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Abstract
Hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma (HCC), but HBV-HCC related prognosis signature
remains rarely investigated. This study was to identify an integrated long non-coding RNAs-messenger RNAs (lncRNA-mRNA)
signature for prediction of overall survival (OS) and explore their underlying functions.
One RNA-sequencing dataset (training set, n=95) and one microarray dataset E-TABM-36 (validation set, n=44) were collected.

Least absolute shrinkage and selection operator analysis was performed to identify an lncRNA-mRNA prognosis signature. The OS
difference of patients in the high-risk and low-risk risk groups was evaluated by Kaplan–Meier curve. Area under the receiver
operating characteristic curve (AUC), Harrell concordance index (C-index) calculation, and multivariate analyses with clinical
characteristics were used to determine the prognostic ability. Furthermore, a coexpression network was constructed to interpret the
functions.
Nine signature genes (3 lncRNAs and 6mRNAs) were selected to generate the risk scoremodel. Patients belonging to the high-risk

group showed a significantly shorter survival than those of the low-risk group. The prediction accuracy of the risk score for 5-year OS
was 0.936 and 0.905 for the training set and validation set, respectively. Also, this risk score was independent of various clinical
variables for the prognosis prediction. Incorporation of the risk score remarkably increased the predictive power of the routine clinical
prognostic factors (vascular invasion status, tumor recurrence status) (AUC=0.942 vs 0.628; C-index=0.7997 vs 0.6908).
Furthermore, LncRNA insulin-like growth factor 2 antisense RNA (IGF2-AS) and long intergenic non-protein coding RNA 342
(LINC00342) were predicted to exert tumor suppression effects by regulating homeobox D1 (HOXD1) and secreted frizzled related
protein 5 (SFRP5), respectively; while lncRNA rhophilin Rho GTPase binding protein 1 antisense RNA 1 (RHPN1-AS1) may possess
carcinogenic potential by promoting the transcription of chromobox 2 (CBX2), cell division cycle 20 (CDC20), matrix metallopeptidase
12 (MMP12), stratifin (SFN), tripartite motif containing 16 (TRIM16), and uroplakin 3A (UPK3A). ThesemRNAsmay be associated with
cell proliferation or apoptosis related pathways.
This study may provide a novel, effective prognostic biomarker, and some therapeutic targets for HBV-HCC patients.

Abbreviations: AUC = area under the ROC, CBX2 = chromobox 2, CDC20 = cell division cycle 20, C-index = Harrell
concordance index, DAVID = Database for Annotation, Visualization, and Integrated Discovery, DEGs = differentially expressed
genes, DELs = differentially expressed lncRNAs, EMBL-EBI = The European Bioinformatics Institute, FC = fold change, FDR = false
discovery rate, GO = Gene Ontology, HBV = hepatitis B virus, HCC = hepatocellular carcinoma, HGNC = HUGO Gene
Nomenclature Committee, HOXD1= homeobox D1, HR= hazard ratio, IGF2-AS= insulin-like growth factor 2 antisense RNA, KEGG
= Kyoto Encyclopedia of Genes and Genomes, KM = Kaplan–Meier, LASSO = least absolute shrinkage and selection operator,
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LIMMA= Linear Models for Microarray Data, LINC00342= long intergenic non-protein coding RNA 342, lncRNAs= long non-coding
RNAs, MMP12 = matrix metallopeptidase 12, mRNAs = messenger RNAs, NSCLC = non-small cell lung cancer, OS = overall
survival, PCC = Pearson correlation coefficients, RHPN1-AS1 = rhophilin Rho GTPase binding protein 1 antisense RNA 1, ROC =
receiver operating characteristic curve, RT-PCR = reverse transcription-polymerase chain reaction, SFN = stratifin, SFRP5 =
secreted frizzled related protein 5, TCGA = The Cancer Genome Atlas, TRIM16 = tripartite motif containing 16, UPK3A = uroplakin
3A, VEGF = vascular endothelial growth factor.
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1. Introduction

Although great progressions have been made in screening,
diagnosis, and treatment of liver cancer, it remains the leading
cause of cancer death worldwide.[1] Prior exposure to hepatitis B
virus (HBV) infection is believed as the major contributor to the
development of hepatocellular carcinoma (HCC).[2,3] Therefore,
novel prognostic biomarkers are still required for patients with
HBV-associated HCC in order to closely monitor the high-risk
patients to improve their prognosis.
Recently, there have some molecular models developed to

predict the overall survival (OS) of patients with HBV-HCC,
includingmessenger RNAs (mRNAs) and long non-coding RNAs
(lncRNAs). For example, Yang et al[4] used the microarray
dataset GSE14520 and univariate/multivariate Cox proportional
hazards regression analysis to identify a 3-gene (SPP2, CDC37L1,
and ECHDC2) prognostic signature. This signature can
significantly divide the patients into the high-risk group (lower
OS ratio) and low-risk group (lower mortality). Liu et al[5]

utilized the RNA-sequencing data extracted from The Cancer
Genome Atlas (TCGA) database to screen a 9-lncRNA
combination (DGCR9, GBA3, HCG4, NAT8B, NBR2, PART1,
RFPL1S, SLC22A18AS, and TCL6), which was demonstrated to
significantly distinguish the OS ratio between the high-risk and
low-risk groups, with the accuracy of 95.3%. Zhu et al[6]

identified a 9-gene signature (consisting of ZC2HC1A,
MARCKSL1, PTGS1, CDKN2B, CLEC10A, PRDX3, PRKCH,
MPEG1, and LMO2) using microarray and TCGA datasets and
demonstrated this signature was independent from clinical
parameters for prediction of OS in HBV-related HCC patients.
However, specific prognostic signatures for HBV-HCC patients
remain rarely reported. Furthermore, some scholars attempted to
integrate the lncRNAs and mRNAs as a prognostic signature for
other cancers[7,8] and the results implicated the multi-mRNA/
lncRNA-based classifier may be more effective than the risk score
model constructed only by multi-lncRNA or multi-mRNA in
prediction of OS.[9,10] Therefore, it may be more clinically
valuable to develop an integrated prognostic signature for HBV-
HCC.
In this study, we aimed to collect the transcriptome profiles

(including lncRNAs and mRNAs) from TCGA and The
European Bioinformatics Institute (EMBL-EBI) and develop a
new multi-RNA-type signature for the prediction of OS in HBV-
HCC patients.
2. Materials and methods

2.1. Data source

The mRNA sequencing data (level 3, normalized expression
values) were downloaded from TCGA database (https://portal.
gdc.cancer.gov) on August 25, 2019 using the search word of
2

“hepatocellular carcinoma.” A total of 423 samples (including
373 HCC samples and 50 normal liver controls) were obtained,
in which only 95 HCC samples were used for the following
analysis because they were HBV-positive and had complete
clinical prognosis information. This dataset was used as the
training set.
In addition, EMBL-EBI database (https://www.ebi.ac.uk/

arrayexpress/) was also searched to screen another dataset with
HBV-HCC samples. As a result, a microarray dataset under
accession number E-TABM-36[11] was obtained, in which 44 of
65 samples were HBV-positive and had survival information.
This dataset was used as the validation set.
2.2. Screening of mRNAs and lncRNAs differentially
expressed

The annotation of lncRNAs and protein-coding mRNAs were
obtained from HUGO Gene Nomenclature Committee (HGNC;
http://www.genenames.org/) database.[12] Differentially
expressed genes (DEGs) and lncRNAs (DELs) between HBV-
HCC samples and normal controls were identified by using the
Linear Models for Microarray Data (LIMMA) method (version
3.34.7; https://bioconductor.org/packages/release/bioc/html/
limma.html).[13] False discovery rate (FDR)<0.05 and at least
2-fold change (FC) (jlog2FCj>1) were chosen as the cut-off
criteria. Heat maps was created using pheatmap R package
(version: 1.0.8; https://cran.r-project.org/web/packages/pheat
map) to observe the clustering effects of DEGs and DELs.
2.3. Identification of an lncRNA-mRNA signature for
prognosis prediction in the training dataset

Univariate Cox regression analysis was performed for the 95
samples in the training dataset to preliminarily examine DEGs
and DELs that were significantly associated with OS (log-rank P-
value <.05) using the survival package (version 2.41-1; http://
bioconductor.org/packages/survivalr/). Then, multivariate Cox
regression analysis was used to screen independent prognostic
DEGs and DELs. In order to further capture a more perfect
signature combination, least absolute shrinkage and selection
operator (LASSO), an L1 norm minimization statistical model,
was applied for the genes screened bymultivariate Cox regression
analysis using the penalized package (version, 0.9–5; http://
bioconductor.org/packages/penalized/).[14,15] The risk score
model of lncRNA-mRNA signature was established based on
the expression of lncRNAs-mRNAs (ExplncRNA-mRNA) and their
LASSO Cox regression coefficients (

P
blncRNA-mRNA): Risk

score=
P

blncRNA-mRNA�Exp lncRNA-mRNA.
According to the median risk score, the HBV-HCC patients

were divided into the low-risk and high-risk groups. Kaplan–
Meier (KM) survival curve was drawn to measure the OS
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differences between the high-risk and low-risk groups. The area
under the receiver operating characteristic (ROC) curve (AUC)
was utilized to evaluate the prognostic accuracy of this risk score.
2.4. Validation of the prognostic lncRNA-mRNA signature
in the validation dataset

According to corresponding median risk score in the validation
dataset, patients were also divided into the high-risk and low-risk
groups. The KM survival and ROC curves were then analyzed to
further validate the prognostic effects of the risk score.
2.5. The prognostic independence of this lncRNA-mRNA
signature

Univariate and multivariate Cox regression analyses were
conducted to determine whether the prognostic ability of this
risk score was independent of other clinical pathological
characteristics using the survival package (version 2.41-1;
http://bioconductor.org/packages/survivalr/). The threshold of
statistical significance was set as log-rank P< .05. The association
between the risk score and other independent clinical character-
istics was further estimated by stratification analysis, nomogram
formulation using rms package (version 5.1-2; https://cran.r-
project.org/web/packages/rms/index.html) and Harrell concor-
dance index (C-index) calculation by survcomp package in R
(version 1.34.0; http://www.bioconductor.org/packages/release/
bioc/html/survcomp.html).
2.6. Identification of lncRNA-mRNA signature associated
functions

To understand possible roles of DELs, an lncRNA-mRNA
coexpressed network was constructed. The correlation between
Figure 1. Identification of differentially expressed RNAs between 95 HBV-HCC tis
differentially expressed RNAs. Green dots represent significant RNAs. B, Heat map
low expression. FC= fold change; FDR= false discovery rate; lncRNAs= long non
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DELs and DEGs was estimated using tcor.test function (https://
stat.ethz.ch/R-manual/R-devel/library/stats/html/cor.test.html)
in R, by which Pearson correlation coefficients (PCC) were
obtained. The PCC>0.5 was set for the criterion and the
network was visualized using Cytoscape (version 3.4; www.
cytoscape.org/). The functions of DEGs in this network were
predicted using the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) (v6.8; http://david.abcc.ncifcrf.
gov), including Gene Ontology (GO) biological process terms
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways. Statistical significance was set at P< .05 for the
function enrichment results.

3. Results

3.1. Identification of survival-related mRNAs and lncRNAs

After removal of the expression median value of zero, 13,454
mRNAs, and 1238 lncRNAs were finally re-annotated by HGNC
database. The DEGs and DELs were analyzed in 95 HBV-HCC
tissues and 50 controls of the training dataset using the LIMMA
method. Based on the given threshold, 682 differentially expressed
RNAswere identified, including 640DEGs and 42DELs (Fig. 1A).
These differentially expressed RNAs were demonstrated to
obviously cluster the samples into 2 groups (Fig. 1B).
Univariate Cox regression analysis was performed for these

682 differentially expressed RNAs to explore whether they were
survival-related. As a result, 128 of them (including 108 DEGs
and 20 DELs) were found to meet the statistical threshold value.
Then, multivariate Cox regression analysis was carried out to
identify independent survival factors, which yielded 28 genes,
including 15 DEGs and 13 DELs. To narrow down the panel,
LASSO model was implemented, by which 9 of 28 genes were
considered as the optimal prognostic signature, including 6 DEGs
(CBX2, chromobox 2; CDC20, cell division cycle 20; MMP12,
sues and 50 controls. A, Volcano plot was drawn to indicate the distribution of
of differentially expressed lncRNAs and mRNAs. Red, high expression; green,
-coding RNAs; mRNAs=messenger RNAs.
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Table 1

Prognostic signature screened.

Univariate Cox regression analysis

Symbol Chromosome location Type HR 95%CI P-value LASSO coefficient

IGF2-AS 11p15.5 lncRNA 0.813 0.525–0.959 3.50E–02 –0.1223
LINC00342 2q11.1 lncRNA 0.705 0.394–0.864 2.40E–02 –0.0165
RHPN1-AS1 8q24.3 lncRNA 2.920 1.499–5.708 1.70E–04 0.0470
CBX2 17q25.3 mRNA 1.850 1.221–2.800 3.70E–03 0.1661
CDC20 1p34.2 mRNA 1.490 1.153–1.921 2.30E–03 0.0996
MMP12 11q22.2 mRNA 1.410 1.086–1.829 9.90E–03 0.1589
SFN 1p36.11 mRNA 1.320 1.129–1.552 5.60E–04 0.1155
TRIM16 17p12 mRNA 1.570 1.220–2.021 4.60E–04 0.1736
UPK3A 22q13.31 mRNA 1.290 1.106–1.494 1.00E–03 0.2254

CI= confidence interval; HR=hazard ratio; LASSO= least absolute shrinkage and selection operator.

Bai et al. Medicine (2020) 99:40 Medicine
matrix metallopeptidase 12; SFN, stratifin; TRIM16, tripartite
motif containing 16; and UPK3A, uroplakin 3A) and 3 DELs
(IGF2-AS, insulin-like growth factor 2 antisense RNA;
LINC00342, long intergenic non-protein coding RNA 342;
and RHPN1-AS1, rhophilin Rho GTPase binding protein 1
antisense RNA 1) (Table 1).
A shown in Table 1, the hazard ratio (HR) and LASSO

coefficients of IGF2-AS and LINC00342 were respectively <1
and negative, which indicated they may be tumor suppressor
genes and their high expression predicted good OS; while
contrast results were obtained for the remaining genes, suggesting
they were oncogenic and anti-survival. These explanations were
proved by the KM survival curve analysis (Fig. 2).

3.2. Prognostic assessment of the risk score in the
training dataset

A risk score model was developed using the expression and LASSO
coefficients according to the corresponding formula described in the
method. Then, it was calculated for each patient. Using a cut-off
point of median risk score, the patients fell into 2 categories: high-
risk group (≥median; n=48) and low-risk group (<median; n=47)
(Fig. 3A). KM survival curve analysis showed the OS was
significantly differential between the high-risk group and low-risk
group (HR=5.887; P=2.379e–06), with the high-risk group
exhibiting lower OS ratio (Fig. 3B). ROC analysis also suggested
the risk scoremodel hadagoodprognostic value (1-yearOS:AUC=
0.938; 3-yearOS:AUC=0.939; 5-yearOS:AUC=0.936) (Fig. 3C).

3.3. External validation of the prognostic value of the risk
score

The predictive performance of the 9-gene signature screened in the
training set was further evaluated using another validation set
collected from EMBL-EBI database. The patients in the validation
setwere also classified into thehigh-risk (n=22) and low-riskgroups
(n=22) according to its cut-off (Fig. 3D). Consistent with the result
of the training dataset, OS was also shown to be significantly lower
in the high-risk group than that in the low-risk group (HR=4.141;
P=1.707e–03) (Fig. 3E). KM-AUC values were 0.898, 0.917, and
0.905 for 1-year, 3-year, and 5-year OS (Fig. 3F).
3.4. Independence evaluation of this risk score

To evaluate the independent power of this risk score, univariate
and multivariate Cox regression analyses were also performed
4

using the clinicopathological factors and our risk score. The
results revealed that our risk score was independent of other
clinicopathological factors to predict the OS (Table 2). Further-
more, we also conducted risk stratification analyses inHBV-HCC
patients with vascular invasion and tumor recurrence status
which were also independent factors in multivariate analysis. As
shown in Fig. 4, patients in the high-risk group had significantly
worse OS than those in the low-risk group in subgroups of
without vascular invasion (P=1.664e–04), vascular invasion
(P=5.507e–04), without tumor recurrence (P=1.875e–03) and
tumor recurrence (P=3.635e–04). These stratification results
indicated that the lncRNA-mRNA based prognostic model had
better predictive performance than these 2 independent clinical
risk factors. To further compare the prediction advantage of the
risk score to clinical factors, time-dependent ROC analysis and
C-index calculation were executed. As expected, the AUC (0.921)
and C-index (0.7727) of lncRNA-mRNA based risk score were
higher than those of vascular invasion (AUC=0.642; C-index=
0.6401) and tumor recurrence status (AUC=0.658; C-index=
0.6288) alone, and even combination of them (AUC=0.628; C-
index=0.6908) (Fig. 5A). Of course, integration of the risk score
with clinical factors may be the most effective for prediction of
OS (AUC=0.942; C-index=0.7997), which can also be observed
in the calibration curve of the nomogram, showing a good
agreement between predicted and observed OS (Fig. 5B and C).

3.5. Functional annotation for signature genes

In order to interpret the biological functions and pathways of the
signature lncRNAs andmRNAs, a coexpression networkwas first
established using all DELs and DEGs and then the relevant DEGs
were subjected to DAVID database. Based on the cut-off point of
PCC>0.5, 437 coexpression pairs were obtained between 35
DELs and 230DEGs (such as IGF2-AS-HOXD1 [homeobox D1],
LINC00342- SFRP5 [secreted frizzled related protein 5], RHPN1-
AS1-CBX2/CDC20/SFN/TRIM16/UPK3A/MMP12) which were
used to construct a coexpression network (Fig. 6). The enriched
KEGG pathways for these genes in the network included
“hsa04110:Cell cycle (CDC20, SFN),” “hsa04115:p53 signaling
pathway (SFN),” and “hsa04114:Oocyte meiosis (CDC20).” The
main enriched GO biological processes included
“GO:0051301∼cell division (CDC20),” “GO:0001822∼kidney
development (UPK3A),” “GO:0045893∼positive regulation of
transcription, DNA-templated (TRIM16),” “GO:0016925∼pro-
tein sumoylation (CBX2),” and “GO:0008285∼negative regula-
tion of cell proliferation (SFRP5)” (Table 3).



Figure 2. Kaplan–Meier plots to display the prognosis values of 9 signature genes. HR=hazard ratio.
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4. Discussion
Using 2 datasets, we identified and validated a novel integrated
lncRNA-mRNA signature (3-lncRNA: IGF2-AS, LINC00342
and RHPN1-AS1; 6-mRNA: CBX2, CDC20, MMP12, SFN,
TRIM16 andUPK3A) for prediction of OS inHBV-positive HCC
patients. This 9-lncRNA/mRNA signature was demonstrated to
be more accurate for prognostic prediction when compared with
only lncRNAs or mRNAs (AUC=0.921 vs 0.759 or 0.819,
respectively; C-index=0.7727 vs 0.6598 or 0.7434, respective-
ly), whichwas in line with the study ofWang et al.[16] Stratified by
vascular invasion and tumor recurrence status, this integrated
lncRNA-mRNA signature still significantly distinguished the OS
5

ratio of the high-risk and low-risk groups, suggesting our
molecular signature can be used to further refine these 2 clinical
prognostic systems.[17,18] The prognostic benefit of the risk score
given to the vascular invasion and tumor recurrence status can
also be seen from the AUC of time-dependent ROC curve (0.942
vs 0.642 or 0.658, respectively), C-index (0.7997 vs 0.6401 or
0.6288, respectively), and calibration curve of the nomogram.
Although TNM stage has been extensively believed as an
important predictor to evaluate patients’ survival time, univari-
ate, andmultivariate Cox regression analyses in this study did not
find a statistical significance with OS, including whole TNM
stage and individual pathologic M, T, and N stage, implying the

http://www.md-journal.com


Figure 3. The prognosis of patients in high-risk and low-risk groups divided according to the risk score. A, D: Distribution of risk score of training set (A) and
validation set (D); B, E: Kaplan–Meier survival analysis between patients at a low and high risk of death for the training set (B) and validation set (E); C, F: time
dependent ROC curves at 1-, 3-, and 5-years for the training set (C) and validation set (F). AUC= the area under the ROC curve; HR=hazard ratio; ROC= receiver
operating characteristic curve.
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limited prognostic power of TNM staging, which was in
accordance with the previous studies.[10,19]

IGF2-AS was reported to be upregulated in a dose-dependent
manner in retinal pigment epithelial ARPE-19 cells that
underwent high-glucose induced apoptosis. After IGF2-AS was
Table 2

Univariate and multivariate analysis to confirm the independence of

Features TCGA
(N=95)

HR (95%

Age (mean±SD, yr) 61.21±14.90 1.039 (1.008
Gender (male/female) 58/37 1.296 (0.661
Neoplasm histologic grade (G1/G2/G3) 12/47/36 1.071 (0.646
Pathologic M (M0/M1/-) 60/2/33 1.088 (0.919
Pathologic N (N0/N1/-) 59/2/34 1.178 (0.849
Pathologic T (T1/T2/T3/T4/-) 38/33/21/2/1 1.131 (0.752
Pathologic stage (Stage I/II/III/IV) 36/30/22/2 1.037 (0.697
Vascular invasion (Yes/No/-) 38/47/10 2.421 (1.232
Tumor recurrence (Yes/No/-) 38/57 2.321 (1.217
Risk score status (high/low) 47/48 5.887[2.596
Death (dead/alive) 38/57 –

Overall survival time (mean±SD, mo) 32.25±29.77 –

CI= confidence interval; HR=hazard ratio; SD= standard deviation; TCGA=The Cancer Genome Atlas.
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silenced, the apoptosis of ARPE-19 cells was ameliorated.[20] This
protective effects of IGF2-AS inhibition on cell apoptosis was also
observed in dorsal root ganglion neuron.[21] Inhibition of IGF2-
AS was also demonstrated to augment proliferation and invasion
in myocardial microvascular endothelial cells of Goto-Kakizaki
signature.

Univariate Cox Multivariate Cox

CI) P-value HR (95%CI) P-value

–1.070) 1.26E–02 1.000[0.972–1.029] 9.99E–01
–2.544) 4.49E–01 – –

–1.775) 7.91E–01 – –

–10.28) 6.33E–01 – –

–16.23) 1.47E–01 – –

–1.700) 5.55E–01 – –

–1.543) 8.57E–01 – –

–4.756) 8.12E–03 3.513[1.638–7.538] 1.25E–03
–4.429) 8.56E–03 2.248[1.089–4.636] 2.83E–02
–13.35] 2.38E–06 7.498[3.121–18.02] 6.65E–06

– – –

– – –



Figure 4. Kaplan–Meier survival analyses for the patients with vascular invasion (A) and tumor recurrence status (B) in the training dataset. HR=hazard ratio.
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rats by upregulating pro-angiogenic IGF2 and vascular endothe-
lial growth factor (VEGF) at both molecular and protein
levels.[22] These findings suggested IGF2-AS may be a tumor
suppressor. This hypothesis had also been implicated in some
cancers. For example, Chen et al[23] observed lentivirus-mediated
overexpression of IGF2-AS suppressed prostate cancer cell
proliferation and invasion in vitro, and xenograft development
in vivo via downregulation of IGF2. Similarly, Zhang et al[24]

detected upregulation of IGF2-AS had anti-cancer effects by
inhibiting non-small cell lung cancer (NSCLC) cell proliferation,
migration in vitro, and explant growth in vivo through reducing
oncogenic IGF2, VEGF, and bFGF (basic fibroblast growth
factor). Moreover, high expression of IGF2-AS was significantly
correlated with longer OS in patients with NSCLC. In agreement
with these studies, we also found IGF2-AS may be a protective
factor for HBV-HCC (HR<1), showing the OS was higher in
patients having high levels than those with lower expressions of
IGF2-AS. However, its downstream mechanisms remain not well
understood in addition to pro-angiogenic factors. In this study,
we predicted IGF2-AS may regulate HOXD1. A previous study
showed small interfering RNA-mediated knockout of HOXD1
remarkably enhanced breast cancer cell migration, invasion and
cell adhesion,[25] indicating HOXD1 may also be a tumor
suppressor gene, not similar to its other family members.[26]

Thus, as a protective response mechanism, high expressed IGF2-
7

AS may inhibit the development of HBV-HCC by upregulating
HOXD1.
Although several studies had proved lncRNA LINC00342

promoted proliferation, colony formation, migration, and
invasion for NSCLC[27] and infantile hemangioma,[28] our
results showed patients with high expression of LINC00342
had longer OS than those with lower expression of LINC00342,
implying LINC00342 may have an anti-tumor activity in HBV-
HCC specifically. Furthermore, we predicted LINC00342 may
exert tumor suppression effects by downregulating SFRP5.
SFRP5 is an endogenous inhibitor of Wnt signaling (activation of
which had been linked to HBV-induced carcinogenesis[29,30]).
Thus, SFRP5 may function as a tumor suppressor gene. This
hypothesis had been verified in several cancers. For example, the
study results of Xu et al[31] showed overexpression of SFRP5
significantly suppressed the proliferation, colony formation, and
invasion, but induced cell cycle arrest and apoptosis of prostate
cancer cells, compared with vector-transfected control cells. In
vivo studies also confirmed that overexpression of SFRP5
significantly blocked the growth of xenograft tumors and
increased terminal deoxynucleotidyl transferasebiotin-dUTP nick
end labeling-positive cells (apoptosis). Sheng et al[32] reported
epigenetic silencing of SFRP5 promoted the metastasis and
invasion of chondrosarcoma by expression inhibition and Wnt
signaling pathway activation. Xie et al[33] revealed HBV X
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Figure 5. Comparison of the prediction advantage of risk score with clinical factors. A, Time-dependent ROC curves; B, a nomogram containing clinical factors and
risk score; C, the calibration plots for predicting 3- and 5-year overall survival. AUROC= the area under the receiver operating characteristic curve; OS=overall
survival.
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protein induced the downregulation of SFRP5 to trigger the
development of HCC, which was significantly correlated with
overexpression of DNA methyltransferase 1. In accordance with
these studies, we also identified SFRP5 was lower expressed in
Figure 6. A coexpression network established between differentially expressed lnc
lncRNAs= long non-coding RNAs; mRNAs=messenger RNAs.
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HBV-HCC samples and SFRP5 was enriched in process of
negative regulation of cell proliferation.
There was increasing evidence that RHPN1-AS1 was a critical

modulator of cancers. It was significantly upregulated in various
RNAs andmRNAs. Red, upregulated; green, downregulated. FC= fold change;



Table 3

Function enrichment for genes in the coexpression network.

Category Term P-value Genes

Biology process GO:0007018∼microtubule-based movement 4.170E–10 DYNC1I1, KIFC1, KIF4A, KIF11, KIF5A, DNAH17, KIF15, KIF18A, KIF18B, CENPE,
RACGAP1, KIF26B, KIF20A

GO:0007062∼sister chromatid cohesion 5.980E–10 CENPM, KIF18A, KNTC1, CENPF, CDC20, CENPE, BIRC5, CENPI, CDCA8,
MAD2L1, CENPA, BUB1, BUB1B, SKA1

GO:0051301∼cell division 7.030E–10 CDC7, CDC6, KIFC1, CDK1, KIF11, CCNF, KNTC1, BRSK2, KIF18B, CENPF, BIRC5,
CDC20, CENPE, CDC25C, NCAPH, CDCA8, MAD2L1, OIP5, NCAPG, BUB1,
BUB1B, SKA1, HELLS

GO:0007067∼mitotic nuclear division 1.870E–08 CDC6, CDK1, KIF11, CCNF, KIF15, KNTC1, BRSK2, PKMYT1, CENPF, BIRC5,
CDC20, CEP55, CDC25C, OIP5, BUB1, BUB1B, SKA1, HELLS

GO:0034080∼CENP-A containing nucleosome
assembly

1.050E–06 CENPM, CENPA, HJURP, OIP5, HIST1H4E, HIST2H4A, CENPI, HIST1H4H

GO:0006260∼DNA replication 4.630E–06 EXO1, CDC7, CDK1, CDC6, CDC45, BLM, DTL, RRM2, GINS4, CDC25C, MCM10,
CHAF1B

GO:0000086∼G2/M transition of mitotic cell
cycle

6.330E–05 PRKAR2B, CDK1, PLK4, FOXM1, BRSK2, PKMYT1, BIRC5, CDC25C, MELK, HMMR

GO:0006281∼DNA repair 2.100E–04 EXO1, CDK1, XRCC2, RAD51AP1, BLM, FANCI, FOXM1, PARPBP, POLQ, DMC1,
RAD54L, CHAF1B

GO:0007059∼chromosome segregation 2.210E–04 KIF11, HJURP, OIP5, CENPF, CENPE, SKA1, TOP2A
GO:0008283∼cell proliferation 2.490E–04 CDK1, MKI67, DLGAP5, E2F8, KIF15, ITGA2, CENPF, DACH1, CDC25C, MCM10,

TRAIP, DLX5, BUB1, BUB1B, MELK
GO:0000082∼G1/S transition of mitotic cell cycle 3.190E–04 CDC7, CDK1, CDC6, CDC45, CDKN2A, RRM2, PKMYT1, MCM10
GO:0006334∼nucleosome assembly 8.080E–04 HIST1H2BL, HIST1H2BF, CENPA, HIST1H2BG, HIST1H4E, ASF1B, HIST2H4A,

HIST1H4H
GO:0051726∼regulation of cell cycle 1.029E–03 E2F2, DTL, FOXM1, CCNF, PRR11, CENPF, PKMYT1, CDC25C
GO:0060021∼palate development 2.790E–03 MSX1, HAND2, DLX5, FOXF2, TFAP2A, EPHB2
GO:0007411∼axon guidance 4.210E–03 EFNB3, KIF5A, DLX5, ARTN, NGFR, EPHB1, KIF26B, EPHB2
GO:0001822∼kidney development 4.751E–03 SOX11, CENPF, TFAP2A, DCN, UPK3A, TP73
GO:0007155∼cell adhesion 5.901E–03 IBSP, EGFL6, FERMT1, PTK7, ITGA2, BCAN, ACTN2, CHST4, STAB2, SRPX,

COL7A1, FAP, TROAP, ADAM12
GO:0001525∼angiogenesis 7.714E–03 NRCAM, PTGS2, HAND2, FAP, STAB2, ECM1, EPHB1, SCG2, EPHB2
GO:0001501∼skeletal system development 8.074E–03 MATN3, SOX11, DLX5, PTH1R, BCAN, BMPR1B, BMP5
GO:0030198∼extracellular matrix organization 1.266E–02 IBSP, MATN3, COL7A1, EGFL6, FOXF2, BCAN, ITGA2, DCN
GO:0045893∼positive regulation of transcription,

DNA-templated
1.449E–02 E2F1, BLM, SOX11, FOXM1, TRIM16, TP73, MYCN, FOXH1, CDKN2A, SFRP1,

HAND2, DLX5, FOXF2, TFAP2A
GO:0043065∼positive regulation of apoptotic

process
1.459E–02 PNMA3, CDKN2A, SFRP1, PTGS2, SFRP4, NGFR, ECT2, TOP2A, MELK, TP73

GO:0042493∼response to drug 1.568E–02 CDK1, HTR1B, SFRP1, PTGS2, CENPF, ITGA2, LRP8, RAD54L, TP73, ALDH3A1
GO:0016925∼protein sumoylation 1.672E–02 CDCA8, CDKN2A, BLM, BIRC5, CBX2, TOP2A
GO:0006974∼cellular response to DNA damage

stimulus
1.703E–02 BLM, DTL, WDR76, ATAD5, POLQ, MCM10, TOP2A, TP73

GO:0010628∼positive regulation of gene
expression

1.888E–02 E2F1, CDK1, ODAM, HAND2, POU5F1, SOX11, SFRP4, TFAP2A, MYCN

GO:0008285∼negative regulation of cell
proliferation

3.001E–02 SFRP5, CDC6, CDKN2A, MSX1, SFRP1, PTGS2, PTH1R, SFRP4, TFAP2A, TP73,
BMP5

KEGG pathway hsa04110:Cell cycle 4.310E–09 E2F1, CDC7, CDC6, CDK1, E2F2, PKMYT1, CDC20, SFN, CDC25C, CDC45,
CDKN2A, MAD2L1, BUB1, BUB1B

hsa05203:Viral carcinogenesis 1.157E–03 CDK1, CDKN2A, HIST1H2BL, HIST1H2BF, HIST1H2BG, HIST1H4E, ACTN2, CDC20,
HIST2H4A, HIST1H4H

hsa04115:p53 signaling pathway 1.582E–03 CDK1, CDKN2A, RRM2, SFN, GTSE1, TP73
hsa04114:Oocyte meiosis 1.356E–02 CDK1, MAD2L1, BUB1, PKMYT1, CDC20, CDC25C
hsa04914:Progesterone-mediated oocyte

maturation
2.491E–02 CDK1, MAD2L1, BUB1, PKMYT1, CDC25C

GO=Gene Ontology, KEGG=Kyoto Encyclopedia of Genes and Genomes.
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cancer cells and tissues (including uveal melanoma,[34] breast
cancer,[35] head and neck squamous cell carcinoma,[36] cervical
cancer,[37] and HCC[38,39]) compared with controls. Knockdown
of RHPN1-AS1 significantly inhibited cancer cell proliferation,
migration, and invasion in vitro and reduced tumor growth in
xenograft models in vivo.[36–40] Moreover, RHPN1-AS1 was
revealed to be a significant and independent predictor of
prognosis, showing that patients with low expression of
9

RHPN1-AS1 had much longer OS than those with high
expression of RHPN1-AS1,[38–40] including HCC. Our results
seemed to be consistent with these studies, which also showed
RHPN1-AS1 was high expressed in HBV-HCC patients and
associated with poor OS. The above studies have attempted the
downstream mechanisms of RHPN1-AS1 in cancers, consisting
of activation of epithelial-to-mesenchymal transition[36,40] or
modulation of miR-299-3p/FGF2,[37] miR-485/CDCA5,[38] miR-
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596/IGF2BP2[39] axes, but it remains completely unclear. In this
study, we predicted RHPN1-AS1 may promote the transcription
of 6 prognostic genes (CBX2, CDC20, MMP12, SFN, TRIM16,
and UPK3A). Existing studies also indicated 4 of 6 genes played
oncogenic functions in HCC. For example, Mao et al[41] used
immunohistochemical staining to find CBX2 expression was
higher in HCC tissues than that of adjacent liver tissues and
associated with poor prognosis in HCC patients. Knockdown of
CBX2 inhibited the proliferation and increased apoptosis of
HCC cells. Using the TCGA dataset, Liao et al[42] also identified
CBX2 as onemember of a prognostic signature for HCC patients,
with lower OS in patients having high expression of CBX2 by
KM survival curve analysis. Li et al[43] performed immunohis-
tochemistry in 132 matched tissues to demonstrate CDC20
expression was upregulated in HCC tissues. High expression
levels of CDC20 were positively correlated with the expression of
proliferation marker Ki-67. CDC20 siRNA decreased cell
proliferation and increased cell cycle arrest at G2/M-phase.
Several bioinformatic analyses of microarray or TCGA datasets
also revealed CDC20 was a hub gene for the development of
HCC and overexpression of CDC20 in HCC tissues accounted
for poorer OS in HCC patients,[44,45] including HBV-HCC.[46]

PCR analysis determined MMP-12 mRNA was significantly
elevated in tumor liver tissues of HCC patients compared with
non-tumor and normal liver tissues.[47] Overexpression ofMMP-
12 mRNA was significantly correlated with poor overall survival
for HCC patients in an independent manner.[47,48] Wang et al[49]

screened SFN as an up-regulated gene in HCC and high
expression level of SFN was associated with worse prognosis
(HR=1.777; adjusted P-value= .005). In accordance with these
studies, we also found CBX2, CDC20, MMP12, and SFN were
risk factors for the poor OS in HBV-HCC samples (HR>1).
Most of them were enriched in cell cycle, proliferation or
apoptosis related biological processes or pathways. A recent
study found TRIM16 may be a tumor suppressor in HCC,
knockdown of which promoted epithelial-mesenchymal transi-
tion and then cell migration and invasion in vitro and in vivo.[50]

However, in our study, we identified TRIM16was upregulated in
HBV-HCC and positively associated with shorter OS. These
inconsistent results may be possibly resulted from the difference
of dry and wet experiments (quantitative reverse transcription-
polymerase chain reaction [RT-PCR]). Furthermore, there were
also studies on gastric cancer to illustrate upregulated TRIM16
could promote cell invasion and migration,[51] suggesting
TRIM16may have dual functions in cancer. Thus, the expression
and roles of TRIM16 should be further validated in the future.
No studies reported the roles of UPK3A in HCC until now, but
the related research on bladder cancer may indirectly clarify its
possible oncogenic functions: UPK3A levels in serum, plasma,
and urine were shown to be elevated in patients compared with
healthy controls and associated with muscle-invasive status, high
grade, lymphovascular invasion, and cancer-specific mortali-
ty.[52,53]

There were still some limitations in this study. First, the sample
size of our collected datasets from public databases was not large
due to the fact that this study specifically focused on HBV-HCC,
not overall HCC. More newly hospitalized HBV-HCC patients
and controls in our institution should be prospectively included
confirm the OS prediction ability of our lncRNA-mRNA
signature. Second, the clinical information (such as therapies)
were not detail for patients in TCGA database and thus, the
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influences of other clinical factors on the prognosis of HBV-HCC
patients have to be confirmed using new case series. Third,
quantitative PCR should be performed to examine the expression
of lncRNAs andmRNAs at RNA levels, while western blotting or
immunohistochemistry should be conducted to determine the
protein levels of mRNAs because RNA-sequencing or microarray
results seemed not to be completely consistent with these wet
experiments. Fourth, although we preliminarily predicted the
functions of lncRNAs in HBV-HCC based on the coexpression
mechanisms with mRNAs, their interaction relationships still
need experimental confirmation, such as coimmunoprecipitation.
Furthermore, the roles of lncRNAs and mRNAs for HBV-HCC
also require in vitro (overexpression or knockdown of lncRNAs
and mRNAs, followed by cell proliferation, apoptosis, invasion,
and metastasis assays) and in vivo validation (tumor growth in
xenograft models). Fifth, lncRNAs can act as competing
endogenous RNAs to indirectly regulate mRNAs by sponging
miRNAs.[37–39] Several studies also suggested miRNAs were
important biomarkers for prognosis prediction in HCC
patients.[54–57] Therefore, lncRNA-miRNA-mRNA signature
may also be effective for prognosis prediction, which may be a
potential direction in our subsequent studies. Sixth, the prognosis
potential of other DEGs (such as Dickkopf-1, another important
wnt pathway gene[58]) and DELs that were not included in the
risk score should be independently confirmed using clinical
samples to supplement our conclusions.
5. Conclusion

Through a series of bioinformatics analyses, we preliminarily
established a 9-lncRNA/mRNA risk score model which may be
potentially effective and independent biomarkers for prediction
of OS in HBV-HCC patients by dividing them into the high-risk
and low-risk groups and then guide therapeutic schedule.
Furthermore, in routine clinical practice, high-risk patients of
cancer-related death may be better recognized by the nomogram
that incorporated the risk score model and clinical prognostic
systems (vascular invasion and tumor recurrence status). By
constructing the lncRNA-mRNA coexpression and function
annotation analysis, we predicted high expressed IGF2-AS and
LINC00342 may exert tumor suppression effects by regulating
HOXD1 and SFRP5, respectively; while high expressed RHPN1-
AS1 may possess carcinogenic potential by promoting the
transcription of CBX2, CDC20, MMP12, SFN, TRIM16, and
UPK3A. These mRNAs were all associated with cell proliferation
or apoptosis related pathways. These results may also provide
underlying therapeutic targets for HBV-HCC.
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