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Abstract

Metabolomic data processing pipelines have been improving in recent years, allowing for

greater feature extraction and identification. Lately, machine learning and robust statistical

techniques to control false discoveries are being incorporated into metabolomic data analy-

sis. In this paper, we introduce one such recently developed technique called aggregate

knockoff filtering to untargeted metabolomic analysis. When applied to a publicly available

dataset, aggregate knockoff filtering combined with typical p-value filtering improves the

number of significantly changing metabolites by 25% when compared to conventional untar-

geted metabolomic data processing. By using this method, features that would normally not

be extracted under standard processing would be brought to researchers’ attention for fur-

ther analysis.

Introduction

Inflammatory bowel disease (disease (IBD) is an umbrella term that describes conditions like

ulcerative colitis (UC) and Crohn’s disease (CD). IBD is referred to as a symptom cluster,

where numerous pathologies result in a subset of symptoms, diagnosis methods, and treat-

ments [1]. This class of disorders is generally characterized by diarrhea, rectal bleeding,

abdominal pain, weight loss and fatigue [1]. Ulcerative colitis, CD, and additional disorders,

like inflammatory bowel disease unclassified (IBDU) are generally diagnosed and classified on

a spectrum of clinical and endoscopic criteria [2]. In recent years, due to the advancement in

mass spectrometry in clinical medicine, biomarkers have been proposed to aid in the diagnosis

of these inflammatory bowel diseases [3–5]. As a result of IBD is a being classified as a spec-

trum disorder, and thus there is a desire to observe a correlation associated with regulation of

these biomarkers (in either an up or down manner) and severity of disorder.
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Important biomarker identification in metabolomics that differentiate two or more groups,

has been studied widely using univariate and multivariate statistical feature selection methods.

Based on the knowledge of the feature distribution, both parametric as well as non-parametric

univariate statistical techniques e.g., ANOVA, Student’s t test, Kolmogorov-Smirnov test,

Mann-Whitney U test, Kruskal-Wallis one way analysis of variance test [6–9] have been used

to select significant metabolites. These univariate methods perform multiple hypothesis tests

(one hypothesis per feature), and an additional correction method is required to adjust for

multiple hypothesis testing. A typical correction method, called the Bonferroni correction [10]

is very conservative and leads to a lot of false negatives, especially if the number of features is

very large. Benjamini-Hochberg [11] proposed a less conservative approach that controls the

proportion of false discoveries among the overall discoveries (rejection of null hypothesis)

made. These univariate statistical methods are incapable considering the highly correlated

structure of metabolomics data beforehand, thus increasing the probability of obtaining false

positives and false negatives.

Recently machine learning methods [12–18] have been shown as important tools to identify

significant biomarkers. Principal component analysis (PCA) [19], hierarchical clustering anal-

ysis (HCA) [20, 21], self-organizing maps (SOMs) [22, 23], partial least square-discriminant

analysis (PLS-DA) [19] and Random Forest [24] are widely used multivariate machine learn-

ing methods in metabolomics study. Recently, Mendez [13] used a single hidden layer artificial

neural network (ANN) to discover significant metabolites and hypothesized this approach was

equivalent to PLS-DA. The advantage of these multivariate methods is that they can consider

all the features simultaneously and, consequently, deal with the correlation among the metabo-

lites. However, most of these methods do not have the inherent ability to compute valid p-val-

ues, thus are not able to guarantee the statistical significance for the selected features.

Computation of p-value requires the knowledge of the distribution under the null, which is

generally unknown and is highly dependent on the feature selection algorithm. Post selection

inference techniques [25–27] can compute valid p-values for the chosen features after deciding

upon a model but are only applicable in restricted settings.

Barber, Candes and authors [28, 29] introduced a seminal feature selection approach called

“knockoff filtering” which has the capability of handling more general model selection

approaches with provable control over false discovery rate (FDR). The basic idea behind

knockoff filtering is to create dummy features that are conditionally independent of the

responses and satisfy pairwise exchangeability with the original features. One then concate-

nates the original features and these dummy features called “knockoffs” and employ any

regression and classification algorithm [24, 30] to generate feature importance scores. Barber

[28] proposed a new statistic called “knockoff adjusted score” by comparing the original fea-

ture importance score and corresponding dummy feature importance score. Given FDR level,

a data driven threshold is then generated based on these knockoff scores for the rejection of

null hypothesis with provable FDR control. One of the drawbacks of this method is that it

introduces randomness in the process of generating dummy variables that may lead to high

variability in the outcome. To address this problem, Nguyen [31] proposed a technique called

an “Aggregation of multiple Knockoffs” (AKO). This method generates multiple copies of

knockoff features independently, produces an intermediate p-value from the knockoff adjusted

score [28] for each feature across all copies and then performs quantile aggregation on the p-

values. AKO selects significant features by applying Benjamini-Hochberg (BHq) [11] step up

procedure on the quantile aggregated p-values.

In this paper, we validate the use of aggregate knockoff filtering [31] for metabolomics, in

particular untargeted metabolomics. We used a publicly available dataset “Longitudinal Meta-

bolomics of the Human Microbiome in Inflammatory Bowel Disease” [32]. The study was
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involved in the NIH Integrative Human Microbiome Project, in which 546 samples were ana-

lyzed utilizing four different chromatographic methods to completely profile the metabolome

of each sample. The methods relied on high resolution/accurate mass methods of acquisition

and 597 features were annotated with confirmation by standard. We will demonstrate that

aggregate knockoff filtering discovers additional biomarkers of interest, specifically when non-

IBD versus CD were compared with existing methods while ensuring the control over false dis-

covery rate. We will consider the percentage of missing values as a threshold to remove metab-

olites in the preprocessing step as a hyperparameter and find the best threshold that

guarantees the maximum discovery of significant biomarkers related to IBD.

Materials and methods

Dataset

The data is available at the NIH Common Fund’s National Metabolomics Data Repository

(NMDR) website, the Metabolomics Workbench https://www.metabolomicsworkbench.org

under the Project ID: PR000639. The data can be accessed directly via the project DOI: 10.

21228/M82T15. This work is supported by NIH grant, U2C-DK119886. Study design, instru-

mental methods, equipment, collection, sample preparation and other relevant study data are

located within the reference cited. Of note was the comprehensive chromatography analysis

utilizing four different conditions e.g. C18 Reverse-Phase negative mode acquisition, C8

Reverse-Phase positive mode acquisition, Hydrophilic interaction chromatography (HILIC)

negative mode acquisition, HILIC positive mode acquisition. 546 samples were collected

under each mode of chromatography condition but the number of named metabolites varies

(Table 1).

Data preprocessing

Several preprocessing steps were applied to each of the four datasets. Missing values are com-

mon in mass-spectrometry (MS) based metabolomics data. Since too many missing entries

will cause difficulties for subsequent analysis, handling missing values is important. To address

this problem, we first applied a threshold-based prefilter on each dataset to keep or remove a

particular metabolite based on this threshold. In general, we kept only those metabolites that

have nonzero value in at least t% of the total number of samples. This procedure is widely

known as t% rule [33]. We picked threshold t from the set T = {0, 60, 70, 80, 100} that includes

two extreme values 0, 100. In case of t = 0 we did not apply any thresholding to remove metab-

olites from the data. On the other hand, for t = 100, metabolites having at least one missing

value are removed. Though these two extreme thresholds are not widely used as standards to

deal with moderately large metabolomics dataset, we studied these extreme cases in order to

assess the effect of this preprocessing step on the performance of our proposed method. We

then apply K- Nearest Neighbor (KNN) missing value imputation [34] technique, that works

based on the principle described in [35]. It is worth mentioning that for t = 100, missing value

imputation step was not required. Before applying the knockoff filtering, the imputed data was

standardized to zero mean and unit variance. Going forward we will define t as the missing

value imputation threshold. The detailed workflow can be seen in Fig 1.

Table 1. Number of named metabolites collected under different modes.

Mode C18 Negative C8 Positive HILIC Negative HILIC Positive

Named metabolites 91 213 115 177

https://doi.org/10.1371/journal.pone.0255240.t001
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Aggregate knockoff filtering on preprocessed data

We applied Aggregate Knockoff (AKO) filtering [31] on the preprocessed data. The filtering

process begins by generating the knockoff of the original data matrix X 2 Rn�p
, where n and

p represent the number of samples and number of metabolites respectively. Knockoff data

XK 2 R
n�p

are generated by sampling from the conditional distribution XK jX � N ðm;VÞ with-

out looking at the response vector y 2 Rn
. We approximated μ (mean) and V (covariance)

using the regression formulas stated in [29] assuming original data distribution is Gaussian. As

mentioned in [31], we generated B instances of Knockoff copies fXb
Kg

B
b¼1

independently. We set

B = 15. Each knockoff Xb
K and original data matrix X were columnwise concatenated into an

augmented data ½XXb
K � 2 R

n�2p
having twice the number of features compared to the original

data matrix. Note that each dataset has three different classes e.g., CD, UC, non-IBD and

response variable yi is assigned to either 0, 1, or 2 based on the group each sample belongs to for

i = 1, . . ., n. We applied Random Forest classifier [12] on the augmented data to generate fea-

ture importance scores. We set the number of features that are randomly selected at each node

to the square root of the number of input features. Another hyperparameter for the random for-

est algorithm, the number of trees was set to 1000, which we obtained using cross validation.

We used the absolute mean decrease of accuracy in Out-Of-Bag (OOB) samples with random

permutation of features as feature importance Zj for j = 1, . . ., 2p. OOB score is defined as the

impact of each feature on the classification accuracy when removed from the input data during

training. We generated the knockoff adjusted scores Wj by taking the difference between the

absolute of the original feature importance score and absolute of corresponding knockoff fea-

ture importance score for j = 1, . . ., p. A large positive Wj ensures that variable j truly belongs to

the model. We created an intermediate p- value πj as defined in AKO [31] for j = 1, . . ., p from

the knockoff adjusted score. In brief, for B independent draws of knockoff variables we

obtained the corresponding B sets of knockoff adjusted score, from which we computed p val-

ues p
ðbÞ
j , for all j = 1, . . ., p and b = 1, . . ., B. Then we performed γ-quantile aggregation intro-

duced in [36] for each variable in parallel to get a new statistic �p j for j = 1, . . ., p. We chose γ to

Fig 1. Workflow of the whole process. Blue box represents the data preprocessing step whereas blue box denotes the

steps of knockoff filtering.

https://doi.org/10.1371/journal.pone.0255240.g001
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0.5. After obtaining a list of p-values, we followed Benjamini-Hochberg step-up procedure [11]

to select significant features given an FDR control level α = 0.05. (We refer the reader to S1

Appendix and references therein for detailed Knockoff filtering method).

Results and discussion

Clustering of metabolite expression levels (Fig 2) performs well in differentiating families of

metabolites. This level of analysis observes CD, UC, and non-IBD samples and groups them by

the expression level and trends (i.e., up- or down regulation) through the study. Due to the

richness of the results from untargeted metabolomics studies, it is not feasible to look at all of

the metabolites and derive scientifically accurate conclusions. A further simplification of data-

sets often utilize a p-value cutoff. By which, this probability calculation evaluates the occur-

rence of extreme results and their likelihood of reoccurrence of extreme results in support of a

null hypothesis. Many researchers utilize this p-value cutoff technique, to reduce datasets to

more probable groupings, resulting in more manageable datasets. While compounds of similar

metabolite families group well along the right y-axis (e.g., fatty acid type molecules), overall no

truly observable trends or groupings allow for greater differentiation potential concerning the

non-IBD and CD samples. Unfortunately, this method often does not distill the information

to a manageable level. It should also be noted that when an additional p-value cutoff is applied

to the data from Fig 2, certain cholates have been dropped. The loss of those compounds is

irrelevant because levels of cholates have been shown to be significantly decreased in patients

with IBD compared to non-IBD patients [38]. P-value cutoffs can lead to incorrect biomarker

identification, wasted computational expenses and expertise. This shows the necessity of using

methods to narrow the researchers’ focus to fewer metabolites quickly, for initial review.

By utilizing the Aggregate Knockoff filtering technique, we can enrich the results by extract-

ing out metabolites that truly are significant. We have identified different numbers of

Fig 2. Clustermaps of the metabolites identified in the HILIC Positive acquisition group. All identified metabolites (left) vs filtering

insignificantly changing metabolites with respect to sample group (right) are clustered respectively by Euclidean distance of expression

levels (Each individual metabolite expression profile normalized to 1 across individuals) (x-axis) and colored by disease factor (Red for

CD, Green for UC and Blue for non-IBD).

https://doi.org/10.1371/journal.pone.0255240.g002
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metabolites as significant based on selected thresholds for keeping metabolites in accordance

with the t% rule (Table 2).

The maximum number of metabolites discovered was achieved at various missing value

imputation thresholds for different datasets. The reason behind obtaining different thresholds

for different dataset is that each data was collected under a certain condition. Therefore, the

quality of the data varies so as the missing value percentage. As an example, the maximum

number of metabolites for the C18 negative dataset is observed when the threshold is 80%;

however, for the HILIC positive data, the threshold is 100%. The missing value imputation

level appeared to have an effect on which metabolites are selected as of interest, therefore in

order to obtain the largest coverage of metabolites selected by the knockoff filtering methodol-

ogy, different missing value imputation levels (0%, 60%, 70%, 80%and100%) were employed

and results aggregated under each respective chromatography group (Table 2). The knockoff

filtering appears to improve with smaller initial metabolite groups (HILIC Negative = 115

Metabolites, C18 Negative = 91 Metabolites vs. HILIC Positive = 177, C8 Positive = 213). C18

Negative had 15 metabolites consistently identified among each missing value imputation level

but optimal coverage at 80% (Fig 3). This was not consistent in the HILIC Positive group as

one missing value imputation level (100%) contains a large majority of unique metabolites vs

the other levels. This shows the need to leverage various missing value imputation levels to not

exclude potentially important metabolites.

Table 2. Each cell in the table represents the number of selected metabolites under different modes of data collection and threshold.

Threshold (t%) C18 negative C8 positive HILIC negative HILIC positive

0% 20 9 21 23

60% 33 4 32 3

70% 35 6 28 12

80% 38 6 35 13

100% 23 3 23 27

https://doi.org/10.1371/journal.pone.0255240.t002

Fig 3. Venn overlaps of the metabolites identified by knockoff filtering of the C18 Negative (A), HILIC Positive

(B), HILIC Negative (C) and the C8 Positive (D) chromatography groups.

https://doi.org/10.1371/journal.pone.0255240.g003

PLOS ONE Machine learning with knockoff filtering to extract significant metabolites

PLOS ONE | https://doi.org/10.1371/journal.pone.0255240 July 29, 2021 6 / 13

https://doi.org/10.1371/journal.pone.0255240.t002
https://doi.org/10.1371/journal.pone.0255240.g003
https://doi.org/10.1371/journal.pone.0255240


There are noteworthy metabolites identified that have been shown in literature to be

affected in IBD populations in the C18 chromatography group (Fig 4). Arachidonate (arachi-

donic acid) has been shown dysregulated in IBD patients, with decreasing fold change [32].

While not a direct essential fatty acid, there is some debate regarding linoleic acid and its

conversion to arachidonate to account for a deficiency in the aforementioned [37]. The Bacte-

ria-Protease-Mucus-Barrier hypothesis suspects that saccharin may dysregulate gut bacteria

and inactivate key digestive proteases [38]. Docosapentaenoate was found to be downregulated

in patients [39]. Eicosatrienoate (eicosatrienoicac acid) showed dysregulation in Crohn’s Dis-

ease [40]. There were 212 detected enrichments in cholate bile acids, including glycine and

Fig 4. Boxplot of selected metabolites from C18 negative dataset.

https://doi.org/10.1371/journal.pone.0255240.g004

PLOS ONE Machine learning with knockoff filtering to extract significant metabolites

PLOS ONE | https://doi.org/10.1371/journal.pone.0255240 July 29, 2021 7 / 13

https://doi.org/10.1371/journal.pone.0255240.g004
https://doi.org/10.1371/journal.pone.0255240


taurine conjugates [32, 41]. Numerous salicylates have been associated with IBD, including

oral dosing for prevention of IBD relapse [42, 43]. Other fatty acids, like eicosadienoate, have

been tracked as a possible biomarker [44]. Comprehensively, many of the other metabolites

listed are also found in literature, however numerous have been tracked in one study [32]. “S2

Table” details the metabolites that were identified by running each of the datasets that were

identified by running each of the datasets through aggregate knockoff filtering.

The Knockoff filtering method can also extract metabolites that do not pass the p-value

threshold (Fig 5). These identified metabolites have also been associated with IBD-focused

Fig 5. Boxplot of metabolites identified as important by knockoff filtering but do not pass a p-value filter. CD expression shown in blue, UC in

Orange and non-IBD in Green.

https://doi.org/10.1371/journal.pone.0255240.g005
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research. Elevated concentration of 12,13-diHOME (12,13-dihydroxy-9Z-octadecenoic acid)

impedes immune tolerance in fecal material [45]. Additional cholates were identified from this

knockoff filtering method, including additional taurine conjugates [32]. Carboxylates, such as

1,2,3,4-tetrahydro-beta-carboline-1,3-dicarboxylate, were elevated, and these metabolites sig-

nificantly correlate with disease prediction [46]. Dodecanedioate was also identified as impor-

tant [47]. With respect to UC subjects, the model revealed variations in the occurrence of

dicarboxylic acids, such as undecanedioate, dodecanedioate and sebacate, which are proposed

to regulate mitochondrial fatty acid oxidation and to be involved in IBD-related liver

dysfunctions.

Upon performing an enrichment analysis on the metabolites uniquely identified by the

algorithm for disease signature utilizing Metaboanalyst [48]. Unclassified IBD, Ulcerative Coli-

tis, and Crohn’s Disease are all significantly enriched (Fig 6). This provides a secondary valida-

tion that the metabolites selected from the algorithm have a role in IBD.

Knockoff filtering is shown to be a great tool to discover important metabolites that were

not identified by the p-value cutoff method, which is widely used in many existing metabolo-

mics processing tools e.g., Metaboanalyst. However, the performance of the knockoff filtering

method is highly dependent on the variable selection algorithms that are used to generate fea-

ture importance scores which, in turn is sensitive to data preprocessing steps e.g., pre-filtering,

missing value imputation technique. One of the drawbacks of the proposed method is that we

generated the second-order knockoffs by approximating mean and covariance assuming data

distribution is Gaussian. In cases where this assumption is not satisfied, the proposed method

will generate poor quality knockoffs and consequently lead to poor performance. This knock-

off method also suffers from false discovery vs. power tradeoff like all the existing works that

only control the FDR. Future study can be conducted with recently developed generative

model-based knockoff generation techniques [49–51], as well as in the direction of increasing

the power of detection while keeping the FDR below a significant level.

Fig 6. Metaboanalyst enrichment mapping of unique features identified by algorithm.

https://doi.org/10.1371/journal.pone.0255240.g006
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Conclusion

Utilizing knockoff filtering in combination with more traditional techniques (i.e., p-value cut-

off) improves researchers’ abilities to sift through the large amounts of data that are generated

in metabolomic experiments. The combination of aggregate knockoff filtering and p-value cut-

offs allows for more rapid secondary validation and additional hypothesis generation than tak-

ing the time tracing down the dead-end leads. Aggregate Knockoff filtering technique also

produces metabolites that simple p-value filtering misses. These metabolites have been impli-

cated in having a roll in CD/IBD and would otherwise go unseen if not for the Knockoff filter-

ing method. Aggregate knockoff filtering method also ensures the statistical significance of the

selected metabolites which may not be guaranteed in case of many traditional machine learn-

ing techniques. In conclusion, this paper introduces the knockoff filtering technique to the

metabolomics community which is shown to be a better tool to identify metabolites with statis-

tical guarantee.
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S1 Table. Identified metabolites from the knockoff filtering methodology utilizing aggre-

gate repeated missing value imputation. This table contains the union of metabolites coming

from the sets of identified metabolites using different thresholds for each dataset.
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S2 Table. Metaboanalyst output of an enrichment analysis of the metabolites that were

identified by the algorithm but are not identified by a p-value selection. This table contains
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Model-X Knockoff filtering and Aggregate knockoff filtering method.
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