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Contamination of maize with aflatoxins and fumonisins is one of the major food
safety concerns worldwide. Knowing the contamination in advance can help to reduce
food safety risks and related health issues and economic losses. The current study
aimed to develop forecasting models for the contamination of maize grown in Serbia
with aflatoxins and fumonisins. An integrated modeling approach was used, linking
mechanistic modeling with artificial intelligence, in particular Bayesian network (BN)
modeling. Two of such combined models, i.e., the prediction model for aflatoxins
(PREMA) and for fumonisins (PREFUM) in maize, were developed. Data used for
developing PREMA were from 867 maize samples, collected in Serbia during the
period from 2012 to 2018, of which 190 were also used for developing PREFUM.
Both datasets were split randomly in a model training set and a model validation set.
With corresponding geographical and meteorological data, the so-called risk indices for
total aflatoxins and total fumonisins were calculated using existing mechanistic models.
Subsequently, these risk indices were used as input variables for developing the BN
models, together with the longitudes and latitudes of the sites at which the samples
were collected and related weather data. PREMA and PREFUM were internally and
externally validated, resulting in a prediction accuracy of PREMA of, respectively, 83
and 70%, and of PREFUM of 76% and 80%. The capability of PREMA and PREFUM
for predicting aflatoxins and fumonisins contamination using data from the early maize
growth stages only was explored as well, and promising results were obtained. The
integrated approach combining two different modeling techniques, as developed in the
current study, was able to overcome the obstacles of unbalanced data and deficiency of
the datasets, which are often seen in historical observational data from the food safety
domain. The models provide predictions for mycotoxin contamination at the field level;
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this information can assist stakeholders of the maize supply chain, including farmers,
buyers/collectors, and food safety authorities, to take timely decisions for improved
mycotoxin control. The developed models can be further validated by applying them
into practice, and they can be extended to other European maize growing areas.

Keywords: mycotoxins, prediction, corn, weather, unbalanced data, validation, Aspergillus, Fusarium

INTRODUCTION

Maize (Zea mays) is one of the main sources for food and feed
production in the world (Chulze, 2010). In 2017, more than
197 million hectares were grown with maize worldwide resulting
in production yield of 1.13 billion tons of maize (FAOSTAT,
2020). Ensuring the quality and safety of maize for feed and
food production is essential. One of the major quality and
safety concerns is infection of the maize plants with fungi and
the contamination of maize kernels with mycotoxins, which
are toxic secondary metabolite compounds of certain fungal
species. In temperate and semi-tropical areas, which are the
main maize growing areas in Europe, maize is vulnerable to
the infection of Aspergillus spp. and Fusarium spp., mainly
Aspergillus flavus and Fusarium verticillioides (Chulze, 2010). It
has been shown that aflatoxins and fumonisins, which are of
the associated mycotoxins of these fungi, have negative impacts
on the health of human and animals (Zain, 2011). In human
and animals, these mycotoxins have the potential to promote the
formation of cancer. Furthermore, toxic metabolic compounds
(mainly aflatoxin M1) can be found in the excreted milk of milk-
producing animals, such as dairy cows and goats, after intake
of mycotoxin-contaminated feed (Santos Pereira et al., 2019).
Knowing mycotoxin contamination of maize at harvest already
during the growing stage or close to harvest allows maize supply
chain stakeholders, e.g., farmers, collectors, or feed producers, to
take timely management actions so to prevent from safety issues
in derived feed and food. Predictions of mycotoxins in maize can
be used for decisions on keeping batches from particular fields
separately, for routing and processing in the chain and/or for risk-
based inspection. In the latter case, only the maize grown in those
areas with estimated high probability to be contaminated with
mycotoxins can be sampled for mycotoxin analyses. Such risk-
based sampling and analyses procedures, focusing on areas or
batches with a predicted high contamination and not collecting
samples when the contamination is predicted to be low, will
reduce monitoring costs. These needs of stakeholders of cereal
supply chains to predict the contamination of mycotoxins
in advance has stimulated the development of mathematical
forecasting models.

In previous studies, several obstacles in achieving a satisfactory
performance of mycotoxin forecasting models have been
identified. One of the major obstacles is related to mycotoxin
monitoring data often being unbalanced. Historical datasets with
data collected from practice, needed for model development,
often consist for the majority of the samples with low mycotoxin
concentrations. Using these data as the training set for model
development will result in bias of the forecasting model,
especially when using empirical modeling (Cnaan et al., 1997).

Liu et al. (2018) performed a comparison between the empirical
modeling method and the mechanistic modeling method using
mycotoxin contamination data related to wheat. Their results
showed that the empirical model resulted in lower performance
in predicting samples with high mycotoxin levels than the
mechanistic model. Similar results were obtained by Battilani
et al. (2008), who reported a poor prediction performance
of their model for the high contaminated samples. Even
though the model explains 60% of the variability of mycotoxin
contamination, validation results of using independent data
suggested that contamination levels of 56% of samples were
overestimated. However, estimating those highly contaminated
samples correctly is critical to control the safety of the products.
Compared with empirical models, mechanistic models simulate
the biological processes of fungal development, interactions with
plants, and the formation of mycotoxins. Knowledge from the
biological domain helps to decrease the impact of artificial
bias of the model. Furthermore, mechanistic models are less
dependent on data and are more suitable for handling anomaly
scenarios, such as climate change, as compared to empirical
models. In addition to unbalanced datasets, another obstacle
for increasing the performance of predictive models is missing
data. Since forecasting model for mycotoxins need to take many
variables into account, ensuring the availability of input data on
all the model variables is often difficult. In some circumstances,
a prediction has to be made before all input data values are
available. This limits the use of empirical forecasting models.

Recently, with the introduction of machine learning
algorithms, these two main obstacles can be overcome. Bayesian
network (BN) modeling, one of the widespread machine learning
model techniques, can very well deal with both unbalanced
data and missing data (Wang and Yuan, 2004). BN models
are developed using observational data. Such models make
predictions by calculating conditional probabilities among the
available variables in the dataset (Liu et al., 2018).

The aim of this study was to develop a modeling approach
that combines mechanistic modeling and BN modeling for the
prediction of aflatoxin and fumonisin contamination in maize. As
a case study, such a combined modeling approach was developed
for prediction of these toxins in maize grown in Serbia.

MATERIALS AND METHODS

Data Collection
For the aims of this study, we used results of analyzing maize
samples for concentrations of aflatoxins and fumonisins. Data
related to 867 maize samples were collected in the years
2012–2018 from Serbia and analyzed for the concentration of
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total aflatoxins (AF). Of this total, 190 samples collected in the
years 2016–2018 were also analyzed for total fumonisins (FU).
All samples were collected from maize kernels harvested from
a particular maize field of a particular arable farm. Geographic
coordinates of the fields from which samples were collected
had been recorded. Daily data of temperature (T, oC), relative
humidity (RH,%), and precipitation (R, mm) were acquired from
the JRC European meteorological database1. According to the
resolution of the meteorological database, the sample collection
region was covered by a grid of squares (25 km × 25 km). The
meteorological data in each square were simulated by the data
recorded from the nearby automatic weather stations. Using the
farm location, meteorological data of each of the collected sample
were linked accordingly.

Mycotoxins Analyses
Samples were collected during the maize harvest in the northern
Serbian province of Vojvodina. Collection of samples was
performed according to EU requirements (EC 401/2006) to
account for irregular mycotoxin distribution in harvested maize.
If the yield of the field was ≤10 tons, a total of 40 incremental
samples were collected, with a weight of 100 g each, resulting
into a 4-kg aggregate sample. If the yield on the field was 10–
20 tons, a total of 60 incremental samples were collected, with
a weight per incremental sample of 100 g, resulting in a 6-
kg aggregate sample. Samples were immediately transported to
the chemical laboratory where they were kept in a freezer at
−20◦C until chemical analysis. Before sample preparation and
analysis, the samples were allowed to reach room temperature.
Samples were prepared by milling on a laboratory mill until
>93% passed through a sieve with a pore diameter of 0.8 mm.
Five grams of each milled sample were used for the extraction
with a 20-ml extraction solvent [acetonitrile–water–acetic acid
(VWR, Vienna, Austria), 79:20:1, v/v/v] followed by a 1 + 1
dilution using acetonitrile–water–acetic acid (VWR, Vienna,
Austria) (20:79:1, v/v/v) and an injection of 5 µl of diluted
extract. Liquid chromatography–tandem mass spectrometry (LC-
MS/MS) screening of target mycotoxins was performed at the
Institute of Bioanalytics and Agro-Metabolomics, Department of
Agrobiotechnology (IFA-Tulln), University of Natural Resources
and Life Sciences, Vienna, with a QTrap 5500 LC-MS/MS
System (Applied Biosystems, Foster City, CA, United States)
equipped with a TurboIon Spray electrospray ionization (ESI)
source and a 1290 Series HPLC System (Agilent, Waldbronn,
Germany). Gemini R© C18-column, 150 mm × 4.6 mm i.d.,
5 µm particle size, equipped with a C18 4 mm × 3 mm
i.d. security guard cartridge (all from Phenomenex, Torrance,
CA, United States) was used for chromatographic separation at
25◦C. Chromatographic method and chromatographic and mass
spectrometric parameters, together with method validation data,
are described by Malachova et al. (2014). Electrospray ionization–
tandem mass spectrometry (ESI-MS/MS) was performed in
the time-scheduled multiple reaction monitoring (MRM) mode
in both positive and negative polarities in two separate

1JRC European meteorological database: https://agri4cast.jrc.ec.europa.eu/
DataPortal/Index.aspx

chromatographic runs per sample by scanning two fragmentation
reactions per analyte. The MRM detection window was set to its
expected retention time of ± 27 s and ± 48 s in the positive and
the negative mode, respectively, for each analyte. Confirmation
of positive identification was obtained by the acquisition of two
MRMs per analyte. Additionally, the LC retention time and the
intensity ratio of the two MRM transitions corresponded with
the related values of an authentic standard within 0.1 min and
30% rel., respectively. Quantification was based on an external
calibration with a serial dilution of a multianalyte stock solution,
and results were corrected for apparent recoveries. The accuracy
of the method is continuously verified by regular participation in
proficiency testing schemes (Malachova et al., 2014; Malachova
et al., 2015) organized by BIPEA (Gennevilliers, France).

Model Development
Data Processing
Based on the mycotoxin concentration (either AFs or FUs),
each analytical sample result was labeled as “low” or “high.”
The applied thresholds for AFs and FUs were 10 µg/kg and
1,000 µg/kg, respectively, based on Commission Regulation (EC)
No 401/2006 and Commission Regulation (EC) No 1881/2006.
Nineteen out of the 867 samples analyzed for AFs and 7
out of the 190 samples analyzed for FUs were close to their
respective thresholds.

Using the mechanistic models presented by, respectively,
Maiorano et al. (2009) and Battilani et al. (2013), the aflatoxin
risk index (ARI) and the fumonisin risk index (FRI) of the
sample records were calculated for each day of the particular
maize growing season (from flowering date to maturation date),
in which the sample had been collected. The flowering date and
maturation date were estimated using the sum of the daily average
temperatures in the fields (Maiorano et al., 2009). Details of the
calculations can be found in the two original cited papers. In
order to run the mechanistic models in the different maize growth
stages, the entire cultivation period from the maize flowering date
to the maturation date was divided evenly, per sample record,
into eight sub-periods (P1 to P8). Thus, the number of days
in each sub-period may differ per sample record. In each sub-
period, the sum of daily ARI and the sum of daily FRI were
calculated. These total ARI and FRI for each of the eight sub-
periods (ARI_P1, ARI_P2, . . . ARI_P8, and FRI_P1, FRI_P2, . . .,
FRI_P8) were used as inputs for BN model development.

Model Development and Validation
The prediction model for aflatoxins in maize (PREMA) was built
using a BN algorithm, Tree-Augmented Naive Bayes (Friedman
et al., 1997). The dataset related to AFs, collected in the period
2012–2016 in Serbia, was split into a training set and an
internal validation set, by randomly selecting 80 and 20% of the
data, respectively. The input variables used in PREMA included
latitude, longitude, and the ARIs in each of the eight sub-periods
of each sample (ARI_P1 to ARI_P8). The AF forecasting model
was developed by using the training set and then internally
validated by using the internal validation set. An independent
validation dataset was used for external validation of PREMA.
This dataset consisted of the AF data collected in 2017 and 2018.
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Similarly, the prediction model for fumonisins in maize
(PREFUM) was trained by Tree-Augmented Naive Bayes, using
the latitude, longitude, and the FRIs in each of the eight sub-
periods per record (FIR_P1 to FRI_P8) as inputs. The FU data
collected in 2016 and 2017 were randomly split into a training
set and an internal validation set by using the ratio of 80/20.
PREFUM was developed using the training set, and internally
validated using the internal validation set. Then, PREFUM was
externally validated using the FU data collected in 2018.

The performances of PREMA and PREFUM were evaluated by
the using the following criteria: accuracy (percentages of samples
being correctly classified as high or low contaminated), specificity
(percentages of the high class samples being correctly classified),
and sensitivity (percentages of the low class samples being
correctly classified) (Kuhn and Johnson, 2013). The lower the
specificity, the higher the percentage of false negatives would be.

Early Warning Test
The early warning performance of PREMA and PREFUM was
tested using the two external validation datasets. The early
warning performance is defined here as the ability of the model
to provide correct predictions—early in the maize growing
season—of mycotoxin contamination at harvest. PREMA and
PREFUM were validated with the coordinates and respective
risk indices in P1 (ARI and FRI). The related model accuracy,
specificity, and sensitivity were calculated. Additionally, the area
under the ROC curve (AUC) was determined, indicating the
performance of the model at all classification levels. Subsequently,
the models were run in a similar way for periods P1 and P2;
the ARI and FRI indices in P1 and P2 were estimated, and the
four abovementioned performance criteria (accuracy, specificity,
sensitivity, and AUC) were calculated again. This was repeated,
each time adding the next sub-period, until the ARI and FRI risk
indices of all eight periods were involved.

Model development and risk index calculations were
performed in R (version 3.5.0).

RESULTS

Aflatoxins Model
Figure 1 present the structure of the PREMA resulting from
training the model using the AF training set. Besides longitude
and latitude, the risk indices in P1 and P8 were the ancestors
of the risk indices in other periods (Figure 1), suggesting that
the risk indices in these two periods directly impact the total AF
contamination of maize. In Figure 1, below the node “ARI_P8,”
there were three sub-groups: ARI in P2 (ARI_2), ARI in P5 and
P3 (ARI_3 and ARI_5), and ARI in P4, 6, and 7 (ARI_4, ARI_6
and ARI_7). All the model variables (latitude, longitude, and
the ARIs in the eight sub-periods) were linked with the total
AF contamination class (low, high) in maize. Based on this BN
model structure, the PREMA model was further developed and
validated. The prediction results of using the training dataset,
the internal validation set, and the external validation set are
shown in Table 1. Using the model training set, performance
results showed that 390 out of the 462 low-class records were

correctly predicted as low class (specificity 84%), 116 out of
139 high-class records were correctly predicted as high class
(sensitivity 84%), and, in total, 506 out of 601 records were
correctly classified (overall accuracy 84%). Using the internal
validation set, 104 of the 124 low-class records were correctly
predicted as low (sensitivity 84%), 22 of 27 high-class records
were correctly predicted as high (specificity 82%), and, in total,
126 of 151 records were correctly classified (overall accuracy
83%). External model validation results showed that 65 of the 97
low-class records were correctly classified as low class (sensitivity
67%), 17 of 20 high-class records were correctly classified as
high class (specificity 85%) and, in total, 82 of 117 records were
correctly classified (overall accuracy 70%).

The performance of PREMA for early warning purposes was
investigated as well. Table 2 presents the prediction results of
using risk indices in the different maize growth stages. As can
be seen from Table 2, when involving more and later maize
sub-growth periods in the model, the overall accuracy of the
model remains relatively constant, at around 70%. However,
when the later growth periods are added, the specificity of the
model predictions greatly increases, at the premise of only a small
decrease in the sensitivity of the predictions. Since we especially
aim to predict the highly contaminated maize fields correctly, we
consider this an improvement of the overall model performance
with the developing maize cultivation season.

With the progress of the growth season of maize, more ARIs
can be involved in the AF prediction. When only the risk indices
in the early growth stages are involved, the sensitivity of the
prediction was relatively high, but the specificity was very low,
suggesting a high percentage of false negatives. In this case,
maize fields that are highly contaminated with AF could be
predicted as low contaminated (negative), but fields that are
not highly contaminated are predicted correctly. In other words,
the model was partly biased, focusing more on maize with low
contaminated levels rather than on highly contaminated maize.
When the risk indices of the later growth stages were involved,
the specificity of the prediction greatly increased to 85%, implying
that the high contaminated fields are correctly predicted as
being high contaminated. The discriminatory capacity of high
class AF samples was improved. Compared with the model
performance in the early maize growth stages, the model in the
late growth stages provides relatively the same overall accuracy,
but with higher specificity. Such improvement was significant
since classifying the highly contaminated maize fields correctly is
essential in the practical situation. Meanwhile, the AUC became
larger, especially when the risk indices of P8 were used in the
input dataset. Hence, with the involvement of ARIs in the late
maize growth stages, close to full maturation, the forecasting
model became more balanced for both high contaminated and
low contaminated samples.

Fumonisins Model
The structure of PREFUM is presented in Figure 2. Latitude
was directly/indirectly connected with the FRIs in all eight sub-
periods and thus had an effect on the FU contamination class
(low, high) in each sub-period of maize growing, while longitude
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FIGURE 1 | Structure of PREMA resulting from learning the model with field data collected in the years 2012–2016 in Serbia. Circles represent nodes of the
Bayesian network model, and arrows indicate the relationship/conditional dependencies among the nodes. ARI_1–8: aflatoxins risk index in sub-periods 1–8.

TABLE 1 | Performance of PREMA, comparing predicted total aflatoxin classes versus observed total aflatoxin classes.

Predictiona

Training set Internal validation set External validation set

High Low Accuracy High Low Accuracy High Low Accuracy

Observationb High 116 23 84% 22 5 83% 17 3 70%

Low 72 390 20 104 32 65

aThe aflatoxin contamination levels of samples from different datasets predicted by the model.
bThe measured aflatoxin contamination levels of samples from different datasets.

was only linked with the FRIs in P7 and P8. The FRI in these two
sub-periods had no connection with the FRI in the earlier periods.

Table 3 shows the performance PREFUM for predicting total
fumonisins in maize, according to the structure presented in
Figure 2, using the three different types of model testing and
validation. Using the model training set, the model sensitivity,
specificity, and accuracy were 74% (51 of 69), 72% (28 of
39), and 73% (79 of 108), respectively. Using the internal
model validation set, the model sensitivity, specificity, and
accuracy were, respectively, 86% (18 of 21), 63% (10 of 16),
and 76% (28 of 37). The model was further validated by an
external validation set, using results of samples that had been

collected in a different year. In this case, the model sensitivity,
specificity, and accuracy were 86% (32 of 36), 50% (4 of 8),
and 80% (36 of 45).

Similar to PREMA, the ability of PREFUM for early warning
was explored as well. Table 4 presents the prediction performance
of PREFUM when FRIs in different maize growth periods (P1–
P8) were included, each time adding an additional sub-period.
The total accuracy of the model prediction increased when FRIs
in the late growth periods were also involved. Also, the model’s
AUC was much higher when the later maize growth periods were
involved as compared to the early growth periods, especially after
FRI in P4 was involved in the model.
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TABLE 2 | Performance of PREMA when using risk indices from different
maize growth periods.

Involved risk
indicesa

Accuracy (%) Specificity (%) Sensitivity (%) AUCb

P1 73 0 88 0.547

P1 to P2 74 45 79 0.584

P1 to P3 70 0 85 0.415

P1 to P4 59 0 71 0.503

P1 to P5 64 50 64 0.588

P1 to P6 60 50 62 0.579

P1 to P7 72 50 76 0.679

P1 to P8 70 85 67 0.859

aRisk indices used in the BN model.
bArea under curve.

DISCUSSION

To date, several studies focused on developing forecasting models
for mycotoxins in grains, mainly focusing on deoxynivalenol

(DON) in wheat (Van der Fels-Klerx et al., 2010) and aflatoxins
in maize (Battilani et al., 2013), using empirical and mechanistic
modeling approaches. Only recently has the use of BN modeling
for the aims of forecasting mycotoxins been explored by Liu et al.
(2018). These authors used BN modeling for the prediction of
DON in wheat in the Netherlands and compared this machine
learning technique with both the empirical and mechanistic
approach, by developing the three types of models using the
same dataset. Results of their model comparison showed that BN
modeling outperformed the empirical and mechanistic models
for the case of predicting DON in wheat in the country. The
current study is the first one that combines the two modeling
approaches of mechanistic and BN modeling, by using the
estimated risk index of the mechanistic model as input for
training the BN model structure. This approach is especially
powerful when the available dataset is unbalanced, which is often
the case with using mycotoxin monitoring data.

The learned BN model structure was different for PREMA
and PREFUM, as can be seen from Figures 1, 2. Different
model structures suggest different relationships between the
variables in each model. In PREMA, latitude and longitude

FIGURE 2 | Structure of PREFUM resulting from learning the model with field data collected in the years 2016–2017 in Serbia. Circles represent nodes of the
Bayesian network model, and arrows indicate the relationship/conditional dependencies among the nodes. FRI_1–8: fumonisins risk index in time sub-periods 1–8.
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TABLE 3 | Performance of PREFUM, comparing predicted total fumonisin classes versus observed total fumonisin classes.

Predictiona

Training set Internal validation set External validation set

High Low Accuracy High Low Accuracy High Low Accuracy

Observationb High 28 11 73% 10 6 76% 4 4 80%

Low 18 51 3 18 5 32

aThe fumonisin contamination levels of samples from different datasets predicted by the model.
bThe measured fumonisin contamination levels of samples from different datasets.

were important for the ARI in all eight sub-periods of maize
cultivation, while in PREFUM, only latitude was important for
the eight FRIs. The underlying reason can be sought in the
distribution of the responsible species for aflatoxins (A. flavus)
and fumonisins (Fusarium spp.) in Serbia, and their distribution
in the country. Fusarium species require lower temperatures
for growth and mycotoxin production than A. flavus, and
mycotoxins from Fusarium species have traditionally been
associated with temperate climate regions, whereas A. flavus
is seen in warm climate regions (Bandyopadhyay et al., 2016).
Fusarium species are commonly present in maize grown in
Serbia, especially in years with high precipitation and low
temperatures (Jajić et al., 2008). Lević et al. (2012) state that
the incidences of F. graminearum, F. oxysporum, F. subglutinans,
and F. verticillioides have changed over the last years: the
incidence of F. subglutinans has reduced, while the incidence
of F. verticillioides, a fumonisin producer, has increased. It can
be expected that the incidence of F. verticillioides will further
increase in the future due to global warming, as this Fusarium
species is more frequently seen in years with higher temperatures
(Lević et al., 2004). The natural occurrence of A. flavus
infection of maize is not very common under Serbia’s typical
climatic conditions; however, epidemic outbreaks can happen in
years with extreme weather conditions (high temperatures and
prolonged drought) such as in 2012 and 2015 (Kos et al., 2013;
Janić Hajnal et al., 2017; Savić et al., 2020).

In PREMA, ARIs in P1 and P8 were the ancestors of
the ARIs in other periods, illustrating the contributions of
these two AF risk indices to the model. These results are

TABLE 4 | Performance of fumonisins model when using risk indices from different
maize growth periods.

Involved risk indices in
sub-period Pa

Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

AUCb

P1 49 51 100 0.57

P1 to P2 49 51 90 0.5

P1 to P3 51 40 90 0.51

P1 to P4 76 78 63 0.79

P1 to P5 76 86 63 0.79

P1 to P6 80 86 50 0.78

P1 to P7 80 86 50 0.73

P1 to P8 80 86 50 0.78

aRisk indices used in the BN model.
bArea under curve.

consistent with the results of the early warning testing of the
model as presented in Table 2. From this table, it can be
seen that the AUC significantly increased after ARI in P8 was
included as input (one-sample t test, P < 0.05). Compared
with the other three model performance criteria used, i.e.,
accuracy, sensitivity, and specificity, the AUC reflects the model
discriminating capacity in a more comprehensive way, taking
into account the impacts of data distribution and the values
of classification boundary. The closer the AUC to 1, the better
the model discrimination capacity. Sub-period 8 is the last
period before the maize harvest, and apparently in Serbia, a
great part of the aflatoxins are formed just before the maize
harvest. According to the results of Payne and Widstrom (1992),
rain prior to or during the harvest has severe impact on the
contamination of aflatoxins in maize. Similarly, the FRI in P4 was
a major contributor for explaining total fumonisin contamination
in PREFUM (Figure 2 and Table 4). The performance of
PREFUM significantly increased after involving the FRI in P4,
which is the time period in between maize flowering and
full maturation.

In previous research, several forecasting models for
mycotoxins in maize have been developed with varying
performances. Battilani et al. (2008) developed a logistic
regression (LR) model to predict fumonisin contamination
in maize. The model explained 60% of the total variability,
with 58% of the samples correctly classified, among which
41% were correctly classified high contaminated samples.
Later, Battilani et al. (2013) developed a mechanistic model
to calculate ARI in maize, which was followed by a LR model
to predict aflatoxins contamination in maize based on the
estimated ARI. Their model performance showed that 15 out
of 33 (45%) and 3 out of 22 (14%) contaminated records using,
respectively, the training set and validation set could be correctly
predicted as positive.

In the current study, with the help of BN modeling, the
ability to correctly predict contaminated and non-contaminated
field samples was higher than in the previous studies that
used LR modeling. This may be related to the differences in
characteristics of the BN model and the LR model. Compared
with BN model, the LR model is based on a list of restricted
statistical assumptions, two of which are linearity in the logit
and additivity of model input values (Menard, 2002). Therefore,
complex transformations (e.g., square root transformation, log
transformation, and cox–cox transformation) of the input data
are needed before the input dataset meets these assumptions.
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These complex transformations and investigation of the logit-
linear relationships between the dependent variables and
independent model variables can be hard to conduct. In the case
of LR modeling for mycotoxin predictions, such assumptions
cannot be met all the time, which will lead to instability of the
model. On the contrary, BN models can be developed without
the assumptions of linearity in the logit and/or additivity. Such
intrinsic advantages make the BN model more robust in case pre-
knowledge of mycotoxin contamination is limited. Furthermore,
LR modeling cannot deal very well with interactions of the
independent variables in large datasets (Lee et al., 2005). The
number of possible interactions between variables exponentially
increases with more variables in the dataset, which makes the
model specification complex and difficult. Hence, in the LR
model, only a restricted number of variables and interactions
can be included. The BN model investigates the relationships
between the variables (Friedman et al., 1997), which helps in
dealing with a larger set of variables. Since the generation
and accumulation of mycotoxins during the maize cultivation
season is hard to describe with a limited set of parameters,
given the different maize growth periods and the influencing
weather variables, involving more variables makes the model
more universalized.

Additionally, BN modeling is more flexible and can predict
mycotoxin contamination even when some input parameters
values are missing (Liu et al., 2018). In practice, data on
some of the model parameters could be inaccessible or even
unavailable at all. The way BN models handle missing data
ensures that the developed BN models can tolerate unstructured
input data, without the need for changing or retraining
the model (Wang and Yuan, 2004). This is an important
asset of BN modeling for forecasting mycotoxins because
it allows the model to be run already in the early maize
cultivation season, when information of the entire growth
period is not yet available. This asset is also the reason
why the BN model could be very useful for early warning
purposes. According to the results presented in Tables 2, 4,
the developed BN models could deliver acceptable predictions
in the early maize growth stages. Meanwhile, with more
ARIs and FRIs involved in the later growth stages, PREMA
and PREFUM will provide higher specificity, implying lower
percentages of false negatives. The predictions for the high
contaminated fields thus become more accurate when the maize
cultivation season progresses, and these predictions can still
provide stakeholders with the opportunity of making timely
decisions on managing aflatoxin and fumonisin contamination
in maize. The developed models are intended to be used by
stakeholders of the maize supply chain, including farmers,
buyers/collectors, and food safety authorities. Actions for
managing mycotoxin contamination in maize batches that can
be taken before/at harvesting are related to decisions on, e.g.,
keeping batches from particular fields separate, routing and
processing within the maize feed and food supply chain, and
risk-based monitoring.

In the current research, the two developed mycotoxin
forecasting models PREMA and PREFUM were both internally
and externally validated by using samples collected from the

same country, both in the same time periods and in different
time periods (years) as data used for model training. Model
performance results showed that both PREMA and PREFUM
have a better performance when using the internal validation
set as compared to the external validation. This is due to
the characteristics of data distribution; since the samples in
the internal validation set were collected in the same time
period of the samples in the training set, data on mycotoxin
contamination of the internal validation set showed a similar
distribution to those data from the training set. On the contrary,
the samples in the external validation set were collected from
different (new) years, not present in the training and internal
validation set, resulting in a different mycotoxin distribution
in the external validation data, partly because of variation
in environmental conditions between years. It is, however, of
utmost importance to perform an external model validation
as well as to check the early warning performance of the
model since the ultimate aim of the mycotoxin forecasting
model is to use it for predicting mycotoxins during the next
year’s growing season.

The methodology proposed in this study is able to overcome
the obstacles of unintegrated and unbalanced dataset. Results
suggest that the developed models PREMA and PREFUM can
well classify the unknown samples into the correct contamination
class, especially for the high contaminated samples. This is
extremely valuable since, in practice, the aim is to predict
and detect the high contaminated maize fields. The model
performance could be further improved when more data and/or
more detailed data are available for model training, such as
agronomical data and more detailed weather data. Meanwhile,
the current study used meteorological data from the JRC
European meteorological database. It is an open source database,
but it represents the meteorological grid data with a 25-km2

spatial resolution. Hence, the performance of the models can
possibly be improved when higher-resolution meteorological
data—more specific to the location of the particular maize
fields—can be used in model training. Furthermore, the
developed models only took meteorological factors into account.
When available, agronomic data such as related to maize variety
could be added into the BN model as independent nodes as well.
Additionally, the developed models can be further validated by
applying them into practice, and they can be extended to other
European maize-growing areas.
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Lević, J., Stanković, S., Bočarov-Stančić, A., Škrinjar, M., and Mašić, Z. (2004). “The
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