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Decisions are based on the subjective values of choice options.
However, subjective value is a theoretical construct and not
directly observable. Strikingly, distinct theoretical models compet-
ing to explain how subjective values are assigned to choice
options often make very similar behavioral predictions, which
poses a major difficulty for establishing a mechanistic, biologically
plausible explanation of decision-making based on behavior alone.
Here, we demonstrate that model comparison at the neural level
provides insights into model implementation during subjective
value computation even though the distinct models parametrically
identify common brain regions as computing subjective value. We
show that frontal cortical regions implement a model based on the
statistical distributions of available rewards, whereas intraparietal
cortex and striatum compute subjective value signals according to
a model based on distortions in the representations of probabili-
ties. Thus, better mechanistic understanding of how cognitive pro-
cesses are implemented arises from model comparisons at the
neural level, over and above the traditional approach of compar-
ing models at the behavioral level alone.

risk taking j physiological foundation of behavior j neural valuation
systems j neuroeconomics

Psychology, economics, and other social sciences develop
competing models and theories to explain how we make

choices. However, the capacity to select the one model that
explains behavior best is limited by the fact that different mod-
els often make similar predictions about behavior. Therefore, it
can be difficult to distinguish between models based on behav-
ioral data alone. To illustrate, one landmark study applied 11
different models of subjective valuation to participants’ choices
between different lotteries in an attempt to identify the model
that best represented each participant’s preferences (1). Even
though different models explained behavior better at the indi-
vidual level, on average the models made the same predictions
on over 90% of decisions across two experimental datasets, sug-
gesting that the prediction similarity of competing models is
pervasive. The prediction similarity is particularly striking given
that the models make vastly different assumptions about under-
lying processes (see last paragraph of the Introduction). More-
over, these difficulties of model selection are not limited to the
realm of value-based decision-making but emerge in various
areas of behavioral research on, for example, learning (2),
memory (3), and perception (4). Informing the model selection
process by neuroscientific data is one possible solution for this
problem.

Computational and decision neurosciences aim to character-
ize the neural mechanisms implementing cognitive functions
and test if existing behavioral models accurately describe neural
processes. Typically, competing models are fitted to behavioral
data and their likelihoods or amounts of explained variance are
compared. The winning model is then used to generate esti-
mates of unobservable, i.e., latent, variables (e.g., subjective

values or prediction errors), and activity correlating with these
variables at the neural level is used to conclude that the brain
implements that model (5, 6). However, the insights that can be
gained with this approach are severely limited if different mod-
els predict similar behavior or correlated latent variables at the
neural level.

Here, we addressed this problem by testing whether brain
activity can be directly used to compare and select between
competing theories with similar behavioral predictions. That is,
even if competing theories make similar behavioral predictions
and identify the same brain regions, are the neural computa-
tions in these regions differentially captured by the different
theories? By asking this question and performing model com-
parison at the neural level, we deviate from the standard
practice in model-based neuroscience of first fitting different
models to behavioral data and then using the behaviorally best-
fitting model to analyze the neural data. This procedure, if suc-
cessful, would be applicable also to other areas of behavioral,
cognitive, and clinical neuroscience, which use computational
models to explain functions such as reinforcement learning,
perceptual decision-making, and psychiatric disorders.

We performed model comparison in the context of value-
based decision-making and scanned participants while they
chose between lotteries with a wide range of magnitudes and
probabilities. These lotteries were specifically designed to dif-
ferentiate between different models of choice preference (7).
We compared three major decision theories (expected utility
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[EU] theory, prospect theory [PT], and the mean-variance-
skewness [MVS] model), which are all consistent with the idea
that risky decisions are based on assigning subjective values to
risky choice alternatives (8–11). EU essentially proposes that
choice preferences can be represented by summing up probability-
weighted subjective values (utilities) of outcomes, using objective
probability (see Experimental Procedures for details of all three
models). Like EU, PT also employs a mechanism of weighting
subjective values of outcomes with probabilities. It additionally
assumes that probability is processed subjectively (typically
overweighting small and underweighting large probabilities), that
outcomes become gains or losses in relation to a reference point,
and that losses weigh more heavily than gains of equal absolute
size. In contrast, the MVS model suggests that choice preferences
can be represented by a linear combination of individually
weighted summary statistics of outcome distributions (12–16).
Thus, computations of subjective value and implied processes dif-
fer between these models. At the formal level, they are either
nested or equivalent under specific conditions (17). Moreover, all
of the models have been successfully used to explain behavior
(18), and attempts to adjudicate between models based on behav-
ior alone yielded conflicting results (1, 19).

Results
We asked whether prediction similarity matters for neuroscient-
ists interested in the neural mechanisms of decision-making. In
addition to analyzing our own data, we therefore first reana-
lyzed the behavioral choice data from a landmark study on risky
decision-making (20), which was the target of a wider replica-
tion effort [https://www.narps.info/ (21)]. This study approached
the neural implementation of subjective valuation ex ante from
the perspective of PT. We fitted EU, PT, and mean-variance
models (because the lottery outcomes had fixed probabilities of
0.5, we could not assess skewness preferences) to the choice

data and assessed if the different models accurately predict
choices on a trial-by-trial basis. We found that PT and mean-
variance models had similar predictive accuracy (85 and 86%,
respectively) for participant choices (Fig. 1A). Strikingly, PT
and mean-variance models predicted the same choice on 88%
of all trials (Fig. 1B), arising from a significant correlation
between the behavioral loss aversion parameter from PT with
the variance coefficient from the mean-variance model (Fig.
1C; Spearman’s q ¼ �0.77, P < 0.001). Thus, any neural
regions correlating with behavioral loss aversion determined by
PT are also likely to be correlated with the variance coefficient
determined by the mean-variance model. EU predicted choice
accurately in 63% of trials. Importantly, the similarities in
choice prediction of EU with both PT and mean-variance mod-
els also were substantial (66 and 68%, respectively). The similar
predictive power of competing models of value-based choice
further reinforces the notion that insights about how the brain
computes subjective value may be facilitated by model compari-
son at the neural level.

Next, we tested whether the issue of prediction similarity also
arose in our task (Fig. 1D), which used lotteries specifically
designed to dissociate between models (7). Specifically, the lotter-
ies covered a large range of probabilities, variances, and skews,
allowing for probability distortion (PT) and variance-skewness
parameters to make a difference to expected utility theory. We
then fit the EU, PT, and MVS models to participants’ behavioral
choices using maximum likelihood estimation. On the group
level, the EU model correctly predicted the participants’ choices
with 68% accuracy, the PT model with 74%, and the MVS
model with 72%. All three models made the same choice predic-
tion on 73% of trials. Accordingly, when we compared model
predictions in a pairwise manner, the models predicted the same
choices (and therefore preferences) to a high degree (EU/PT:
79%; EU/MVS: 79%; PT/MVS: 87%). Moreover, the absolute
difference in the values of the two choice options negatively

Fig. 1. Model accuracy and similarity for data from Tom and colleagues (20) and task design. (A) EU theory predicted the correct choice by participants
of the study by Tom and colleagues (20) on 63% of all trials, PT on 85%, and mean-variance (MV) on 86% (as probabilities were fixed at 0.5, skewness
preferences could not be assessed). All three models made a correct prediction on 55% of trials. (B) Model similarity (i.e., instances where models make
the same choice prediction on a trial, irrespective of whether the prediction is correct) showed that PT and MV models make strikingly similar behavioral
predictions (88% of all trials). (C) A potential reason for PT/MV similarity is that variance preferences as modeled by MV are highly correlated with the
loss aversion parameter from PT (λ, computed as the ratio between the regression coefficients for gain and loss outcomes from lotteries). (D) Example
trial from our task. Participants viewed two binary lotteries with outcomes and corresponding probabilities displayed on a pie chart. Specifically, lotteries
took the form p chance of x1, 1-p chance of x2, with x ranging from 0 to 50 points (1 point = 0.25 CHF) and p ranging from 0 to 1 in smallest increments
of 0.05. Participants chose a lottery using the button box, and their choice was indicated. No feedback was given regarding the outcome of the lottery.
During the intertrial interval (ITI), a fixation cross was displayed.
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correlated with response times in all three models (EU: q ¼
�0.171, PT: q ¼ �0.198, MVS: q ¼ �0.186, all Ps < 0.001). To
further assess model similarity, we used the best-fitting parame-
ters from each participant’s EU, PT, and MVS model fits and
computed the subjective values of each available lottery at the
individual level. As expected, the cardinal subjective values pre-
dicted by each model were strongly correlated, with Spearman’s
qs ¼ 0.66 to 0.97 (all Ps < 0.001; Fig. 2 A–C). Since standard
economic theory posits that the ordinal ranking of options
(rather than cardinal subjective values) forms the basis of prefer-
ences (8, 22), we also calculated the ordinal ranks of all the lot-
teries according to each model. Strikingly, the similar behavioral
predictions of the different models became even more apparent
when considering the ranks of choice alternatives (Spearman’s
qs ¼ 0.89 to 0.98; all Ps < 0.001; Fig. 2 D–F), suggesting that all
three models predict almost identical preferences if the ordinal
ranks of options are considered to drive choices.

To extract neural data for model comparison, we first investi-
gated whether some brain regions would commonly process sub-
jective value according to all three models. How subjective value
signals are encoded at the neural level during decision-making
depends on the phase of the choice process (23). At least two dis-
tinct forms of subjective value signals can be distinguished. When
choice options are presented, neural theories of decision-making
assume that decision-makers assign a subjective value to each of
them (24). Summing these subjective values up corresponds to
the first form of subjective value signals (i.e., the value of the
state induced by the choice options). Then, the subjective values
of the choice options are assumed to be compared, resulting in
differences between subjective values, which correspond to the
second form of subjective value signals (25). Note that value

difference is highly correlated with the difference between chosen
and unchosen subjective value, which is sometimes used to char-
acterize value-based comparison (25, 26). To capture both forms
of subjective value, we assessed representations of subjective
state value (summed option values) and subjective value differ-
ences, computing a general linear model (GLM) for each of the
three behavioral models per participant (see Experimental Proce-
dures). The GLM assessed the summed subjective values of the
options from trial onset to decision time with a parametric modu-
lator of the sum of subjective values of the two lotteries on the
screen. A second parametric modulator assessed the absolute dif-
ference between the subjective values of the two lotteries with a
parametric modulator at the time of the decision itself.

We used an inclusive masking approach to test whether the
activity of some regions correlated with the subjective state
value computed by each model in the GLMs at the time of
option presentation. We then calculated the intersection image
of all three models using whole-brain cluster-level family-wise
error–corrected images for each model [P < 0.05 cluster-level
family-wise error corrected with a cluster inducing voxel-level
threshold of P < 0.001, uncorrected, and a minimum cluster
size of 165 voxels (27); for peak activations for individual mod-
els, see SI Appendix, Table S1]. This procedure identified activ-
ity in the right dorsolateral prefrontal cortex (dlPFC) and bilat-
eral insula (Fig. 3A), the striatum extending into the thalamus
(Fig. 3B), and the right lateral intraparietal lobule (IPL; Fig.
3C). Thus, these regions all encode subjective state value at
option presentation regardless of the behavioral model used to
compute subjective value, demonstrating that different models
with similar behavioral predictions result in similar brain activa-
tions reflecting subjective value.

Fig. 2. Correlations of subjective values and ordinal ranks from EU, PT, and MVS models. Using the best-fitting parameter values from the EU, PT, and MVS
models, we computed the subjective values of each lottery shown to participants during the task. (A) Correlation between EU and PT subjective values (B)
between EU and MVS subjective values and (C) between PT and MVS subjective values were all high. Moreover, ordinal rankings of lotteries were even more
strongly correlated (D–F), meaning that if ordinal rankings are used to form the basis of preferences, all three models will predict very similar decisions.
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The same conclusion but with different brain regions
emerged for subjective value differences at the time of choice
in the second GLMs. Again, using the inclusive masking proce-
dure, we found a large cluster common to all models in the
medial orbitofrontal and the anterior cingulate cortex, which
together we denote as ventromedial prefrontal cortex (vmPFC;
Fig. 3D, P < 0.05 whole-brain cluster-level corrected). Thus,
activity in these regions correlated with the subjective value dif-
ferences computed from the EU, PT and MVS models.
Together, the data reinforce the strong similarity between mod-
els and reveal that neural encoding of subjective value in these
regions is model invariant if traditional parametric methods are
used. This finding highlights the notion that model comparison
at the behavioral level alone could lead to unjustified conclu-
sions that the best-fitting behavioral model is being imple-
mented at the neural level. However, the finding of commonly
identified brain regions also provides cause for relief, in the
sense that previous studies using different approaches correctly
identified the same regions (28).

Next, we aimed to determine the brain mechanisms of subjec-
tive value computation in these commonly identified brain
regions by formal model comparison at the neural level. In par-
ticular, we employed Bayesian analysis methods to quantify the
evidence favoring each of the three models. To do this, we con-
structed functional regions of interest (ROIs) from the intersect-
ing subjective state value regions (i.e., striatum, dlPFC, insula,
and IPL) and intersecting subjective value difference regions
(i.e., vmPFC). We then performed one first-level Bayesian analy-
sis for each model and ROI in each participant and passed the
results to a Bayesian model comparison (29, 30). For this analy-
sis, we computed the expected model frequencies (the probabil-
ity that the model generated the data for any randomly selected
subject) and used these to compute exceedance probabilities
(i.e., the confidence in the model having the highest expected
frequency relative to all tested models) with the Variational
Bayesian Analysis (VBA) toolbox (31). Strikingly, we found that
different models best captured subjective state value computa-
tions in the different regions.

Specifically, activity in the dlPFC related to state value (i.e.,
the summed subjective values of the two presented options)
was best explained by the MVS model (Fig. 4A), with an
exceedance probability (i.e., the belief that this model explains

the underlying neural activity better than the other two models)
of 0.96 (Fig. 4B). By contrast, the striatal and IPL activations
were best explained by the PT model (Fig. 4 C–F), with exceed-
ance probabilities of 1.00 and 0.98, respectively. Exploratory
analyses also suggested that PT-conforming behavior is associ-
ated with weaker connectivity between IPL and other value-
processing regions, particularly vmPFC (SI Appendix,
Supplementary Analyses). Activity in the insula could not be sat-
isfactorily classified by any of the three models (Fig. 4G). Taken
together, the data suggest a surprising dissociation between the
dlPFC and the IPL/striatum during subjective state value
encoding. Given the characteristic theoretical elements of the
two models, dlPFC appears to encode subjective value primar-
ily in the form of summary statistics entailed by a lottery
whereas IPL and striatum do so through weighting subjective
values of outcomes with their distorted probabilities.

We also assessed subjective value difference regions [i.e.,
vmPFC activity at the time of the decision (Fig. 5A)]. We found
that in the vmPFC, the MVS model significantly outperformed
the PT and EU models. The exceedance probability for MVS
was 0.96 (Fig. 5B). Together, these findings provide compelling
evidence that the model-invariant value-processing regions in
frontal cortical areas encode subjective value as proposed by
the summary statistics approach, while subcortical and parietal
areas encode value according to PT.

Finally, to confirm that model comparison at the neural level
indeed provides more insights than the standard model-based
functional MRI (fMRI) approach, we performed a formal
model comparison at the behavioral level. Using the log likeli-
hoods for the best-fitting EU, PT, and MVS models for each
participant, we computed the small-sample–corrected Akaike
Information Criterion (AICc) for each model fit (thus compen-
sating for the different numbers of free parameters in each
model). AICc values were then formally compared using the
VBA toolbox (31) to compute the expected model frequencies
and exceedance probability for each model. Bayesian model
comparison showed that at the group level, participants’ choices
were best explained by the PT model with an exceedance prob-
ability of 0.99 (although there was interindividual variation in
model evidence, see SI Appendix, Fig. S1). Thus, using a more
traditional approach of assessing behavioral model fits first
(which is problematic when models make similar predictions)

Fig. 3. Subjective value coding common to EU, PT, and MVS models. (A–C) Subjective state value signal (sum of subjective values of the two options) cor-
related with activity in (A) right dlPFC and insula, (B) striatum, and (C) right IPL from lottery presentation to time of decision. (D) At the time of decision,
subjective value differences correlated with activity in vmPFC. The cluster-inducing voxel-level threshold was P < 0.001 and P < 0.05 family-wise error cor-
rected at the cluster level in each contrast separately, followed by inclusive masking across the three models. The respective figures were masked to show
only one cluster per figure for visual clarity.
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and taking solely the winning model to the neural level, we
would have prematurely concluded that all the subjective
value–coding regions identified were implementing PT.

Discussion
Our results indicate that model comparison at the neural level
can provide a way to distinguish between models that make
similar behavioral predictions. The MVS model, typically uti-
lized to explain choice preferences in behavioral ecology and
finance, best captured the neural computation of subjective
value in ventromedial and dorsolateral areas of the prefrontal
cortex. By contrast, in the striatum and parietal cortex, subjec-
tive value computation best reflected PT. More generally,
although all models commonly identified brain regions that
have been associated with encoding subjective value under a
traditional model-based fMRI approach, Bayesian model com-
parison at the neural level revealed that the three models dif-
ferentially explain how these regions compute subjective value.
In these brain regions, the PT and MVS models appear to
explain neural coding of subjective value better than EU
theory.

The finding that models with similar behavioral predictions
differentially explain neural activity encoding subjective value
reinforces Marr’s (32) view that a multilevel approach is
needed when we aim to understand a cognitive function. The
need to perform model comparisons at the neural level can be
exacerbated when neural data are insensitive to large changes
in model parameters obtained by behavioral fits (33). Although
we investigated the neural mechanisms encoding subjective
value during risky decisions of humans, there is reason to
believe that the standard approach of model-based neurosci-
ence could also misrepresent, or at least underspecify, neural

Fig. 4. Neural Bayesian model comparison in regions encoding subjective state (sum) value. Colors correspond to the number of participants where a
model explained the neural data better than the other two models (not the strength of the blood oxygen level–dependent signal). Red dashed lines in
the bar plots indicate an exceedance probability of 0.95. (A and B) The MVS model explained neural data better than the PT or EU model in the right
dlPFC, with an exceedance probability (the belief that one model is better than the other two models at explaining the underlying neural activity) of
0.96. In the striatum (C and D) and IPL (E and F), PT explained the encoding of subjective value better than the MVS and EU models, with exceedance
probabilities of 1.00 and 0.98, respectively. (G and H) Neural activity in the insula could not be explained categorically by any of the three models.

Fig. 5. Neural Bayesian model comparison in regions encoding subjective
value difference at the time of the decision. (A) The MVS model best
explained neural activity in the vmPFC with an exceedance probability
of 0.96 (B).
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computations in other domains and species. Likely candidates
include related domains of subjective valuation [e.g., competing
models of temporal discounting of delayed choice options (e.g.,
ref. 34)] and entirely different domains such as recognition
memory (35) or mental processing modes (36). Moreover, this
approach is not limited to human neuroscience but might also
be applied to data from animal models of cognitive processes
[e.g., comparing different models of decisions under risk (37)
or with delayed outcomes (38)]. In all of these domains, Bayes-
ian model selection (BMS) at the neural level could supersede
the standard approach of fitting only the best behavioral model
to neural data and thereby provide insights about brain func-
tion. Of course, model comparisons with neural data can be
just as inconclusive or ambiguous as with behavioral data.
Therefore, this approach should not be understood as the only
solution to the problem of correlated behavioral models.
Rather, model comparisons on the neural level may provide a
more realistic perspective on the biological implementation of
the choice process, in-keeping with Marr’s framework.

There are several potential explanations for why MVS and
PT described neural activity better than EU. Under MVS, the
values of uncertain prospects are calculated using individual atti-
tudes toward the statistical moments of the underlying reward
distribution. This is computationally more efficient than EU or
PT because preferences can be represented by additive combina-
tion of simple characteristics of distributions (39). Mean-
variance approaches have been shown to optimize the allocation
of risky assets in portfolio selection theory and explain broader
classes of preferences than PT (40), suggesting that they are
more resistant to market forces in the world of financial invest-
ment. It is conceivable that neural systems facing uncertainty
may have faced similar challenges in their evolutionary history.
Another advantage of the summary statistics approach is that it
facilitates learning by allowing the decision maker to compute
the mean, variance, and skewness of a lottery through repeated
experience of outcomes, with these estimates converging to the
true moments of the distribution through the law of large num-
bers (41). Thus, dorsolateral and ventromedial prefrontal
regions may facilitate efficient and experience-dependent repre-
sentations of subjective value and may be involved in learning
the statistical moments of the value and probability distributions
of the offered lotteries. In contrast, PT allows for more precise
and experience-independent representation of subjective value
(39). It is therefore conceivable that PT representations are par-
ticularly important when learning is not (yet) possible and when
subjective valuation is based on heuristic appraisals of numeri-
cally displayed options. Our findings suggest that these functions
are underpinned by the striatum and parietal cortex.

A central feature of PT is probability distortion, which has
been reported in the striatum (42). This is in line with our find-
ing of PT best capturing striatal computation of subjective state
value. One prediction of the MVS approach is that the sum-
mary statistics of reward distributions are represented sepa-
rately at the neural level. This indeed appears to be the case
with previous studies showing mean (expected value) coding in
the lateral PFC (43) and variance coding in the insula, anterior
cingulate, lateral orbitofrontal cortex, and posterior parietal
cortex (13, 43–45). While skewness appears to be represented
also in the insula and ventral striatum (13, 45–47), it remains to
be seen whether single neurons encode skewness together with
other moments. In the orbitofrontal cortex, single neurons
seem to code moments separately, at least with regard to the
mean and variance of reward distributions (48). The separate
neural representation of summary statistic terms together with
our finding of preferential fit of prefrontal activity by MVS may
suggest that evolution favored the relatively simple solution to
implementing subjective value computation of MVS for

context-sensitive regions that keep track of the overall reward
distributions in the longer term.

Our study suggests that the brain represents subjective value
in multiple forms. This finding may help explain how the
description-experience gap arises, according to which people
show PT-like behavior when outcomes and probabilities are
described (as in our paradigm) but not when they are experi-
enced (49). Specifically, with decisions from description, deci-
sion makers typically overweigh the probability of rare events in
line with PT and with PT-like representations. In contrast, when
the outcomes of decisions are experienced through repeated
sampling, decision makers show no overweighing or even under-
weighting of rare events (49), in line with EU-like or other
representations. Furthermore, a recent study using theoretical
models and data-driven machine learning algorithms has shown
that behavior in a wide variety of risky choice problems can be
explained well by a combination of EU- and PT-like functions,
relying more on one or the other model depending on the spe-
cific choice problem (50). Although speculative, our findings
could suggest a viable neurobiological implementation of such
mixture models within the domain of decisions from description.

The present approach is not limited to value-based decision-
making. Our procedure is applicable in any area of research in
which competing models make similar predictions on the
behavioral level (e.g., learning and memory). However, there
are also limitations to this procedure. Exceedance probability
specifies well the strength of belief that given data has been
generated by the models in the set, but it only makes inferences
about the models in this set (30, 31). We cannot conclude that
the model preferred by the Bayesian model comparison was
indeed the data-generating model, only that this model explains
the data best among all the models in the set. Moreover, given
the strong overlap of behavioral predictions across models
(Fig. 2), future research may want to design experimental tasks
that more strongly dissociate the different models of value-
based decision-making (e.g., by tailoring the lotteries to each
participant individually based on a screening session).

In conclusion, we have revealed how the brain computes sub-
jective value by performing model comparisons also on the neu-
ral level instead of limiting them to the behavioral level and only
taking the winning model to the neural level. Our findings sug-
gest that different brain regions implement different models of
subjective value computation. Naturally, this proposition will ben-
efit from boundary and generality tests inside and outside of deci-
sion-making. It will be particularly interesting to study in which
context one rather than another model-specific brain region
drives behavior. Importantly, our finding that different brain
regions implement different computational models has the poten-
tial to contribute to a more sophisticated understanding of the
neurobiological underpinnings of value-based decision-making.

Experimental Procedures
Participants. All 31 participants (20 females) were healthy, right-
handed, had normal or corrected-to-normal vision, and reported
no history of psychiatric disorders. The first three participants
were pilot participants, saw only 135 of the 180 trials used in the
main study, and are therefore excluded from analysis. One fur-
ther participant was excluded due to a scanner crash during one
of the functional runs. Thus, the final sample consisted of 27 par-
ticipants (17 females, age: M ¼ 28.3 y, SD ¼ 5.0 y). The study
was approved by the Cantonal Ethics Commission of Zurich. All
participants gave informed consent prior to participating in the
fMRI task.

Experimental Task. Participants completed a risky decision-
making task in the MRI scanner. At the beginning of each trial,
two lotteries were displayed on the screen in the form of pie
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charts; participants had to decide which lottery they preferred.
For each lottery, there were two possible monetary outcomes,
and the shading of segments next to each outcome indicated
the probability associated with that magnitude (with each seg-
ment indicating a 10% chance). A list of the lotteries used in
the experiment is provided in SI Appendix, Tables S2 and S3.
Lottery pairs were explicitly constructed to differentiate
between the three models used in the experiment and were
selected from two previous studies (1, 7). Note that it is
extremely hard to design tasks that clearly dissociate between
models with similar predictions. Indeed, even though the present
lotteries have been designed (7) with the explicit aim of differenti-
ating between expected utility and cumulative PT (assuming a ref-
erence point of zero), the model predictions still correlate strongly
(Fig. 2). It therefore becomes necessary to use a statistical
approach that quantifies the evidence for each of the models per
participant and over the group of participants (see Behavioral
Models and BMS for fMRI data). The point of this paper is not to
demonstrate that our paradigm is superior to others in distinguish-
ing between the models of value-based decision-making but to
show a way of modeling behavioral and neuroimaging data to
enhance the insights generated from any of these experimen-
tal paradigms.

Following Bruhin and colleagues (7), our lotteries had
a wide range of magnitudes (x 2 0, 5, 7, 10, 12, 13, 15, 16, 17,f
18, 19, 20, 22, 25, 27, 30, 33, 35, 36, 38, 40, 42, 43, 47, 50g)
and probabilities (p 2 0, 0:05, 0:1, 0:2, 0:25, 0:3, 0:35, 0:4,f
0:5, 0:6, 0:7, 0:75, 0:8, 0:85, 0:9, 0:95, 1g), allowing for proba-
bility distortion as well as varying variance and skewness to
assess MVS preferences. Participants were instructed to make
their decision by pressing the left or right button on a button
box and allowed up to 5 s to make a decision. Following their
decision, feedback indicating the selected option (or failure to
make a choice) was displayed until 5 s after lottery pair onset
(but to prevent learning, the lotteries were never actually
played out during the experiment). There were 180 decision tri-
als evenly spaced among three functional runs. An additional
45 trials consisting of a prolonged fixation cross were inter-
spersed between lottery trials and lasted for 5.5 s. These null
trials served to increase design efficiency (51). The experimen-
tal task was programmed using the Cogent 2000 toolbox
(version 1.32) and Matlab R2010b (The MathWorks Inc.).

After participants completed the task in the scanner, four tri-
als were selected for payment and implemented outside the
scanner. Participants earned points, which were converted to
Swiss Francs (CHF) at the end of the experiment with 1 point
¼ CHF 0.25. The four trials selected for payment were deter-
mined by a computerized random number generator. The lot-
tery chosen by the participant on each of the four determined
trials was then played out for real money. If the chosen lottery
had more than one possible outcome, participants rolled a
20-sided die to play the lotteries, with each number being mul-
tiplied by 0.05 to implement probability. For example, if the lot-
tery gave a 20% chance of winning 0 points and an 80% chance
of winning 35 points, then a roll of 1 to 4 resulted in winning 0
points and a roll of 5 to 20 resulted in winning 35 points. Partic-
ipants earned CHF 30.63 on average during the behavioral task
in addition to a fixed payment of CHF 25 for participating in
the experiment.

Behavioral Models. For all trials, we characterized the presented
lotteries and fitted models as follows. We denoted a lottery by x
¼ (x1, p; x2, 1-p), where x1 > x2 and x gave outcome x1 with
probability p and outcome x2 with probability 1-p. On a small
number of trials, one of the lotteries offered an amount with
certainty (p ¼ 1). For each participant, we estimated the
parameters of EU, PT, and MVS using the following model
specifications:

EU model:

UEU xð Þ ¼ p x1ð Þρ þ 1� pð Þ x2ð Þρ, [1]

where q describes the curvature of the value function.
PT model:

UPT xð Þ ¼ w pð Þ x1ð Þρ þ 1� w pð Þð Þ x2ð Þρ, [2]

where q describes the curvature of the value function, and

w pð Þ ¼ δpγ

δpγ þ ð1� pÞγ [3]

denotes probability distortion according to the Goldstein–Einhorn
function (52), with δ and γ corresponding to the elevation and cur-
vature of the probability distortion function, respectively. As all
outcomes were nonnegative, we omitted the loss domain from our
PT model.

MVS model:

UMVS xð Þ ¼ βμ Mean xð Þð Þ þ βσðVariance xð ÞÞ þ βγðSkewness xð ÞÞ,
[4]

where βμ, βr, and βγ describe a participant’s preferences for the
mean, variance, and skewness of the lottery, respectively. For a
lottery with a sure outcome (p ¼ 1), skewness is technically
undefined. For simplicity, we assigned a skewness(x) of 0 to
these lotteries.

We estimated all three models using maximum likelihood
and therefore needed to adopt a stochastic choice rule for use
as the likelihood function. We adopted the Luce choice rule,
which is commonly used for probabilistic choice. The Luce
choice rule, equivalent to a softmax function with the tempera-
ture parameter equal to 1, assumes that choice mistakes are
most likely to occur when they are not very costly (i.e., the val-
ues of the two options are close). Let VL and VR indicate the
subjective values of the left and right lotteries, respectively, on
a given trial, and let PL be the probability of choosing the lot-
tery on the left. Then, the probability of choosing the left
option corresponds to:

PL ¼ 1

1þ expðVR �VLÞ : [5]

Using this choice rule, we obtained the log-likelihood function,

LL ¼ Σt½IL PLð Þ þ 1� ILð Þ PRð Þ�, [6]

where t represents a trial, and IL is an indicator function equal
to 1 when the lottery on the left was selected and 0 otherwise.
We then obtained the best-fitting parameter estimates by maxi-
mizing the log-likelihood separately for each model using the
Nelder–Mead method (53). Behavioral models were estimated
using R statistical software (54). For the EU and PT models,
theoretical considerations and empirical evidence suggest that
plausible parameter values will be positive (55, 56). Therefore,
we constrained the parameters to be positive by using the trans-
formed variable elnðwÞ for each parameter w. For the MVS
model, we assumed that participants prefer increasing mean val-
ues (βμ > 0Þ but remained agnostic regarding the sign of the
variance and skewness parameters. The sign of the variance
parameter is often interpreted as a measure of risk preference
and could be negative or positive depending on a participant’s
risk attitude (βr < 0 implies risk aversion, βr > 0 implies risk tol-
erance). At present, there is a lack of evidence regarding skew-
ness preferences and therefore plausible values for βγ (12,
14–16). Since optimization procedures can converge to local
maxima/minima, which do not necessarily correspond to the
global maximum/minimum, we used several sets of starting
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values for parameters. Log-likelihood was used to assess model
fits, and the small-sample corrected AICc was used to classify
participants into behavioral types and perform model compari-
son at the group level. Following conventional rules-of-thumb
for model classification (57), participants were classified as a
PT-type if 1) AICcEU �AICcPT > 2 and 2)
AICcMVS �AICcPT > 2. Formal model comparison was per-
formed by passing the AICc values to the group Bayesian Model
Comparison function of the VBA toolbox (31). Finally, we gen-
erated choice predictions by simulating the choices for each
model, using the optimized parameters from the fitting proce-
dure and by selecting the option with the highest choice proba-
bility (i.e., predict Left option if PL > PR and vice versa). Using
the best-fitting parameters for each participant and model, we
computed the subjective (cardinal) values of the options used in
the experiment using Eqs. 1, 2, and 4. Ordinal ranks were calcu-
lated by sorting the cardinal values for each participant and
model from minimum to maximum.
fMRI data collection. Data were acquired with a 3T Philips
Achieva scanner. Functional images were taken with a
T2-weighted gradient echo-planar imaging sequence (repetition
time [TR] ¼ 2,500 ms, echo time [TE] ¼ 36 ms, and flip angle
¼ 90˚). Whole-brain coverage was achieved by 37 slices,
acquired in ascending order (3-mm thickness, 0.5-mm gap, and
in-plane voxel size 2 � 2 mm). Participants’ heads were
restrained with foam pads to decrease head movement. Func-
tional imaging data were acquired in three separate sessions,
each lasting about 10 min. High-resolution structural
T1-weighted three dimensional–turbo field echo anatomical
scans of the whole brain were also acquired for each participant
(voxel size 1.1 � 1.1 � 0.6 mm, TR ¼ 7.5ms, TE ¼ 3.5 ms, and
flip angle ¼ 8˚).
fMRI data analysis. We used a standard rapid-event–related
fMRI approach in which evoked hemodynamic responses to
each event type are estimated separately by convolving a canon-
ical hemodynamic response function (HRF) with the onsets for
each event and regressing these against the measured fMRI sig-
nal. Using statistical parametric mapping (SPM12; Functional
Imaging Laboratory, University College London) we performed
slice timing correction, spatial realignment, normalization to
the standard echo-planar imaging template and spatial smooth-
ing using an isometric Gaussian kernel with a full-width at half-
maximum (FWHM) of 10 mm.

To investigate the neural encoding of subjective values for
each model, we constructed a GLM using model-based subjec-
tive values as parametric modulators. This GLM included a
regressor for the trial onset with a duration until the time the
participant entered the decision. This onset regressor was para-
metrically modulated on a trial-by-trial basis by the sum of the
subjective values of the two lotteries on screen (state value),
either for the EU model, the PT model, or the MVS model.
A second regressor modeled the time of the decision. This
onset regressor was parametrically modulated on a trial-by-trial
basis by the difference in the subjective value of the lotteries on
screen (subjective value difference), either for the EU model,
the PT model, or the MVS model. Missed trials, in which a
decision was not entered within 5 s, and null trials were each
modeled as separate conditions (regressors of no interest) in
the design matrix. Thus, the GLM included the following
regressors:

0) Constant;
1) Onset of valid trials—time when the lotteries were presented

in the trials in which the participant made a choice in time
(regressor duration until response);

2) State value—parametric modulator of (1), using the trial-
specific sum of subjective values of both lotteries (Eqs. 1, 2,
or 4);

3) Decision—time when the participant conveyed their deci-
sion, that is, indication of the selected option (regressor
duration 0 s);

4) Value difference—parametric modulator of (3), using the
trial-specific difference between subjective values of lotteries
(Eqs. 1, 2, or 4);

5) Onset of null trials (regressor duration 0 s);
6) Onset of missed trials—time when the lotteries were pre-

sented in the trials in which the participant did not make a
choice in time (regressor duration 5s);

7) State value of error trials—parametric modulator of (6),
using the trial-specific sum of subjective values of both
lotteries;

8) Error term.

The regressors 0 to 7 are repeated twice because the experi-
ment was performed in three runs with short breaks in
between. All regressors were convolved with the canonical
HRF, including time and dispersion derivatives to account for
differences in latency and shape of the responses. We built one
GLM for each of the three theoretical models of value compu-
tation (EU, PT, and MVS). To ease the comparability of subjec-
tive values between the three models, we used the certainty
equivalents of the respective utility value (p. 186 of ref. 8).

The three GLMs enabled us to investigate the neural encod-
ing of subjective value based on the assumption that the subjec-
tive values would be processed in the brain at the time of
option presentation/choice consideration (state value) and the
time of the decision itself [difference value (58–60)]. We
weighted the regression coefficients from the two parametric
modulators (i.e., the sum of the subjective values of both
options during the lottery presentation and the difference in
subjective values between both options at the time of the
response) with a 1 at the individual participant level and took
the resulting contrast images to group-level Student’s t tests.
These second-level models identified regions coding subjective
value according to the different models. By using inclusive
masking of activations commonly identified by all three models,
we determined regions that compute subjective value in a
model-invariant manner. From the resulting intersection image,
clusters were identified and ROIs for subsequent BMS created
using xjview and MRIcron packages.
BMS for fMRI data. To test whether the subjective values gener-
ated by one particular model explain neural computation of
subjective values substantially better than the alternative mod-
els, we performed BMS. Specifically, we compared the log-
evidence maps from alternative models separately for state
value and value differences. This allowed us to identify the
model which best explained neural activity related to subjective
value computation.

We implemented BMS in SPM12 by following previously
described procedures (29). We repeated the same preprocess-
ing as described in fMRI data analysis but omitted smoothing,
as the log-evidence maps produced by the first-level analysis
are smoothed before conducting BMS. Our BMS analysis
assessed the three models (EU, PT, and MVS) in the common
subjective value regions (dlPFC, striatum, insula, and IPL for
state value, vmPFC for difference value). Therefore, we com-
pared the model fits not in the whole brain but only in the areas
that the preceding analyses associated with state value or value
difference for all three tested models.

In the first-level Bayesian analyses, we included either the sum
of subjective values (state value) and the absolute difference of
subjective values (difference value) as a parametric modulator.
The neural models were estimated three times, once for each sub-
jective value model, using model- and participant-specific subjec-
tive values from EU, PT, or MVS. Log-evidence maps resulting
from the first-level analysis were smoothed using an 8-mm
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FWHM Gaussian kernel. We then conducted a voxel-wise ran-
dom effects BMS analysis in the ROIs. Bayesian model compari-
son was performed at the second level for each model (30). This
allowed us to calculate the expected posterior probabilities for the
EU, PT, and MVS models along with the exceedance probability
(quantifying the belief that one model is more likely than the
other). For model comparison at the ROI level, we averaged the
log-evidence values within each ROI for each participant and
passed these to the VBA toolbox (31).

Data Availability. Anonymized statistic parametric maps data have been
deposited in Neurovault (https://identifiers.org/neurovault.collection:9604).
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