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Abstract

Background: Plasmid DNA molecules are closed circular molecules that are widely used in life sciences, particularly
in gene therapy research. Monte Carlo methods have been used for several years to simulate the conformational
behavior of DNA molecules. In each iteration these simulation methods randomly generate a new trial conformation,
which is either accepted or rejected according to a criterion based on energy calculations and stochastic rules. These
simulation trials are generated using a method based on crankshaft motion that, apart from some slight
improvements, has remained the same for many years.

Results: In this paper, we present a new algorithm for the deformation of plasmid DNA molecules for Monte Carlo
simulations. The move underlying our algorithm preserves the size and connectivity of straight-line segments of the
plasmid DNA skeleton. We also present the results of three experiments comparing our deformation move with the
standard and biased crankshaft moves in terms of acceptance ratio of the trials, energy and temperature evolution,
and average displacement of the molecule. Our algorithm can also be used as a generic geometric algorithm for the
deformation of regular polygons or polylines that preserves the connections and lengths of their segments.

Conclusion: Compared with both crankshaft moves, our move generates simulation trials with higher acceptance
ratios and smoother deformations, making it suitable for real-time visualization of plasmid DNA coiling. For that
purpose, we have adopted a DNA assembly algorithm that uses nucleotides as building blocks.
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Background
Plasmid DNA (pDNA) is a family of DNA molecules
widely used in life sciences, more specifically in gene
therapy research. These molecules are produced inside
host cells in a supercoiled conformation (i.e., their nat-
ural conformation), which is the desired conformation
for therapy purposes. However, such molecules can lose
their original conformation in the production and purifi-
cation processes, assuming more relaxed or even linear
conformations, owing to thermodynamic changes (e.g.,
temperature changes). One of the main challenges for
researchers is to find optimal thermodynamic conditions
for plasmid DNA therapeutic application without losing
its supercoiled conformation or, at least, minimizing the
occurrence of relaxed or open DNA molecules.
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For many years, computational methods based on
laboratory experimental data have been proposed to
model and simulate the dynamic behavior and confor-
mational changes in pDNA molecules under certain con-
ditions. The Monte Carlo (MC) method has generally
been accepted as a reliable tool for simulation pur-
poses, and is seen as the standard. This iterative method
tries to minimize the elastic energy of the molecule
in each iteration step of the simulation process, test-
ing the probability of acceptance of each new trial. The
goal is to make the molecule converge to an equilib-
rium state after performing as few iterations as possible,
i.e., maximizing the acceptance ratio of the trials with-
out compromising the effectiveness and reliability of the
simulation.

To simplify the simulation process, each plasmid DNA
molecule is reduced to a linear skeleton (i.e., polyline)
with equal sized segments that represents the topologi-
cal conformation of the molecule. Random deformations
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are then applied to this skeleton, generating new trial
conformations, which are either accepted or rejected.
Interestingly, the essence of the method used to ran-
domly generate each new trial, referred to as the standard
crankshaft move, has remained the same for many years,
with its origins dating back to the early 1960s [1-3],
more specifically in the context of lattice polymer chains.
This move was later adapted for simulation of flexible
molecules like DNA using MC methods.

However, the standard crankshaft move has a very low
acceptance ratio of trials, i.e., many trials are rejected.
Moreover, it can present very unnatural behavior as it
features very sudden motions along large portions of
the molecule. To enhance the efficiency of MC moves,
biasing was found to be a solution [4,5]. However, as
Earl and Deem noted [6], biasing a deformation move
implies that the probability of moving from one state to
another is no longer symmetric; consequently, the accep-
tance rule used must be altered to maintain the detailed
balance.

In this paper, we present a new unbiased move for
plasmid DNA, whose skeleton is a closed polyline. This
move not only preserves the size of each segment and
its connectivity, but is also very effective in maximiz-
ing the acceptance ratio of the trials and stabilizing the
molecule, thereby allowing steady, gradual temperature
changes during the simulation. Our method also gener-
ates natural and realistic animations that can be used in
real-time simulation and visualization.

Related work
In this section, we briefly review the MC methods in com-
putational biology and chemistry, as well as the generative
methods for DNA conformations that form the core of
these MC methods.

Monte Carlo simulations
The MC simulation method is one of the most important
methods used in DNA simulations. This method, which
was originally presented by Metropolis et al. [7], gener-
ates DNA conformations combining energy calculations,
random conformational changes, and statistics.

Frank-Kamenetskii et al. [8], Vologodskii et al. [9] and
Lebret [10] were the first to use an MC method to present
numerical results of the probability of the occurrence of
knots on pDNA. Frank-Kamenetskii and Vologodskii also
presented valuable information on DNA torsional rigid-
ity [11]. A few years later, Vologodskii et al. used MC sim-
ulations to study the conformational and thermodynamic
properties of DNA molecules with physiological levels of
supercoiling [5]. Vologodskii also included a chapter on
“Monte Carlo Simulation of DNA Topological Proper-
ties” in the book “Topology in Molecular Biology” [12],

and with Rybenkov, they reviewed how conformational
properties of DNA catenanes can be studied using MC
simulations [13].

Gebe et al. [14] presented an MC algorithm to simulate
supercoiling free energies in unknotted and trefoil knot-
ted inextensible circular chains with finite twisting and
bending rigidity, while Marko et al. [15] made use of MC
simulations to study the relationship between the amount
of twisting in DNA molecules and its supercoiling.

Kundu et al. used an MC algorithm to explain denatura-
tion characteristics in a supercoiled plasmid and calculate
the probability of denaturation for each base pair at differ-
ent supercoiling degrees [16].

In their work on the relationship between knots and
supercoiling, Cozzareli et al. used an MC simulation
procedure to generate an equilibrium set of conforma-
tions [17].

MC simulations have also contributed to the under-
standing of the interplay between base-pair stacking
interaction and permanent hydrogen-bond constraints in
supercoiled DNA elasticity [18].

Based on the fact that atomic force microscopy has
generated images of supercoiled DNA confined to a sur-
face, which affects conformational properties such as twist
and writhe, Fujimoto and Schurr modified an existing
program, developed to perform MC simulations of super-
coiled DNA in solution, flattening the DNA to simulate
the effect of deposition on a surface [19]. Fujimoto and
Schurr also presented a method to estimate torsional
rigidities of weakly strained DNA [20].

Burnier et al. used MC calculations to identify a mecha-
nism by which topoisomerases can keep the knotting level
low [21].

More recently, Olson et al., in their paper “How stiff is
DNA?”, used MC simulations to understand the behav-
ior of a long, double-helical polymer in the tight confines
of a cell and in the design of novel nanomaterials and
molecular devices [22].

Generative methods of DNA conformations
It has generally been accepted that supercoiled, i.e., the
self twisting of the double stranded molecule over itself,
is the desired conformation for pDNA molecules [23].
Thus, it is necessary to measure the supercoiling of a given
molecule. One of the most important quantitative mea-
sures of closed circular DNA supercoiling is the linking
number (Lk) of the two DNA strands, which is an inte-
ger corresponding to the number of double-helical turns
of the molecule.

There are several methods for calculating Lk, with one
of the most widely used involving the computation of two
very important geometrical properties of closed circular
DNA molecules: twist (Tw) and writhe (Wr). Tw features
the coiling of the two DNA strands around the axis of the
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helix, while Wr is a measure of the coiling of the helix axis
in space [24]. Thus, the main result is:

Lk = Tw + Wr

In our implementation, we used Klenin and Langowski’s
computation method (2a) to calculate Wr [25].

Owing to the nature of three-dimensional closed poly-
lines, knots can occur in some pDNA conformations. This
is not a desirable feature, i.e., each closed circular DNA
molecule must remain unknotted during the simulation
process, keeping its original topology even if supercoil-
ing occurs. Knot detection methods must be used during
simulation to reject possible knotted conformations. We
adopted Harris-Harvey’s knot detection algorithm, which
uses the Alexander polynomial to detect the existence
of knots [26]. This algorithm is based on the predicate
that if two knots have different Alexander polynomials,
then the knots are topologically distinct. Thus, because
the Alexander polynomial of an unknotted closed cir-
cular DNA molecule is equal to one, all conformations
for which this polynomial does not equal one must be
rejected during the simulation.

Each trial conformation must be generated in such a
way that the size and connectivity of each segment of the
DNA chain do not change. A major deformation method
used to displace vertices of the DNA chain was introduced
by Klenin et al. [4,5]. This method, which is just a biased
crankshaft move, starts by randomly choosing two ver-
tices vm and vn. Then, all the vertices (and consequently
all connecting segments) are rotated a randomly selected
angle θ around the axis defined by the line connecting
vm and vn, as shown in Figure 1. Furthermore, following
Klenin et al. [4], the value of θ is uniformly distributed
over a certain interval, and must be continuously adjusted
during the simulation to guarantee that about half the
steps are accepted.

To increase the acceptance ratio of the simulation trials
another type of motion has been proposed in the litera-
ture. This improvement performs a sub-chain translation,
which is usually referred to as reptation motion [5], and
is illustrated in Figure 2. First, two vertices vi and vj are
randomly chosen. Then, the sub-chain between vi and

vj is translated by one segment length along the chain
contour. The segment that was immediately after vj is
also translated to fill the gap between vi and vi+1. This
motion suggests movement analogous to a snake slither-
ing and, hence, the name reptation motion. Other types
of motion can be adopted if the Metropolis microscopic
reversibility requirement is satisfied, i.e., if the probability
of each trial conformation is the same as that of the reverse
movement [7].

Visualization of DNA conformational changes over time
is also important as part of the entire simulation of
DNA behavior. This is usually performed only when the
entire simulation procedure ends and is typically done
by assembling the DNA atoms along the DNA axis.
Interestingly, a more efficient DNA assembly algorithm
was presented to allow the visualization of all the steps
of the simulation procedure in real-time [27]. In this
method, each DNA nucleotide is represented by a three-
dimensional building block, allowing the assembly of the
entire molecule faster, but in a realistic way. In geomet-
ric terms, each of the four building blocks featuring DNA
nucleotides is a Gaussian isosurface, which was previously
generated by an algorithm that triangulates molecular
surfaces [28].

Methods
The deformation algorithm presented in this paper uses a
linear skeleton (i.e., a polyline) with equal sized segments,
henceforth called the DNA skeleton. Before introduc-
ing the core of the method itself, we explain how the
DNA skeleton can be created for use by the deformation
algorithm.

Initial conformation of the DNA skeleton
The DNA skeleton can assume any closed unknotted
conformation. The simplest of these conformations is a
completely relaxed circular conformation. Besides, the
length of each segment of the DNA skeleton corresponds
approximately to 30 base pairs of the double helix [12].

That said, the first step of the algorithm is to determine
the number of segments of the DNA skeleton ensuring
around 30 base pairs per segment. Assuming that the

Figure 1 Crankshaft motion.
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Figure 2 Reptation motion.

DNA has a sequence of n base pairs, we want to find an
integer s denoting the number of segments of the DNA
skeleton. We define two integer parameters min and max,
respectively, as the minimum and maximum numbers
of base pairs that are admissible per segment, such that
min < 30 < max. Then, for each integer value i, min ≤
i ≤ max, we calculate the corresponding si = round(n/i).
Finally, we adopt s = si as the number of segments of the
DNA skeleton that minimizes |n − (si . i)|.

Once we have the number of segments s, we just have
to build a regular polygon with s sides inscribed in a
circle. From the number of base pairs, we can infer the
approximate perimeter of the circle, as well as the corre-
sponding radius R, from which we obtain the first vertex
of the skeleton at p0 = (R, 0, 0). Then, we apply s suc-
cessive rotations to p0 about the origin to obtain all the
vertices of the DNA skeleton of the initial relaxed confor-
mation; the rotation angle is given by α = 2π/s. Note that,
although the initial conformation is circular, the methods
for DNA assembly and deformation apply to any initial
conformation.

Skeleton deformation algorithm
Assuming we have a three-dimensional closed polyline Pk
representing the DNA skeleton, we need to deform this
polyline to obtain a new polyline Pk+1 with the same num-
ber of equal sized segments as Pk , but without loss of its
connectivity.

Let s be the number of segments of Pk and {vi}, i =
0, . . . , s − 1, its vertices. We choose a random vertex vm,
0 ≤ m ≤ s − 1 as our mobile vertex, i.e., the vertex
with the most motion freedom in the current trial con-
formation. Any movement of the mobile vertex vm implies
movement of its closest neighbors vm−1 and vm+1, called
semi-mobile vertices (Figure 3). The remaining neighbors
vm−2 and vm+2 are fixed vertices because they do not move
in the deformation. Thus, in each deformation step, only
three vertices will be displaced: vm, vm−1 and vm+1.

Figure 3 Mobile vertex vm can be displaced randomly in the
intersection of three spheres, Nm, Sm−2, and Sm+2.

However, vm cannot be freely displaced (Figure 3). In the
first instance, vm moves within the sphere Nm centered
at vm with radius r = 2 �, where � = 3.3Å is the
distance between two consecutive base pairs. More specif-
ically, the new position of vm is found randomly within
the region resulting from the intersection of the three
spheres, Nm, Sm−2 and Sm+2. The latter two spheres with
radius 2l are centered on the fixed vertices vm−2 and
vm+2, respectively, where l is the length of each segment
of the DNA skeleton. Note that the optimal value 2 � for
r was found experimentally and based on the rate of suc-
cessful trial conformations in the first attempt, about 30
percent, though this rate remained high for a value of r
up to 3 �. The small radius r of sphere Nm ensures that
the transition from Pk to Pk+1 occurs without noticeable
jumps.

As noted above, the new position of vm was found ran-
domly within the region Nm ∩ Sm−2 ∩ Sm+2 (Figure 3),
but no explanation of this random procedure was given. In
fact, to calculate the new position of vm, we first convert
its Cartesian coordinates (x, y, z) to spherical coordinates
(d, θ , φ) relative to vm−2, where d is the distance between
vm−2 and vm. Next, we randomly generate a new position
for vm as (d + �d, θ + �θ , φ + �φ), where �d ∈ [−r, r]
and �θ , �φ ∈ [−π , π ]. It is clear that the displacement of
the flanking vertices vm−1 and vm+1 depends on the pre-
vious movement of vm. Here we focus on the computation
of the new position of vm−1 since the new position of vm+1
can be calculated similarly.

For this purpose, we also convert the Cartesian coor-
dinates of vm−1 to spherical coordinates (l, α, β) relative
to vm−2, where l is the radius of the three spheres sm,
sm−1, and sm−2 centered on vm, vm−1, and vm−2, respec-
tively. Moving vm−1 to a new position must be done in
such a way that its distance l to vm−2 and vm remains
unchanged. In other words, the new vm−1 must lie on the
circumference resulting from the intersection of the two
surfaces bounding sm and sm−2 (Figure 4). If �d = 0,
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Figure 4 Displacement of vertices vm and vm−1.

the new position of vm−1 relative to vm−2 is given by
(l, α + �θ , β + �φ); otherwise, the new location of vm−1
is (l, α + �θ + �ψ , β + �φ), where �ψ is the angle of
the angular motion of vm−1 on sm−2 resulting from the
translational displacement �d of vm along the line defined
by vm and vm−2 (Figure 5). We compute �ψ by rear-
ranging the equation that describes the reciprocal motion
of the piston with respect to the crank angle as follows
(cf. [29], p.44):

cos(α + �θ + �ψ) = d + �d
2 l

(1)

Note that applying the translational displacement �d to
vm before the rotational motions �θ and �φ means that
�θ = 0 in Eq. (1); otherwise, �θ �= 0. In summary, mov-
ing vm implies a translational and two rotational motions

relative to vm−2 expressed in spherical coordinates. This
causes vm−1 to rotate accordingly on the sphere centered
at vm−2, with part of this rotational motion determined by
the translational displacement �d of vm.

These types of moves (i.e., translation and rotation)
satisfy the principle of microscopic reversibility [30],
although this is not critical for our purposes because
the simulation procedure is only used to locate energy
minima. As noted by Mauri in [31], for a conservative
n-body system, as in the case of a DNA molecule, microre-
versibility stems from the invariance of the equations of
motion with respect to time reversal, i.e., every micro-
scopic motion reversing all particle velocities also results
in a solution. This leads to the so-called principle of
detailed balance [32], which states that under stationary
conditions (i.e., all probability distributions are invariant
under time translation) each possible transition from one
conformation to another balances itself with the reversed
transition in time. In other words, the probability of
obtaining trial conformation Pk+1 if the current confor-
mation is Pk must be equal to the probability of obtain-
ing trial conformation Pk if the current conformation is
Pk+1 [5].

With this in mind, and having calculated the con-
strained position of vm−1 as a consequence of the move
of vm, we need to determine its new position after
rotating it randomly about the axis defined by vm−2
and vm. It is clear that the old and new locations of
vm−1 lie on the circumference resulting from the inter-
section of spheres sm−2 and sm. Likewise, we find the
new position of vm+1 after rotating it randomly about
the axis defined by vm+2 and vm. Interestingly, these
two rotations can be seen as two particular crankshaft
rotations.

Figure 5 Translational piston move of vertex vm translates into a rotational move of vm−1.
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Finally, it is worth noting that the deformation algorithm
described above can also be used in other biochemical
systems such as internal coordinate models of cyclic pep-
tides, as well as in some mechanical problems related to
articulated arms and chain moves. In fact, this algorithm
can be used to randomly deform any regular polygon (or
polyline with equal sized segments) in two or three dimen-
sions with guaranteed preservation of connectivity and
the length of segments.

DNA assembly algorithm
For a realistic visualization of closed circular DNA sim-
ulations in real-time, we combine the new deformation
algorithm described above with the DNA assembly algo-
rithm introduced by Raposo and Gomes [27]. This DNA
assembly algorithm uses four three-dimensional building
blocks representing DNA nucleotides (Figure 6), namely,
adenine (A), cytosine (C), thymine (T), and guanine (G).
Each building block is a pre-triangulated isosurface gen-
erated by a triangulation algorithm for molecules [28].
The assembly procedure for nucleotides can be thought of
as the operation of wrapping helicoidal DNA backbones
around cylinders along the DNA skeleton. The algorithm
iterates over N base pairs of the DNA, assembling a single
base pair biBi per iteration. Each iteration comprises four
distinct stages:

1. Generation of geometric instances for nucleotides
bi and Bi. Considering that there are only four
possible base pairs, given a nucleobase ni of a DNA
strand, two geometric instances of nucleotides
must be generated, the first for the building block
bi and the second for the corresponding building
block Bi.

2. Positioning of the base pair biBi on plane z = 0. Base
pair biBi is positioned as if it was the first base-pair of
the DNA molecule, that is, it is placed perpendicular

to the segment that starts at the origin in such a
way that its center coincides with the origin.

3. Alignment of base pair biBi with the plane
perpendicular to segment i. Note that this
alignment involves a rotation about the origin of
the coordinate system.

4. Translation of base pair biBi to the plane
perpendicular to segment i. Finally, because all
geometric transformations (i.e., translations and
rotations) are performed around the origin,
building blocks bi and Bi must be displaced to
their correct positions relative to the midpoint
of the corresponding segment i of the DNA
axis.

It is important to note that this DNA assembly algo-
rithm does not take into account the sharp kinks that
may occur at the junctions of the conformation segments,
as shown in Figure 7. Nevertheless, a possible solution
to this problem is the smoothing procedure proposed by
Kummerle and Pomplun [33]. For detailed information
about the DNA assembly algorithm, the reader is referred
to [27].

Monte Carlo simulation
MC simulations are iterative methods based on the con-
cept of elastic energy of closed circular DNA and on
stochastic parameters and calculations aimed at converg-
ing to the energetic and thermodynamic equilibrium of
the molecule. The main principle is to perform random
DNA deformations and check whether the resulting new
conformations should be accepted or rejected accord-
ing to energy changes and acceptance probability. More
specifically, a random deformation of the DNA is accepted
if it reduces the elastic energy of the molecule or has
some probability of occurring. In the experiments and
results presented in this paper, we used the same MC

Figure 6 DNA building blocks: (A) adenine, (C) cytosine, (G) guanine, and (T) thymine.
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Figure 7 Detail of DNA segments assembled around a random piece of the skeleton.

simulation method and parameters as those used in [33],
where elastic energy E is calculated as

E = Eb + Et . (2)

Here Eb is the bending energy given by

Eb = kBTα

N∑
i=1

	2
i , (3)

where kB is the Boltzmann constant, T is the temperature,
α = 2.403 is the bending constant, and 	i is the angu-
lar displacement between the directions of segments i and
i + 1. Torsional energy Et is given by

Et = (2π2C/L)(�Lk − Wr)2, (4)

where C denotes a constant parameter known as the tor-
sional rigidity, L is the total length of the chain, and Wr is
the writhe of the skeleton. The linking number difference
�Lk in (4) is the difference between the linking number
Lk of the DNA molecule and that, Lk0, of its relaxed DNA
conformation

�Lk = Lk − Lk0 = σLk0, (5)

where −0.07 ≤ σ ≤ −0.05 is the superhelix density
parameter [34].

For calculating writhe Wr, we used the method pro-
posed in [25], more specifically, method 2b [10]. This
method is based on the principle that writhe can be cal-
culated as the difference between linking number Lk and
twist Tw:

Wr = Lk − Tw. (6)

This method for computing Wr uses an auxiliary chain
close enough to the DNA skeleton, and with as many seg-
ments si as the DNA skeleton. Then, considering that ri is
the initial point of segment si, we can find the directional
writhe as follows:

Wrz =
N∑

i=2

∑
j<i

wij (7)

where

wij =
{

sign((sj × si)(rj − ri)) if π(si) ∩ π(sj) �= ∅
0 else

(8)

For the computation of (8), we must check whether
segments si and sj cross, i.e., whether their projections
π(si) and, π(sj) onto plane z = 0 intersect. We used
LaMothe’s algorithm to check whether the projections of
these segments intersect [35].

In turn, and following Klenin and Langowski [25], twist
is given as

Tw = 1
2π

N∑
i=1

[
cos−1(ai−1.pi) − cos−1(pi.ai)

]
sign((pi)z)

(9)

where pi denotes the vector, normal to both si−1 and si,
(pi)z denotes the z-th component of vector pi vector, and

ai = u × si
|u × si| , (10)

where u is the unit vector in the z axis direction.
Then, using the results of (7) and (9), we get the final

writhe number:

Wr = Wrz − Tw. (11)

Once we know how to perform the necessary energy
calculations, we can apply the MC method to each itera-
tion of the simulation to obtain a new DNA conformation
from a random deformation of the DNA skeleton. Then,
we calculate the energy Ei+1 of the new candidate confor-
mation, and compare it with the energy, Ei, of the previous
conformation. The new conformation i + 1 is accepted if
Ei+1 < Ei or

exp[(Ei − Ei+1)/(kBTM))] > ρ (12)

where TM is the temperature of the experiment and ρ is a
random value between 0 and 1 [33].

Knots detection
It is important to note that knots can occur when random
deformations are applied to DNA conformations. Because
this is not desirable, i.e., DNA supercoiling must occur
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without generating knots, we must check for the existence
of knots and reject the deformation if we find one or more
knots. To optimize the performance of the method, this
checking procedure is done before the MC acceptance
test, avoiding unnecessary energy calculations.

For knot detection we used the method of Harris and
Harvey [26]. In this method, based on the principle that
two knots are topologically distinct if they have distinct
Alexander polynomials, the DNA skeleton is converted
to a knot data structure, and its Alexander polynomial is
computed and compared with the Alexander polynomial
of the circle, which is a trivial knot. If these two polyno-
mials are different, the DNA skeleton contains at least one
non-trivial knot.

Results
To evaluate the effectiveness and performance of our
deformation method when applied in MC simulations, we
performed a set of experiments comparing our method
with two types of DNA chain moves, namely, the standard
crankshaft move and the biased crankshaft move.

The standard crankshaft move is a randomly chosen
move. In fact, the ends, vm and vn, of each sub-chain are
randomly chosen, as is the case with the rotating angle θ

of the sub-chain around the line that passes through its
ends (cf. Figure 1). That is, the standard crankshaft move
does not adjust the size of the sub-chain nor the rotation
angle in any way. On the other hand, as in the deforma-
tion method introduced by Klenin et al. [4,5], the biased
crankshaft move used here adjusts only the rotation angle.
Recall that this type of biased moves is a way of enhancing
the efficiency of MC moves, because it allows us to choose
moves with a higher acceptance ratio [6].

Through these experiments we aim to demonstrate that
our method generates a smoother and more controlled

deformation, which leads to more consistent and even
faster convergence to molecular energy equilibrium.

Experimental setup
Three experiments (A, B, and C) were performed to
compare the proposed method with two classic meth-
ods, namely, the standard crankshaft move and biased
crankshaft move.

We used a setup based on Kummerle and Pomplun’s
work [33] for the pUC19 plasmid DNA molecule. All the
three experiments were performed using the same closed
circular DNA sequence with 2686 base pairs (pUC19 [36])
and exactly the same conditions and MC simulation
parameters for the three Monte Carlo moves under com-
parison, that is: kB = 1.38−23; α = 2.403; C = 3 × 10−28;
and σ = −0.04. However, we performed experiment A at
a constant temperature of 293 K, while experiments B and
C were performed progressively reducing the temperature
from 350 K to 10 K.

Finally, it should be noted that the MC simulations were
performed on an 64-bit Windows 7 laptop computer with
an Intel i5 2.40 GHz CPU, 4 GB RAM and an Nvidia
Geforce GT 520 MX 1 GB graphics card.

Experiment A: pUC19 with constant temperature
In experiment A, we performed an MC simulation with
500,000 steps using the pUC19 closed circular DNA
sequence at a constant temperature of 293 K as in [33].
This experiment was replicated using: (a) the stan-
dard crankshaft move, (b) the biased crankshaft move
as described in [4,5], and (c) the proposed method.
In the particular case of the biased crankshaft move,
after an exhaustive optimization procedure with more
than 100,000 steps, we came to the conclusion that the

Figure 8 Optimization of initial angle range for 100,000 steps.
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Figure 9 Experiment A: Crankshaft rotation angle for 500,000 steps at a constant temperature of 293 K.

crankshaft rotation angle should initially be in the range
[−2.043, 2.043] (radians), as shown in Figure 8. Further-
more, as expected, this angle decreases over time Figure 9.

We used two measures to compare the efficiency of
the three methods: (1) elastic energy equilibrium and (2)
acceptance ratio of trials. The graphs of elastic energy
for the three methods are shown in Figure 10, where we
can see that the average elastic energy for each method
remains approximately the same over time. Nevertheless,
on average, the elastic energy of the proposed method
is slightly higher than that of the standard crankshaft
method, which in turn is higher than the energy associated
with the biased crankshaft method.

On the other hand, the acceptance ratio of trials was
evaluated for each slice of 10,000 steps from a total of
500,000 steps (see Figure 11), according to the acceptance
condition (12). The acceptance ratio was steadily higher
for the proposed method, always remaining above 4,000
(and even reaching 5,000) accepted steps for each slice
of 10,000 steps, i.e., an average acceptance ratio around
45%, and achieving higher ratios around 50% in the second
half of the experiment. On the contrary, the acceptance
ratio for the standard crankshaft move was always under
30%, and even lower in the first 10,000 steps of the exper-
iment. With respect to the biased crankshaft move, the
average acceptance ratio was slightly above 30%, but far
below the results obtained using the proposed method.

This indicates that our new method generates trials with
much higher probabilities of being accepted under the
MC simulation conditions at a constant temperature, i.e.,
it minimizes the number of trial rejections, and avoids
useless computations.

During experiment A, we also noted that the crankshaft
moves generated a few hundred conformations that were
rejected owing to the existence of knots. On the contrary,
our new method did not produce any knots at any time
during the 500,000 simulation steps because the deforma-
tion is done smoothly and without conformational jumps.
This concurs with the fact that, despite DNA molecules
in living cells being long and compactly coiled, they rarely
get knotted [21], which suggests that supercoiling inhibits
DNA knotting.

Experiment B: pUC19 with variable temperature
Experiment B also involved 500,000 MC steps. This exper-
iment was also replicated for each of three methods ana-
lyzed in this paper. In the particular case of the biased
crankshaft move, once again, after an exhaustive opti-
mization procedure with over 100,000 steps, we con-
cluded that the initial crankshaft rotation angle should be
in the range [−1.854, 1.854] (radians) because, in experi-
ment A, the temperature is not constant. Adjustments to
this rotation angle range during the experiment are shown
in Figure 12.

Figure 10 Experiment A: Elastic energy for 500,000 steps at a constant temperature of 293 K.
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Figure 11 Experiment A: Acceptance trials for slices of 10,000 steps from a total of 500,000 steps at a constant temperature of 293 K.

More specifically, the temperature decreases with
energy, i.e., if the average elastic energy of a 1,000-
step interval is higher than that of the previous slice of
1,000 steps multiplied by a 0.9 factor, the temperature is
also multiplied by a 0.9 factor. In fact, the temperature
decreased progressively from 350 K to 10 K. As expected,
the closer the method converges to the energy equilib-
rium, the greater is the decrease in temperature. As in
experiment A, the acceptance ratio of the proposed defor-
mation method was always higher than those of the classic
deformation methods (see Figure 13).

It was a somewhat surprising to observe how the energy
decreased during the simulation. As shown in Figure 14
(top), when using the proposed method, the elastic energy
of the molecule converged sooner and more consistently
to equilibrium. As shown, we achieved energy equilibrium
after approximately 80,000 MC steps, while the crankshaft
moves only stabilized after 160,000 steps. Besides, the
standard crankshaft move generated a number of very
slight energy jumps, i.e., the energy did not decay as con-
sistently as in the proposed method. However, the energy
level at equilibrium was the same for all three methods,
approximately 0.14 × 10−19.

No less meaningful was the temperature decay dur-
ing this experiment. As presented in Figure 14 (bottom),
when using the proposed method, the MC tempera-
ture decreased more rapidly and in a more consis-
tent way, i.e., the graph for the new method is much
smoother with the advantage of reaching the equilibrium
temperature sooner. Figure 15 shows the final result of
experiment B.

In summary, we can say that the proposed deformation
method requires fewer simulation steps to achieve energy
equilibrium, largely owing to its high acceptance ratio.

Experiment C: average displacement
In experiment C, we set out to measure the amount of
deformation of plasmid DNA caused by each type of MC
move. This was accomplished by computing the aver-
age displacement of the DNA skeleton vertices for each
accepted trial. In this experiment, we only considered the
standard crankshaft move and the move proposed in this
paper. Taking into account vertices vi, vi+1, . . . , vi+n that
are displaced during a simulation trial, we determined
the distances di, . . . , di+n between the new positions and
the previous positions of these vertices, and straight-
forwardly computed the average displacement given by
(di + . . . + di+n)/(n + 1). Finally, we considered the accu-
mulated displacement for a slice of steps as the sum of
the average displacements of the accepted trials of that
slice.

More specifically, we performed a 5,000-step simulation
for each of the methods, namely, the standard crankshaft
move and the proposed move. As shown in Figure 16 (left),
the new move generates much smaller average displace-
ments than the standard crankshaft move. Besides, from
Figure 16 (right) we can see that the new move gener-
ates displacements right from the start of the simulation,
whereas the standard crankshaft move starts to produce
displacements later. This can be explained by the high
acceptance ratio of the new method, as well as its more
steady deformations.

Figure 12 Experiment B: Crankshaft rotation angle for 500,000 steps with temperature varying between 350 K and 10 K.
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Figure 13 Experiment B : Acceptance trials for slices of 10,000 steps from a total of 500,000 steps with temperature varying between 350
K and 10 K.

Moreover, from Figure 16, we conclude that smaller dis-
placements in each trial do not mean there will be smaller
accumulated displacements. The accumulated displace-
ments of the new method form a logarithmic curve, while
the curve of the standard crankshaft move is clearly expo-
nential (cf. Figure 16 (right)). This means that in the
new method, the closer we get to the point of energy
equilibrium, the shorter is the displacement toward a sta-
ble conformation, i.e., the average displacement for each
accepted trial converges to zero as the conformation con-
verges to the equilibrium. This is not the case in the
standard crankshaft move, as illustrated by the accentu-
ated variations in average displacement of the trials in
Figure 16 (left).

Discussion
As mentioned above, we used the same molecule (i.e.,
pUC19), the same conditions/parameters, and the same
MC simulation method in experiments A, B, and C. For
comparison purposes, each experiment was performed
using three different deformation methods: (a) the stan-
dard crankshaft move, (b) the biased crankshaft move
(i.e., with rotation angle optimization and adjustment),
and (c) the proposed method.

As expected, the acceptance ratio of trials for the
proposed method is higher than that for either of the
crankshaft moves. The acceptance ratio of the new
method is almost always greater than 40%, and even
reaches more than 60% at certain times. Moreover, unlike

Figure 14 Experiment B: (top) elastic energy during a 500,000-step experiment with temperature varying between 350 K and 10 K;
(bottom) temperature decaying during a 500,000-step experiment.
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Figure 15 Experiment B: pUC19 after 350,000 MC steps with temperature varying between 350 K and 10 K.

the crankshaft moves, the acceptance ratio for the pro-
posed method is very high from the very first steps of the
simulation. More specifically, in a scenario with decreas-
ing temperature, we obtained an acceptance ratio of more
than 60% for the proposed method compared with 5%
for the standard crankshaft move and 20% for the biased
crankshaft move in the first 10,000 MC steps.

With respect to elastic energy, the experiments also
show that as the temperature decreases the new move
achieves better performance than either of the crankshaft
moves. In fact, we noted that elastic energy tends to
its equilibrium point not only in a smoother and more
natural way, but also more quickly with fewer MC
steps.

On the other hand, with regard to the average dis-
placement of vertices in each trial, which provides the
deformation measure of each tentative conformation, we
noted that, as expected, the proposed move produces
smaller deformations than either of the crankshaft moves.
However, the accumulated displacement of the proposed
move is actually greater than those of both crankshaft
moves in the first 4,000 or so simulation steps (cf.
Figure 16 (right)). This high acceptance ratio in the initial

simulation steps means that the proposed move gener-
ates a much more consistent deformation, the behavior
of which obeys a logarithmic curve instead of the expo-
nential curve that describes the accumulated deformation
of each of the two crankshaft moves considered in this
paper.

Conclusion
The crankshaft rotation method is the most common
move found in the plasmid DNA simulation methods for
generating new DNA conformations. Recall that this clas-
sic method first selects two random vertices of the DNA
skeleton, and then all the segments between these two ver-
tices are rotated around the axis defined by them. This
move is not very effective because many trials are rejected
by the MC method. In addition to its low acceptance
ratio, this method can generate unnatural movements
with large portions of the DNA molecule displaced at
once, unless the relevant parameters are appropriately
adjusted.

In this paper, we introduced a new move for plasmid
DNA through MC simulations. In each iteration of the
simulation, only one vertex and its two closest flanking

Figure 16 Experiment C: (left) average displacement per 100 steps for pUC19 50,000 steps; (right) average accumulated displacement for
pUC19 5,000 steps.
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vertices are subjected to the motion procedure. Thus, for
each new trial, a single vertex is randomly chosen and
then randomly displaced to a point within a small neigh-
borhood. To maintain connectivity of the DNA chain, as
well as the size of its segments, the two flanking vertices
are also displaced but in a less free way. Thus, only three
vertices are displaced in each new trial.

Interestingly, considering that our algorithm generates
small deformations in the transition from one DNA con-
formation to another, we can conclude that it can be
applied not only in the simulation of DNA coiling, but
also in real-time visualization. We have already done
this by employing the DNA assembly algorithm that
uses Gaussian surfaces as geometric representations of
nucleotides, as mentioned at the end of Section ‘Related
work’.

In the future, we intend to incorporate a smoothing
mechanism into our DNA algorithm like, for example,
that presented in [33]. This will enable our algorithm
to produce even more realistic simulations, eliminat-
ing the occurrence of slightly sharp corners like those
shown in Figure 15. We also intend generating deforma-
tions that depend on the DNA’s stiffness, which varies
according to the sequence of nucleotides. This will
mean greater deformations on more flexible segments
and smaller deformations on less flexible segments of
DNA.

Finally, our ultimate goal is to be able to replicate in
silico, and visualize what happens to plasmid DNA during
the production and purification processes in laboratory
experiments.
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