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Abstract
Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer’s

disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid

peroxidation and accelerates AD pathology. Very little data are available, however, regard-

ing the expression of apoD protein levels in different brain regions. This is important as both

brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we

addressed this using western blotting of seven different regions (olfactory bulb, hippocam-

pus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our

data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In

comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart

and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total pro-

tein levels). Our analysis also revealed that brain apoD was present at a lower apparent

molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and

neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan

composition (but not sialylation alone) were responsible for this reduction in molecular

weight. We extended the studies to an analysis of human brain regions (hippocampus, fron-

tal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the

lowest levels of apoD. We also confirmed that human brain apoD was present at a lower

molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are

variable across different brain regions, that apoD levels are much higher in the brain com-

pared to other tissues and organs, and that cerebral apoD has a lower molecular weight

than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein.

PLOS ONE | DOI:10.1371/journal.pone.0148238 February 1, 2016 1 / 13

OPEN ACCESS

Citation: Li H, Ruberu K, Karl T, Garner B (2016)
Cerebral Apolipoprotein-D Is Hypoglycosylated
Compared to Peripheral Tissues and Is Variably
Expressed in Mouse and Human Brain Regions.
PLoS ONE 11(2): e0148238. doi:10.1371/journal.
pone.0148238

Editor: Maria Gasset, Consejo Superior de
Investigaciones Cientificas, SPAIN

Received: November 16, 2015

Accepted: January 14, 2016

Published: February 1, 2016

Copyright: © 2016 Li et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This research was funded by a National
Health and Medical Research Council (NHMRC) of
Australia (http://www.nhmrc.gov.au/) Project Grant
(Grant No. 1065982) awarded to TK and BG. TK and
BG are supported by NHMRC Research Fellowships
(Grant No. 1045643 and No. 1109831, respectively).
The human brain tissue used in this work was
supplied by the New South Wales Tissue Resource
Centre at the University of Sydney and the Sydney
Brain Bank, which are supported by the University of

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0148238&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nhmrc.gov.au/


Introduction
Apolipoprotein D (apoD) is an ~ 29 kDa glycoprotein member of the lipocalin family [1].
ApoD is well known as a plasma protein that associates with the high-density lipoprotein
(HDL) fraction [2, 3]. The apoD crystal structure reveals an eight-stranded antiparallel β-barrel
flanked by an α-helix [4]. Similar to other lipocalins, the β-barrel encloses a conically shaped
internal hydrophobic cavity that functions as a ligand-binding site for small hydrophobic mol-
ecules. Early studies suggested that apoD binds a range of lipids including arachidonic acid
(AA), cholesterol and several steroids [5–8]. More recent studies indicate that binding of lipids
in the apoD binding pocket is quite specific [4, 9]. Progesterone, AA and retinoic acid bind to
apoD with high affinity whereas pregnenolone and specific eicosanoids (e.g. 12-HETE and
5,15-diHETE) bind with reduced affinity [6–8, 10].

In addition to its expression in plasma, apoD is highly expressed in the central and periph-
eral nervous systems [11, 12]. Recent studies indicate a role for apoD in protection against lipid
peroxidation in the brain. Loss-of-function Drosophila mutants for the apoD homolog glial
lazarillo (GLaz) were found to be more sensitive to oxidative stress and contained higher con-
centrations of lipid peroxidation products [13]. In addition, over-expression of GLaz in trans-
genic Drosophila lines increased resistance to oxidative stress, extended lifespan and protected
against hyperoxia-induced behavioural decline [14]. Expression of human apoD in old flies
also reduced the accumulation of aldehydic end-products of lipid peroxidation [15]. We have
identified an antioxidant mechanism of action for apoD that is based on the reduction of reac-
tive lipid hydroperoxides to relatively inert lipid hydroxides; a reaction that requires conversion
of apoD methionine residue 93 to methionine sulfoxide [16, 17].

Studies in mice have confirmed that brain apoD is induced in response to oxidative stress,
that lipid peroxidation is increased in the brains of apoD null mice, and that expression of
human apoD prevents lipid peroxidation in response to paraquat-induced oxidative stress in
the brain [18]. More recent studies have sown that loss of apoD in the APP/PS1 amyloidogenic
Alzheimer’s disease (AD) mouse model significantly worsens AD pathology, whereas neuronal
expression of human apoD in the same AD mouse model reduces AD pathology [19]. These
observations, along with the known induction of apoD in affected brain regions in human AD
and mouse models [20–26], underscore the importance of defining possible difference in apoD
expression in different brain regions that may be susceptible to oxidative stress and neurode-
generative conditions.

Previous studies have quantitatively assessed the expression of apoD mRNA levels in the
brain and other tissues, and there are several reports demonstrating the presence of apoD pro-
tein in specific brain areas such as the hippocampus, cerebellum, dorsolateral pre-frontal cortex
and substantia nigra. Pioneering studies by Navarro et al. [27], Terrisse et al. [20] and Thomas
et al. [22, 28] provided initial evidence that apoD protein levels may vary in specific cell types
and across brain regions in human post-mortem brain tissues. Navarro et al. used immunos-
taining methods to demonstrate apoD immunoreactivity in neurons and glia of the cerebellar
cortex and showed that neurons do not express apoD in a uniform staining pattern [27]. In
addition they reported that in the frontal, parietal and temporal cortices, neuronal apoD was
not observed [27]. Terrisse et al. demonstrated the presence of apoD in the human hippocam-
pus by western blotting and found that levels were significantly increased in AD postmortem
samples compared to control samples [20]. Subsequent publications by Thomas et al. quanti-
fied brain apoD protein levels by an ELISA method [22, 28]. Initially this group compared
apoD levels in six brain regions from healthy controls and Schizophrenia patients and discov-
ered an approximate doubling of apoD levels in the dorsolateral prefrontal cortex of the
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Schizophrenia patients [28]. Their follow-up study used the same ELISA method to show that
apoD levels were increased in the prefrontal cortex of AD patients [22].

Although several studies have assessed the expression of apoD mRNA and protein levels in
various brain regions [11, 12, 19, 20, 25, 27, 29–34] there are limited data available regarding
the quantitative expression of apoD protein levels across different brain regions, how this may
relate in mice to other organs, and how differences in apoD molecular weight (that may be
present in cerebral versus peripheral sources in mice and humans) might relate to alterations
in the extent of N-linked glycosylation. In the current study, we have addressed these questions
by undertaking western blot analysis of apoD in various brain regions and organs and by utilis-
ing glycosidase digestion techniques to investigate apoD molecular weight heterogeneity.

Materials and Methods

Animals
All mice were on a pure (backcrossed> 10 generations) C57BL6 background. Test animals
were 2 males and 1 female at ~8 months of age (n = 3, 239 ± 11 days old, mean ± SE). Animal
ethics approval was from the University of Wollongong Animal Ethics Committee (AE11/03).

Human brain tissue
The human tissues were derived from a cohort of aged healthy control donor brains that have
been previously described in detail [26]. The samples analysed in the present study were
comprised of 1 male and 2 female donors (79 ± 6 years old, post-mortem interval 24 ± 11 h,
means ± SE).

Ethics statement
Human brain tissue was supplied by the New South Wales Tissue Resource Centre at the Uni-
versity of Sydney and the Sydney Brain Bank (http://www.nswbrainbanknetwork.org.au/). A
plasma sample was obtained from a healthy 50 year old male volunteer. Written informed con-
sent from the donor or the next of kin was obtained for the use of the samples in research. The
use of human brain tissue was approved by the University of Wollongong Human Research
Ethics Committee (HE10/327). The research was conducted according to the principles
expressed in the Declaration of Helsinki. The three human control brain tissue samples used in
the present study were part of a larger cohort of samples previously described in detail [26].
The use of mice in this study was approved by the University of Wollongong Animal Ethics
Committee (AE11/03). Mice were euthanized by CO2 asphyxiation.

Sample collection and processing
Mice were euthanized by CO2 asphyxiation and transcardially perfused with ice-cold phos-
phate buffered saline (PBS). The brains were removed and sagittally divided and the olfactory
bulb, hippocampus, frontal cortex, striatum, cerebellum, brain stem and thalamus/hypothala-
mus (the thalamus/hypothalamus regions were combined) were dissected from the right hemi-
sphere before snap freezing and storage at -80°C. Brain tissues were processed by accurately
weighing ~15 mg of frozen tissue that was homogenized in 12 volumes of 140 mMNaCl, 3
mM KCl, 25 mM Tris (pH 7.4), containing 1% Nonidet P-40, 100μM PMSF and Sigma prote-
ase inhibitor cocktail (TBS/NP40 extraction buffer) using a Precellys 24 homogenizer (2 x 30s,
6000 g). Homogenates were centrifuged at 16,000 g for 30 min at 4°C and the TBS/NP40-solu-
ble supernatant collected and stored at −80°C until use in western blotting experiments. Pro-
tein concentration was measured using the bicinchoninic acid (BCA) method. The human
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tissues were provided by the New South Wales Tissue Resource Centre and the Sydney Brain
Bank. The regions available for analysis were the hippocampus, frontal cortex (grey matter and
white matter), temporal cortex (grey matter and white matter) and cerebellum.

Western blotting
The brain homogenates were analysed by SDS-PAGE (~15 to 50 μg protein per lane) and west-
ern blotting using antibodies to apoD (goat polyclonal sc-34760, Santa Cruz, 1:5,000 for mouse
apoD detection; mouse monoclonal, sc-373965 (clone C1), Santa Cruz, 1:1,000, for human
apoD detection), apoE (goat polyclonal 178479, Merck Millipore, 1:5,000), NeuN (mouse
monoclonal (cloneA60), MAB347, Chemicon 1:1,000), GFAP (rabbit polyclonal, Z0334,
DAKO, 1:5,000), MBP (rabbit polyclonal, OABB00147, Aviva Systems Biology, 1:5,000), Iba-1
(rabbit polyclonal, 019–19741, Wako, 1:2000), ZO-1 (rabbit polyclonal, 40–2200, Invitrogen,
1:1000), GAPDH (rabbit polyclonal, OSG00032W, Osenses, 1:10,000) and β-actin (rabbit poly-
clonal, A5060, Sigma, 1:10,000). Signals were detected using species-specific HRP-conjugated
secondary antibodies (all from donkey, Santa Cruz, 1:5,000) and enhanced chemiluminescence
and quantified using ImageJ software. Integrated optical density data were normalized to β-
actin or GAPDH levels, as appropriate, and expressed as relative values. All quantitative data
are presented as mean ± SE (represented by the error bars).

Sample deglycosylation
Where indicated, selected samples were treated with either peptide N-glycosidase F (PNGase)
or neuraminidase (NMDase) to examine the effect of N-glycans and sialylation on apoD rela-
tive molecular weight (MW). Tissue homogenates, and/or plasma (pre-diluted with PBS 1:100)
were treated with PNGase F (glycerol free, P0704L, NEB) or NMDase (N3786, Sigma) follow-
ing the manufacturer’s instructions. Sample controls were treated using the same process but
without PNGase F or NMDase. All samples were heated for 100°C for 5 min then assessed by
15% SDS-PAGE and western blotting for apoD detection as described above.

Results and Discussion
Although apoD is well known to be expressed in the brain, very little has been reported regard-
ing possible differences in apoD protein expression in different brain regions. Using the mouse
as a widely studied model organism, we initially examined apoD expression in the following
seven major brain regions: olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum,
brain stem and thalamus/hypothalamus (the thalamus/hypothalamus regions were combined).
Our western blot data indicated variability in the expression of apoD across these brain regions
(Fig 1). Of note, the hippocampus and frontal cortex were relatively deficient in apoD com-
pared to most of the other regions (Fig 1A and 1B). For the purpose of comparison, we also
examined the expression of apoE in the same brain regions and found a rather different profile.
ApoE levels were overall not as variable across the brain regions; with the exception being the
somewhat lower apoE level detected in the brain stem (Fig 1A and 1C). Even though apoD and
apoE are both regarded as transporters of lipids and other lipophilic molecules [1, 35], their
divergent expression patterns in the different brain regions studied here suggests they may
have specialised as well as overlapping functions. This is also in line with the divergent expres-
sion profiles of these two apolipoproteins in the maturation and ageing of the human brain
[25].

Previous studies provide evidence for apoD expression in glia and, under certain circum-
stances, in neurons [1, 36]. To assess whether the expression of apoD in different brain regions
might be associated with enrichment with certain brain cell types, we also probed for a panel of
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cell-type specific marker proteins. The markers we chose were: neurons, NeuN; astrocytes,
GFAP; microglia, Iba1; oligodendrocytes, MBP; and endothelial cells, ZO-1. As expected, the
expression of these individual markers varied across the different brain regions (Fig 2A); how-
ever, the integrated optical density for the apoD signal was not significantly correlated with any
of the individual marker proteins (data not shown). This might suggest that apoD serves differ-
ent roles in different cell types and that this is in a brain region-specific manner. For example,
the higher expression of apoD in the olfactory bulb could be associated with olfaction (e.g.
odour delivery to neurons), whereas the high level of apoD expression in the brain stem could
have more to do with oligodendrocyte function and myelination. Evidence consistent with a
function for apoD in both of these scenarios has been previously reported [37–39].

Fig 1. Expression of apoD and apoE in mouse brain regions. The indicated regions of mouse brain were
homogenized and assessed for apoD and apoE by western blotting after controlling for equal total protein
loading. Levels of β-actin were similar across the brain regions and were therefore used as a housekeeper
control protein to normalize apoD and apoE expression. Representative blots are shown from an ~8 month-
old male mouse (A). Histograms indicate the relative expression of apoD (B) and apoE (C), corrected for β-
actin levels. Data in “B” and “C” are relative optical density measurements where the olfactory bulb is
arbitrarily defined as 1.0. The data are derived from 3 different animals (mean values, SE shown by the error
bars). Olf., olfactory bulb; Hip., hippocampus; Cort., frontal cortex; Striat., striatum; Cereb, cerebellum; Br. St.,
brain stem; Thal., thalamus/hypothalamus.

doi:10.1371/journal.pone.0148238.g001
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Related to this line of investigation, a recent transcriptomics study [40], has provided a data-
base of the mouse cerebral cortex transcriptome using a quantitative mapping method that
expresses gene expression as fragments per kilobase of exon per million fragments mapped
(FPKM). Interrogation of this dataset indicates that at the transcript level Apod expression is
predicted to be highest in myelinating oligodendrocytes, with the next highest level of expres-
sion detected in endothelial cells (Fig 2B). This suggests a role for apoD in myelination, which
has also been suggested in other publications [33, 41].

In order to compare the level of apoD expression in the brain with other mouse tissues and
organs, we compared cortical homogenates with various tissue samples that were collected at
the same time the brain dissection was conducted. The organs / tissues we assessed were: liver,
spleen, kidney, adrenal gland, skeletal muscle, heart and plasma. With the exception of the
plasma samples, these tissues were homogenised using the same protocol we used for the brain
regions. Overall, we found that apoD levels were expressed at very low level in all the tissues
examined (Fig 3A). In agreement with previous data [2, 12], apoD was expressed at relatively
high levels in plasma. When we attempted to quantify the apoD levels in these different tissues
using β-actin as a housekeeper protein, the data were highly variable based on the non-uniform

Fig 2. Expression of cell type marker proteins in mouse brain regions. The indicated regions of mouse
brain were homogenized and assessed for listed cell specific markers by western blotting after controlling for
equal total protein loading. Representative blots are shown from an ~8 month-old male mouse (A). The
histogram indicates the predicted relative expression levels of apoDmRNA in various brain cell types (B).
Fragments per kilobase of exon per million fragments mapped (FPKM) data are mean values, (SE shown by
the error bars) derived from the publically available data based described by Zhang et al. (see reference [40]).
Olf., olfactory bulb; Hip., hippocampus; Cort., frontal cortex; Striat., striatum; Cereb, cerebellum; Br. St., brain
stem; Thal., thalamus/hypothalamus; NeuN, neuronal nuclei; GFAP, glial fibrillary acidic protein; Iba1, ionized
calcium-binding adapter molecule 1; MBP, myelin basic protein; ZO-1, zonula occludens protein 1.

doi:10.1371/journal.pone.0148238.g002
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expression of β-actin in the samples (Fig 3A). We therefore chose GAPDH as a more reliable
housekeeper for these samples. The data indicate that, relative to GAPDH levels, apoD is
expressed at the highest level in the brain (Fig 3B). ApoE, on the other hand, was expressed at
high levels in both the liver and the brain as well as being detectable at moderate levels in the
other tissues examined including plasma (Fig 3C). Once again this indicates that these apolipo-
proteins are likely to have quite distinct functions that are dependent on the local tissue
context.

Fig 3. Expression of apoD and apoE in mouse tissues. The indicated tissue samples were homogenized
(or collected in the case of plasma) and assessed for apoD and apoE by western blotting after controlling for
equal total protein loading. Levels of β-actin and GAPDH were also measured as potential housekeeper
proteins. As the GAPDH levels were less variable than β-actin, the former was used to normalize apoD and
apoE expression. Representative blots are shown from an ~8 month-old male (A). Histograms indicate the
relative expression of apoD (B) and apoE (C), corrected for GAPDH levels. Data in “B” and “C” are relative
optical density measurements where the liver is arbitrarily defined as 1.0. The data are derived from 3
different animals (mean values, SE shown by the error bars). Adren., adrenal gland; Sk. M., skeletal muscle;
Plas., plasma; Cort., frontal cortex.

doi:10.1371/journal.pone.0148238.g003
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Our analysis of apoD in the cortex as compared to the various tissues mentioned above indi-
cated an apparent reduced apparent MW of the protein in the brain samples (Fig 3A). This was
particularly noticeable in the plasma and cortex samples run beside each other in Fig 3A. To
assess whether this difference was due to a truncated form of apoD in the brain or perhaps due
to alterations in apoD N-linked glycosylation, we repeated the analysis using PAGE and

Fig 4. Comparison of brain and plasma apoDmolecular weight and impact of N-glycan removal.
Mouse brain and plasma samples were run on PAGE under conditions that yielded approximately equal
apoD loading. Note that total protein loading was ~50% higher in the plasma samples based on Ponceau
staining (A). Both brain and plasma samples with pre-incubated with PNGase (“+”) or buffer control (“-“) to
assess the impact of N-glycans on overall MW (B). The broken lines in “B” clarify the migration distances of
the different samples and indicates that N-glycans contribute more to MW for the plasma sample. Our
comparision apolipoprotein (apoE) was not affected by PNGase, as predicted due to the lack of N-glycans on
this protein (C). β-actin levels confirm equal sample loading amounts for the brain samples (D). *, Band due
to added PNGase. PNGase, peptide N-glycosidase F.

doi:10.1371/journal.pone.0148238.g004
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western blotting conditions that more clearly separated the samples. We also aimed to equalise
the loading for apoD level rather than total protein level in this analysis. The total protein load-
ing for this analysis is indicated by the Ponceau Red-stained blots (Fig 4A). The western blot
for apoD confirms that there was a striking difference in the apparent MW of apoD in the
brain (Fig 4B). We estimate that cortical apoD is ~2 kDa lower in MW than in plasma and
peripheral tissues. To assess whether these differences may be due to the extent of N-glycosyla-
tion, we treated the samples with PNGase. This treatment resulted in an identical migration
position of for both brain and plasma apoD on the blots, thus confirming that the reduced size
of brain apoD is indeed due to altered N-glycosylation. No such differences in apparent MW
were observed for our comparison protein, apoE, which is an O-glycosylated protein (Fig 4C).

We next assessed the degree to which altered N-glycan sialylation may contribute to the dif-
ferences in brain apoD glycosylation we detected. Mouse plasma and brain apoD samples were
treated with neuraminidase and probed by western blotting. The removal of terminal sialic
acids resulted in a “collapsing” or “focusing” of the apoD bands in both the plasma and brain
samples; however, the desialylated brain apoD still migrated at a lower MW than the desialy-
lated plasma apoD (Fig 5). PNGase treatment was also used as a positive control for N-glycan
removal and, as expected, resulted identical MW products for both plasma and brain apoD.
This indicates that the altered apoD N-glycosylation seen in brain apoD is not simply due to
the extent of sialylation.

Since mouse and human protein glycosylation may not always be identical (e.g. mouse sialy-
lation involves N-glycolylneuraminic acid whereas human sialylation is due to N-acetylneura-
minic acid [42]), we also compared apoD from human plasma and frontal cortex and found
the western blot migration pattern was identical to the mouse. Fig 5 also shows that removal of
sialic acids from human apoD leads to the predicted drop in MW but the human brain apoD
still migrates at a lower MW than the human plasma apoD. Recapitulating the findings from
the mouse sample analysis, treatment of human brain apoD and human plasma apoD with
PNGase resulted in an identical migration position for the deglycosylated proteins (Fig 5).

Fig 5. Comparison of mouse and human apoDmolecular weight and impact of N-glycan and sialic
acid removal.Mouse and human brain and plasma samples were separated by PAGE under conditions that
yielded approximately equal apoD loading. Both brain and plasma samples were pre-incubated with either
PNGase (“+”) or NMDase (“+”), or the appropriate buffer controls (“-“), to assess the impact of N-glycans and
sialic acids, respectively, on overall MW. The broken lines clarify the migration distances of the different
samples and indicates that the differences in MW (comparing brain and plasma samples) are not due to
sialylation alone (as the MW of plasma apoD is still greater than that of brain apoD after sialic acid removal).
In addition, the difference between brain and plasma apoDMW identified in the mouse samples are
recapitulated in the human brain and plasma samples. PNGase, peptide N-glycosidase F; NMDase,
neuraminidase.

doi:10.1371/journal.pone.0148238.g005
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Based on data from many previous studies indicating a role for protein N-glycan composi-
tion in the regulation of neural transmission and pathways involved in neurodegeneration [43,
44], we speculate that the altered N-glycosylation of apoD seen in the brain, versus other
organs, plasma and peripheral tissues, may be of functional significance. Clearly, more detailed

Fig 6. Expression of apoD and apoE in human brain regions. The indicated regions of human brain were
homogenized and assessed for apoD and apoE by western blotting after controlling for equal total protein
loading. Levels of β-actin were similar across the brain regions and were therefore used as a housekeeper
control protein to normalize apoD and apoE expression. Representative blots are shown from a healthy 68
year-old male subject (A). Histograms indicate the relative expression of apoD (B) and apoE (C), corrected
for β-actin levels. Data in “B” and “C” are relative optical density measurements where the hippocampus is
arbitrarily defined as 1.0. The data are derived from 3 different individuals (mean values, SE shown by the
error bars). Hip., hippocampus; Cort., frontal cortex; GM, grey matter; WM, white mater; Temp, temporal
cortex; Cereb, cerebellum.

doi:10.1371/journal.pone.0148238.g006
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fine mapping of the apoD carbohydrate structures and their role(s) in regulating one or more
of the postulated functions for apoD would be required to support this conjecture.

In a final series of experiments we examined the possible variability in apoD expression lev-
els in different regions of human brain samples. We were unable to match identically the same
brain regions we used in the mouse brain; nonetheless, a selection of various regions was avail-
able to us. In this analysis we have assessed apoD expression in the following brain regions:
hippocampus, frontal cortex (grey matter and white matter), temporal cortex (grey matter and
white matter) and cerebellum (Fig 6). Similar to the mouse brain region analysis, we found that
the hippocampus had the lowest levels of apoD in the human brain regions examined (Fig 6B).
We also noted that the apoD expression tended to be higher in the white matter of both the
frontal cortex and temporal cortex as compared to the respective grey matter samples (Fig 6B).
Also similar to the mouse brain data, the expression of apoE across the human brain regions
was not as variable as apoD (Fig 6C). This data therefore confirms the overall observation that
apoD expression is variable in different brain regions. Further studies will be required to ascer-
tain exactly what the functional implications of this variable expression might be. As apoD has
recently been found to combat lipid oxidative stress in the brain [18], it is possible that regions
with high basal apoD may be protected from neurodegeneration whereas regions with low
apoD may be more susceptible. In this context it is interesting to note that apoD affords protec-
tion in an AD mouse model [19], and the low hippocampal apoD expression we report herein
could be one reason that this brain region is highly susceptible in AD. On the other hand, it has
also been suggested that the brain stem may be protected from age-related neurodegeneration
by virtue of its high basal expression of apoD [45]. Whether the changes in apoD expression
that are assocaiated with age and AD are affected equally across all brain areas remains to be
established. These research questions, along with the identification of the physiological ligands
and functions of apoD in the brain, would appear to warrant further study.

Conclusions
In conclusion, the present study reveals highly variable expression of apoD in different regions
of the mouse brain and human brain. We also show that the apparent MW of apoD is reduced
in the brain in both species and that this is due to differences in the apoD N-glycan content.
Such differences in apoD regional expression may predispose certain areas of the brain to
neurodegenerative disease and/or oxidative stress.
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