equal to the set (4.1).

It is left to rewrite the inequalities (4.2) as in the statement of the theorem.We have

(K−1)g,−h = 1

|G|K−h,g = 1

|G| −̂h(g) = 1

|G| ĥ(−g)

= 1

|G| ĥ(g) = 1

|G|Kh,g = (K−1)g,h

for all g, h ∈ G. Here we use Lemma 1 and the definition of the discrete Fourier
transformation matrix. If −h = h, then (K−1)g,h = (K−1)g,−h = (K−1)g,h , and
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hence (K−1)g,h = Re((K−1)g,h). If −h �= h, then f̌ (h) = f̌ (−h) by Lemma 2.
Hence

( f̌ (h))(K
−1)g,h ( f̌ (−h))(K

−1)g,−h = ( f̌ (h))(K
−1)g,h ( f̌ (h))(K

−1)g,h

= ( f̌ (h))2Re((K
−1)g,h)

= ( f̌ (h))Re((K
−1)g,h)( f̌ (−h))Re((K

−1)g,−h).

(4.3)

We replace K−1 by 1/|G| · K and take both sides of the resulting inequality to the
power |G|. Finally, making the substitution λh = f̌ (h) gives the desired characteriza-
tion.

For G cyclic, Theorem 1 has been independently proven by Baake and Sumner in
the context of circulant matrices (Baake and Sumner 2020, Theorem 5.7). Moreover,
they show that every embeddable circulant matrix is circulant embeddable (Baake and
Sumner 2020, Corollary 5.2).

It follows from Lemma 3 that if a (G, L)-Markov matrix P is (G, L)-embeddable,
then there exists a unique (G, L)-rate matrix Q such that P = exp(Q). Indeed, since
Q and P have both real eigenvalues and the eigenvalues of P are exponentials of
eigenvalues of Q, then the eigenvalues of Q are uniquely determinedby the eigenvalues
of P . Then the (G, L)-rate matrix Q is the principal logarithm of P .

The inequalities λg > 0 in Theorem 1 imply det(P) = ∏
λg > 0. Hence the set of

(G, L)-embeddable matrices for a symmetric group-based model is a relatively closed
subset of a connected component of the complement of det(P) = 0. A relatively
closed subset means here a set that can be written as the intersection of a closed subset
of RG×G and the connected component of the complement of det(P) = 0.

In the rest of the current section and in Sect. 5, we will discuss applications of
Theorem 1. We will recover known results about (G, L)-embeddability and as a novel
application characterize embeddability for three group-based models of hachimoji
DNA.

Example 4 The CFN model is the group-based model associated to the group Z2. The
CFN Markov matrices have the form

P =
(
a b
b a

)
.

The discrete Fourier transform matrix is

K =
(
1 1
1 − 1

)
.

The eigenvalues of P are λ0 = a + b = 1 and λ1 = a − b. By Theorem 1, the
Markov matrix P is CFN embeddable if and only if 0 < λ1 ≤ 1 or equivalently
0 < a − b ≤ 1. This is equivalent to P satisfying det(P) > 0, or equivalently
tr(P) > 1. The result that a general 2× 2 stochastic matrix is embeddable if and only
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if det(P) > 0 or tr(P) > 1 goes back to Kingman (1962, Proposition 2). Hence P is
CFN embeddable if and only if it is embeddable.

Example 5 Recall that the Kimura 3-parameter model is the group-based model asso-
ciated to group G = Z2 × Z2 and a K3P Markov matrix P has the form (2.1). The
eigenvalues of P are

λ(0,0) = a + b + c + d, λ(0,1) = a − b + c − d, λ(1,0)

= a + b − c − d, λ(1,1) = a − b − c + d.

By Theorem 1, a Markov matrix P is K3P embeddable if and only if

λ(0,0) = 1, λ(0,1) > 0, λ(1,0) > 0, λ(1,1) > 0,

λ(0,1) ≥ λ(1,0)λ(1,1), λ(1,0) ≥ λ(0,1)λ(1,1), λ(1,1) ≥ λ(0,1)λ(1,0).
(4.4)

In the Kimura 2-parameter model b = c and λ(0,1) = λ(1,0). We get the conditions
for the K2P embeddability by setting λ(0,1) = λ(1,0) in (4.4). Hence a K2P Markov
matrix is K2P embeddable if and only if

λ(0,0) = 1, λ(0,1) > 0, 1 ≥ λ(1,1) ≥ λ2(0,1).

In the Jukes–Cantor model b = c = d and λ(0,1) = λ(1,0) = λ(1,1). A JC Markov
matrix is JC embeddable if and only if

λ(0,0) = 1, 1 ≥ λ(0,1) > 0.

The K3P embeddability of a K3P Markov matrix with no repeated eigenvalues is
equivalent to the embeddability of the matrix. Similarly, the JC embeddability of a
JC Markov matrix is equivalent to the embeddability of the matrix. The same is not
true for K2P Markov matrices with exactly two coinciding eigenvalues. See Roca-
Lacostena and Fernández-Sánchez (2018, Section 3) for similar computations and
further discussion on the model embeddability of K3P, K2P, and JCMarkov matrices.

Remark 3 By Kingman (1962, Corollary on page 18), the map from rate matrices to
transitionmatrices is locally homeomorphic except possiblywhen the ratematrix has a
pair of eigenvalues differing by a non-zeromultiple of 2π i . Since for symmetric group-
based models rate matrices are real symmetric, then all their eigenvalues are real and
hence themap from ratematrices to transitionmatrices is a homeomorphism.Therefore
the boundaries of embeddable transition matrices of symmetric group-based models
are images of the boundaries of the rate matrices. For general Markov model, the
boundaries of embeddable transitionmatrices are characterized inKingman (Kingman
1962, Propositions 5 and 6).

Corollary 1 A (G, L)-embeddable transition matrix lies on the boundary of the set of
(G, L)-embeddable transition matrices for a symmetric group-based model if and only
if it satisfies at least one of the inequalities in Theorem 1 with equality.
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5 Hachimoji DNA

In this section, we suggest three group-based models for a genetic system with eight
building blocks recently introduced by Hoshika et al. (2019), and then characterize
model embeddability for the proposed group-based models. The genetic system is
called hachimoji DNA. It has four synthetic nucleotides denoted S, B, Z, and P in
addition to the standard nucleotides adenine (A), cytosine (C), guanine (G) and thymine
(T). Detailed descriptions of the four additional nucleotides are given in Hoshika et al.
(2019). If in the standard 4-letter DNA, the purines are A and G and the pyrimidines
are C and T, then in the hachimoji system, there are additionally purine analogs P
and B, and pyrimidine analogs Z and S. The hydrogen bonds occur between the pairs
A-T, C-G, S-B and Z-P.

This DNA genetic system with eight building blocks can reliably form matching
base pairs and can be read and translated into RNA. It is mutable without damaging
crystal structurewhich is required formolecular evolution. Hachimoji DNAhas poten-
tial application in bar-coding, retrievable information storage, and self-assembling
nanostructures.

The underlying group we suggest for the hachimoji DNA is Z2 × Z2 × Z2, since
when restricted to the standard 4-letter DNA it gives the group Z2 × Z2 that is the
underlying group for the standard DNA models. We identify the nucleotides with the
group elements of Z2 × Z2 × Z2 as follows:

A = (0, 0, 0),C = (0, 0, 1),T = (0, 1, 0),G = (0, 1, 1),

P = (1, 0, 0),Z = (1, 0, 1),S = (1, 1, 0),B = (1, 1, 1).

The discrete Fourier transformation matrix of the group Z2 × Z2 × Z2 is

K =

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 1 1 1 1 1 1 1
1 − 1 1 − 1 1 − 1 1 − 1
1 1 − 1 − 1 1 1 − 1 − 1
1 − 1 − 1 1 1 − 1 − 1 1
1 1 1 1 − 1 − 1 − 1 − 1
1 − 1 1 − 1 − 1 1 − 1 1
1 1 − 1 − 1 − 1 − 1 1 1
1 − 1 − 1 1 − 1 1 1 − 1

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

. (5.1)

5.1 Hachimoji 7-parameter model

The first model we propose is the analogue of the Kimura 3-parameter model and
we will call it the hachimoji 7-parameter (H7P) model. In the hachimoji 7-parameter
model, each element of the group Z2 × Z2 × Z2 maps to a distinct label. Thus the
labeling function is trivially (G, L)-compatible. The H7P rate and transition matrices
have the form
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⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

a b c d e f g h
b a d c f e h g
c d a b g h e f
d c b a h g f e
e f g h a b c d
f e h g b a d c
g h e f c d a b
h g f e d c b a

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

. (5.2)

The eigenvalues of a H7P Markov matrix are

(
1, λ(0,0,1), λ(0,1,0), λ(0,1,1), λ(1,0,0), λ(1,0,1), λ(1,1,0), λ(1,1,1)

)T

= K · (a, b, c, d, e, f , g, h
)T

.

By Theorem 1, such a matrix is H7P embeddable if and only if all eigenvalues are
positive and satisfy

λ(0,0,0) = 1,

λ(0,1,0)λ(1,0,0)λ(1,1,0) ≥ λ(0,0,1)λ(0,1,1)λ(1,0,1)λ(1,1,1),

λ(0,0,1)λ(1,0,0)λ(1,0,1) ≥ λ(0,1,0)λ(0,1,1)λ(1,1,0)λ(1,1,1),

λ(0,1,1)λ(1,0,0)λ(1,1,1) ≥ λ(0,0,1)λ(0,1,0)λ(1,0,1)λ(1,1,0),

λ(0,0,1)λ(0,1,0)λ(0,1,1) ≥ λ(1,0,0)λ(1,0,1)λ(1,1,0)λ(1,1,1),

λ(0,1,0)λ(1,0,1)λ(1,1,1) ≥ λ(0,0,1)λ(0,1,1)λ(1,0,0)λ(1,1,0),

λ(0,0,1)λ(1,1,0)λ(1,1,1) ≥ λ(0,1,0)λ(0,1,1)λ(1,0,0)λ(1,0,1),

λ(0,1,1)λ(1,0,1)λ(1,1,0) ≥ λ(0,0,1)λ(0,1,0)λ(1,0,0)λ(1,1,1).

5.2 Hachimoji 3-parameter model

The second model we suggest specializes to the Kimura 2-parameter model when
restricted to the standard 4-letter DNA. We will call it the hachimoji 3-parameter
(H3P) model. We recall that in the Kimura 2-parameter model there are three distinct
parameters for the rates of mutation: One parameter for a state remaining unchanged,
one parameter for transversion from a purine base to a pyrimidine base or vice versa,
and one parameter for transition to the other purine or to the other pyrimidine. We say
that two bases are of the same type if they are both standard or synthetic bases. In the
hachimoji 3-parameter model, there are the following parameters:

– a: the probability of a state remaining unchanged.
– b: the probability of a transversion from a purine base to a pyrimidine base or vice
versa.

– c: the probability of a transition to another purine or pyrimidine base of the same
type (same type transitions).

– d: the probability of a transition to another purine or pyrimidine base of different
type (different type transitions).
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The H3P rate and transition matrices have the form

P =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

a b b c d b b d
b a c b b d d b
b c a b b d d b
c b b a d b b d
d b b d a b b c
b d d b b a c b
b d d b b c a b
d b b d c b b a

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

. (5.3)

The labeling function of this model corresponds to the partition

{{(0, 0, 0)}, {(0, 0, 1), (0, 1, 0), (1, 0, 1), (1, 1, 0)}, {(0, 1, 1)}, {(1, 0, 0), (1, 1, 1)}},

which is (G, L)-compatible by Table 1.
The eigenvalues of a H3P Markov matrix are

w := λ(0,0,0) = a + 4b + c + 2d = 1, x := λ(0,1,1) = a − 4b + c + 2d,

y := λ(1,0,0) = λ(1,1,1) = a + c − 2d, z := λ(0,0,1)

= λ(0,1,0) = λ(1,0,1) = λ(1,1,0) = a − c.

By Theorem 1, a H3P Markov matrix P is H3P embeddable if and only if the
eigenvalues of P satisfy

w = 1, 1 ≥ x > 0, y > 0, z > 0, x ≥ y2, xy2 ≥ z4. (5.4)

5.3 Hachimoji 1-parameter model

The third model we suggest is the analogue of the Jukes–Cantor model and we will
refer to it as hachimoji 1-parameter (H1P) model. It is the simplest group-based
model associated to the group Z2 × Z2 × Z2 and it is described by only two distinct
parameters for the rates of mutation. The two parameters are for a state remaining the
same and a state mutating to any other state. The corresponding labeling function is
(G, L)-compatible by Lemma 6. The H1P rate and transition matrices have the form

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

a b b b b b b b
b a b b b b b b
b b a b b b b b
b b b a b b b b
b b b b a b b b
b b b b b a b b
b b b b b b a b
b b b b b b b a

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

. (5.5)
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The eigenvalues of aH1PMarkovmatrix arew := λ(0,0,0) = 1 and x := λg = a−b
for g �= 0.ByTheorem1, such amatrix isH1Pembeddable if andonly if its eigenvalues
satisfy

w = 1 and 1 ≥ x > 0. (5.6)

Remark 4 The same conditions as in (5.6) characterize model embeddability for the
general Jukes–Cantor model as defined in Lemma 6. This is also a special instance
of a more general result (Baake and Sumner 2020, Corollary 4.7) on equal-input
embeddability. If the order of G is even, then the notion of general embeddability is
equivalent to the notion of model embeddability for the general Jukes–Cantor models
by Baake and Sumner (2020, Theorem 4.6).

6 Volume

In this section we compute the relative volumes of model embeddable Markov matri-
ces within some meaningful subsets of Markov matrices by taking advantage of the
characterisation of embeddability in terms of eigenvalues. The aim of this section is
to describe how large the different sets of matrices are compared to each other and
provide intuition of how restrictive is the hypothesis of homogeneous continuous-time
models.

We will focus on the hachimoji models and the generalization of the Jukes–Cantor
model. We will use the following notation:

(i) � is the set of all Markov matrices in a model.
(ii) �+ is the subset of matrices in � with only positive eigenvalues.
(iii) �dd is the subset of diagonally dominant matrices in �, i.e. matrices in � such

that in each row the diagonal entry is greater or equal than the sum of all other
entries in the same row.

(iv) �me is the subset of model embeddable transition matrices in �.

Biologically, the subspace �dd of diagonally dominant matrices consists of matri-
ces with probability of not mutating at least as large as the probability of mutating. If
a diagonally dominant matrix is embeddable, it has an identifiable rate matrix (Cuth-
bert 1972, 1973), namely a unique Markov generator, which is crucial for proving
the consistency of many phylogenetic reconstruction methods, such as those based on
maximum likelihood methods (Casanellas et al. 2020c; Chang 1996). What is more,
the set of Markov matrices with positive eigenvalues �+ includes the multiplica-
tive closure of the transition matrices in the continuous-time version of the model
(Sumner et al. 2012). We have the inclusions �me ⊆ �+ ⊆ � and �dd ⊆ �+.
The volumes of these spaces are given for the Kimura 3-parameter model in Roca-
Lacostena and Fernández-Sánchez (2018, Theorem 4.1), for the Kimura 2-parameter
model in Casanellas et al. (2020b, Proposition 5.1] and for the Jukes–Cantor model in
Roca-Lacostena and Fernández-Sánchez (2018, Section 4).

The subsets �,�+,�dd , and �me can be described using the parameterization
in terms of the entries of the Markov matrix or in terms of their eigenvalues. We
parameterize the relevant subsets of Markov matrices in terms of the eigenvalues
of the Markov matrices and compute the volumes using these parametrizations. If ϕ
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Table 2 The estimated volume of the set of H7P embeddable matrices using the hit-and-miss Monte Carlo
integration with n sample points

n 104 105 106 107

V (�me) 0.0015 0.00197 0.001946 0.0019678

V (�me ∩ �dd ) 0.0008 0.00084 0.00085 0.0008271

denotes the bijection from the set of entries of aMarkovmatrix in a particular model to
the set of its eigenvalues and thematrix J (ϕ) denotes the Jacobianmatrix of themap ϕ,
then the volume of any subset in the parametrization using entries of a Markov matrix
will be |det(J (ϕ))| times the volume in the parameterization using eigenvalues. Since
the determinant of this Jacobian is constant for each of the three models we consider,
the relative volumes of the set of model embeddable Markov matrices will not depend
on the parameterization chosen.

Proposition 1 For the hachimoji 7-parameter model, consider �, �+, and �dd as
subsets ofR7 parameterized by λ(0,0,1), . . . , λ(1,1,1), the eigenvalues of a H7PMarkov
matrix. Then: (i) V (�) = 256

315 ; (ii) V (�+) = 5
144 ; (iii)V (�dd) = 2

315 .

Proof The entries of a H7P Markov matrix (5.2) are determined by a vector
(a, b, c, d, e, f , g, h). The entries of this vector can be expressed in terms of the
eigenvalues as

(
a, b, c, d, e, f , g, h

)T

= K−1 (
1, λ(0,0,1), λ(0,1,0), λ(0,1,1), λ(1,0,0), λ(1,0,1), λ(1,1,0), λ(1,1,1)

)T
,

where K is the discrete Fourier transform matrix (5.1). In terms of the entries or the
eigenvalues of a H7P Markov matrix, the relevant subsets in this model are given by:

� = {(a, b, c, d, e, f , g, h) ∈ R
8 : a + b + c + d + e + f + g + h = 1,

a, b, c, d, e, f , g, h ≥ 0},
�+ = {P ∈ � : λ(0,0,1), λ(0,1,0), λ(0,1,1), λ(1,0,0), λ(1,0,1), λ(1,1,0), λ(1,1,1) > 0},
�dd = {P ∈ � : a ≥ b + c + d + e + f + g + h}, and

�me is given by one equation and seven inequalities presented in Sect. 5.1.
Expressing all conditions defining �, �+, and �dd in terms of the eigen-
values λ(0,0,1), . . . , λ(1,1,1) allows us to compute volumes of these sets using
Polymake (Gawrilow and Joswig 2000).

We are not able to compute the volume of the subspace of the H7P embeddable
Markovmatrices exactly. Insteadwe estimate the volumeusing the hit-and-missMonte
Carlo integration method (Hammersley 2013) implemented in Mathematica.
Table 2 summarizes the volume for various number of sample points. Table 3 gives
relative volumes for the relevant sets.
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Table 3 The relative volumes for the hachimoji 7-parameter model

� �+ �dd

V (·)
V (�)

1 175
4096 = 0.042724609375 1

128 = 0.0078125

V (�me∩ · )
V (·) ≈ 0.00239 ≈ 0.056045 ≈ 0.13388

The volumes of �me and �me ∩ �+ are estimated using Monte Carlo integration with 106 sample points

Table 4 The relative volumes
for the hachimoji 3-parameter
model

� �+ �dd

V (·)
V (�)

1 21
64 = 0.328125 1

8 = 0.125

V (�me∩ · )
V (·)

1
4 = 0.25 16

21 ≈ 0.76190 ≈ 0.82040

Proposition 2 For the hachimoji 3-parameter model, consider �, �+, �dd , and �me

as subsets of R3 parameterized by x, y, z, the eigenvalues of a H3P Markov matrix.
Then: (i) V (�) = 4

3 ; (ii) V (�+) = 7
16 ; (iii) V (�dd) = 1

6 ; (iv) V (�me) = 1
3 ; (v)

V (�me ∩ �dd) ≈ 0.136733.

Proof The entries of a H3PMarkov matrix as in (5.3) can be expressed in terms of the
eigenvalues as

a = 1 + x + 2y + 4z

8
, b = 1 − x

8
,

c = 1 + x + 2y − 4z

8
, d = 1 + x − 2y

8
.

Expressing all conditions defining�,�+,�dd , and�me in termsof x, y, z allowsus
to use theIntegrate command in Mathematica to compute the desired volumes.
For V (�me ∩ �dd) we used the numerical integration command NIntegrate.

The sets �me, �+ and � for the hachimoji 3-parameter model are depicted in
Fig. 1. The relative volumes of relevant sets are given in Table 4.

Finally, we discuss the generalization of the Jukes–Cantor model which includes
the hachimoji 1-parameter model. Let G be a finite abelian group of order n and
L : G → {0, 1} a labeling function such that and L(0) = 0 and L(g) = 1 for g �= 0.
In Lemma 6 we proved that L is a G-compatible labeling. In the general Jukes–Cantor
model, the transition matrix P corresponding to this labeling is has the form

Pi j =
{
a, i = j

b, i �= j
.

Since P is a Markov matrix, then a = 1− (n−1)b, and thus P is parameterized by b.

Proposition 3 For the general Jukes–Cantor model, consider �, �+, �dd , �me as
subsets ofR parameterized by b, the off-diagonal element of the Markov matrix. Then:
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Fig. 1 The sets �me , �+ and � for the hachimoji 3-parameter model. The sets �+ and � are polytopes;
the set �me is a semialgebraic set

(i) � = [0, 1
n−1 ]; (ii) �+ = [0, 1

n ); (iii) �dd = [0, 1
2(n−1) ]; (iv) �me = [0, 1

n ); (v)

�me ∩ �dd = [0, 1
2(n−1) ].

Proof The Markov matrix P has eigenvalues 1 with multiplicity 1 and a− b = 1− nb
with multiplicity n − 1. Hence

(i) � = {b ∈ R : a = 1 − (n − 1)b ≥ 0, b ≥ 0} = [0, 1
n−1 ].

(ii) �+ = {b ∈ R : a = 1 − (n − 1)b ≥ 0, b ≥ 0, 1 − nb > 0} = [0, 1
n ).

(iii) �dd = {b ∈ R : a = 1 − (n − 1)b ≥ 0, b ≥ 0, 1 − (n − 1)b ≥ (n − 1)b} =
[0, 1

2(n−1) ].
(iv) By Remark 4, a Markov matrix is general Jukes–Cantor embeddable if and

only if the eigenvalue 1− nb satisfies 1 ≥ 1− nb > 0. Since 1 ≥ 1− nb necessarily
holds for any Markov matrix, we have �me = �+.

(v) Since �dd ⊆ �+ = �me, then �me ∩ �dd = �dd .

The relative volumes of relevant sets for the general Jukes–Cantor model are
presented in Table 5. Proposition 3 gives for the hachimoji 1-parameter model (i)
� = [0, 1

7 ]; (ii)�+ = [0, 1
8 ); (iii)�dd = [0, 1

14 ]; (iv)�me = [0, 1
8 ); (v)�me ∩�dd =

[0, 1
14 ].
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Table 5 The relative volumes
for the general Jukes–Cantor
model

� �+ �dd

V (·)
V (�)

1 n−1
n

1
2

V (�me∩ · )
V (·)

n−1
n 1 1

7 Conclusion

When modelling sequence evolution we often adopt several simplifying assumptions,
which make the statistical problems tractable. The commonly used Markov models
depend on the assumption that sites evolve independently following aMarkov process.
The Markov chain is often assumed to be homogeneous continuous-time, that is the
transition probabilities are independent of the time. This means that the instantaneous
rates of substitution at any time are fixed and usually displayed as the entries of rate
matrices. If an evolutionary process is not homogeneous, then one can multiply transi-
tion matrices of short homogeneous processes. The resulting matrix is not necessarily
embeddable, but if it is, then the inhomogeneous process can be approximated by a
homogeneous one.

In this paper we provide necessary and sufficient conditions for model-embedda-
bility of n × n symmetric group-based substitution models, which include the well
known Cavender–Farris–Neyman, Jukes–Cantor, Kimura-2 and Kimura-3 parameter
models for DNA. We fully characterize those embeddable n × n stochastic matrices
following a symmetric group-based model structure whose Markov generators also
satisfy the constraints of the model, which we refer to as model embeddability.

A novel application of our main result is the characterization of model embed-
dability for three group-based models for the hachimoji DNA, a synthetic genetic
system with eight building blocks. For these models we also compute the relevant vol-
umes of model embeddable matrices within other relevant sets of Markov matrices.
These computations show how restrictive is the hypothesis of a particular hachimoji
time-continuous group-based model.

In this article we have considered symmetric group-based models. The importance
of the symmetricity assumption is that it guarantees that the eigenvalues of rate and
transition matrices of a group-based model are real. We use this property in the proof
of Theorem 1. A future research question is to explore whether this approach can be
extended to group-based models that are not symmetric.
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A Friendly labeling functions

Besides G-compatible labeling functions, there is another class of labeling functions
which has been studied in the literature. They are called friendly labeling functions
and were introduced by Sturmfels and Sullivant (2005). Friendly labelings are useful
in determining phylogenetic invariants for group-based models on evolutionary trees.
In particular, a friendly labeling guarantees that if a particular labeling comes from an
assignment of group elements, then any choice of a group element to one particular
edge which is consistent with the labeling can be extended to an assignment that is
consistent with labeling on all edges of the claw tree.

Definition 3 Let G be a finite abelian group and L : G → L a labeling function. Let
n ∈ N and Z := {g ∈ Gn : gn = ∑n−1

i=1 gi }. Define the map L̃ : Z ⊆ Gn → Ln

to be the induced labeling function on Z ⊆ Gn . The labeling function L is said to
be n-friendly if for every l ∈ L̃(Z) and i = 1, 2, · · · , n, we have πi (L̃−1(l)) =
L−1(πi (l)). Here, πi denotes the projection to the i-th component. Furthermore, the
labeling function L is said to be friendly if it is n-friendly for all n ≥ 3.

By Sturmfels and Sullivant (2005, Lemma 11), to checkwhether a labeling function
is friendly, it is enough to check that the labeling is 3-friendly.

Example 6 (Sturmfels and Sullivant 2005, Example 9) Let G = Z4 and L : G →
{0, 1, 2} such that

L(0) = 0, L(1) = 1, L(2) = L(3) = 2.

Then L is not friendly labeling because L−1(π3((1, 1, 2))) = {2, 3} while
π3(L̃−1(1, 1, 2)) = π3((1, 1, 2)) = {2}.

Table 6 summarizes all friendly labelings for abelian groups of order n, where
2 ≤ n ≤ 8. In the table, two group elements receive the same label if they belong to
the same subset in a partition of G. In the table we do not include the friendly labelings
for Z2 × Z4 and Z2 × Z2 × Z2, since there are too many of them.

The next example shows that there are friendly labelings that are not G-compatible.

Example 7 Let G be a finite abelian group and L : G → {0} the labeling function
defined by L(g) = 0 for all g ∈ G. By Lemma 5, the labeling function L is not G-
compatible. However, it is a friendly labeling, since πi (L̃−1((0, 0, 0))) = πi (Z) = G
and L−1(πi ((0, 0, 0))) = L−1(0) = G.
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Table 6 Friendly labelings for abelian group of order n ≤ 8

n Group Friendly labelings

2 Z2 {{0,1}},{{0},{1}}

3 Z3 {{0,1,2}},{{0},{1,2}},{{0},{1},{2}}

4 Z4 {{0,1,2,3}},{{0},{1,2,3}},{{0,2},{1,3}},{{0},{1,3},{2}},{{0},{1},{2},{3}}

4 Z2 × Z2 {{(0,0),(0,1),(1,0),(1,1)}},{{(0,0)},{(0,1),(1,0),(1,1)}},
{{(0,0),(0,1)},{(1,0),(1,1)}},{{(0,0),(1,1)},{(0,1),(1,0)}},
{{(0,0),(1,0)},{(0,1),(1,1)}},{{(0,0)},{(0,1)},{(1,0),(1,1)}},
{{(0,0)},{(0,1),(1,0)},{(1,1)}},{{(0,0)},{(0,1),(1,1)},{(1,0)}},
{{(0,0)},{(0,1)},{(1,0)},{(1,1)}}

5 Z5 {{0,1,2,3,4}},{{0},{1,2,3,4}},{{0},{1,4},{2,3}},{{0},{1},{2},{3},{4}}

6 Z2 × Z3 {{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)}},{{(0,0)},{(0,1),(0,2),(1,0),(1,1),(1,2)}},
{{(0,0),(0,1),(0,2)},{(1,0),(1,1),(1,2)}},{{(0,0),(1,0)},{(0,1),(0,2),(1,1),(1,2)}},
{{(0,0)},{(0,1),(0,2)},{(1,0),(1,1),(1,2)}},{{(0,0)},{(0,1),(0,2),(1,1),(1,2)},
{(1,0)}},{{(0,0),(1,0)},{(0,1),(1,1)},{(0,2),(1,2)}},
{{(0,0)},{(0,1)},{(0,2)},{(1,0),(1,1),(1,2)}},
{{(0,0)},{(0,1),(0,2)},{(1,0)},{(1,1),(1,2)}},{{(0,0)},{(0,1),(1,1)},{(0,2),(1,2)},
{(1,0)}}, {{(0,0)},{(0,1)},{(0,2)},{(1,0)},{(1,1)},{(1,2)}}

7 Z7 {{0,1,2,3,4,5,6}},{{0},{1,2,3,4,5,6}},{{0},{1,2,4},{3,5,6}},
{{0},{1,6},{2,5},{3,4}},{{0},{1},{2},{3},{4},{5},{6}}

8 Z8 {{0,1,2,3,4,5,6,7}},{{0},{1,2,3,4,5,6,7},{{0,4},{1,2,3,5,6,7}},
{{0,2,4,6},{1,3,5,7}},{{0},{1,2,3,5,6,7},{4}},{{0},{1,2,6,7},{3,4,5}},
{{0},{1,4,7},{2,3,5,6}},{{0},{1,3,5,7},{2,4,6}},{{0,4},{1,3,5,7},{2,6}},
{{0},{1,3,5,7},{2,6},{4}},{{0,4},{1,5},{2,6},{3,7}},{{0},{1,3,5,7},{2},{4},
{6}},{{0},{1,3}{2,6},{4},{5,7}},{{0},{1,7},{2,6},{3,5},{4}},{{0},{1,5},{2,6},
{3,7},{4}},{{0},{1,5},{2},{3,7},{4},{6}},{{0},{1},{2},{3},{4},{5},{6},{7}}

Computations for abelian groups of order at most eight demonstrate that every
symmetric G-compatible labeling is a friendly labeling. It is left open, if the same is
true for any finite abelian group.

Question 1 Given a finite abelian group G, is the set of all symmetric G-compatible
labelings strictly contained in the set of all friendly labelings?
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