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Subdiffusion via dynamical 
localization induced by thermal 
equilibrium fluctuations
Jakub Spiechowicz & Jerzy Łuczka

We reveal the mechanism of subdiffusion which emerges in a straightforward, one dimensional 
classical nonequilibrium dynamics of a Brownian ratchet driven by both a time-periodic force and 
Gaussian white noise. In a tailored parameter set for which the deterministic counterpart is in a non-
chaotic regime, subdiffusion is a long-living transient whose lifetime can be many, many orders of 
magnitude larger than characteristic time scales of the setup thus being amenable to experimental 
observations. As a reason for this subdiffusive behaviour in the coordinate space we identify thermal 
noise induced dynamical localization in the velocity (momentum) space. This novel idea is distinct 
from existing knowledge and has never been reported for any classical or quantum system. It suggests 
reconsideration of generally accepted opinion that subdiffusion is due to broad distributions or strong 
correlations which reflect disorder, trapping, viscoelasticity of the medium or geometrical constraints.

Diffusion can be observed almost everywhere: in the material world (diffusion of particles, atoms, molecules, 
proteins, cytoplasmic macromolecules)1,2 and in the non-material world of human civilization at various levels of 
society organizations (diffusion of ideas, opinions, innovations, price values)3. A physical archetype of diffusion 
is a Brownian motion resulting from interaction of a particle with its environment4. In literature one can find sev-
eral quantifiers which characterize a diffusion process and spread of trajectories. An example is the mean-square 
displacement of the particle coordinate. In this paper, we will consider the mean-square deviation (variance) of 
the particle position x(t) around its mean value, namely,

t x t x t( ) [ ( ) ( ) ] , (1)x
2 2σ = 〈 − 〈 〉 〉

where the averaging is over all thermal realizations as well as over initial conditions. The diffusion process can be 
classified through the scaling function5

σ ∼ .αt t( ) (2)x
2

The normal diffusion corresponds to the scaling index α = 1. Any deviation from this linear time dependence is 
classified as anomalous diffusion. For the superdiffusive case, σ t( )x

2  increases over time faster while for the subdiffu-
sion it grows slower than for normal diffusion. An example of the former is ballistic diffusion with the scaling index 
α = 2. The hallmark of the latter is famous Sinai subdiffusion which follows the logarithmic law t t( ) lnx

2 4σ ∼ 6. This 
ultraslow process can be observed for a Brownian particle moving in a static random Gaussian force field imitating 
quenched disorder in heterogeneous media. “Quenched” means that random traps, barriers or comb-like structures 
do not evolve with time. This is usually the model considered to describe the dynamical properties of materials 
containing impurities, defects, or intrinsic randomness like it is the case for amorphous systems7. However, recent 
progress in single particle tracking techniques8 has allowed to probe transport processes occurring in more complex 
setups. For instance, the diffusive motion of macromolecules and organelles inside living cells is typically subdiffu-
sive9,10. This behaviour is commonly attributed to macromolecular crowding of their interior, summarizing their 
densely packed, heterogeneous and fluctuating environment11,12. In this new class of systems subdiffusion may be 
only a transient effect while normal diffusion is observed in the asymptotic long time regime13. Nevertheless this 
anomaly lasts sufficiently long for experimental detection14–17. Despite the outlined fundamental differences 
researchers try to exploit the well known mechanisms to capture the essence of anomalous diffusion (in the 
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biological context, see e.g. ref.18). They are either broad distributions or strong correlations in diffusive motion. 
Among others there are two major subdiffusive models. The first one is a system where the particle dynamics is 
found to be governed by a sequence of trapping-untrapping events, e.g. in energy wells. It is described in the frame-
work of continuous time random walk5 consisting of jump models where the particle undergoes a series of displace-
ment given in terms of distribution of waiting times with power law tails. The second one is a system where the 
particle does not simply move in a fixed potential as before, but is a part of an interacting setup exhibiting viscoelas-
tic behaviour meaning that dynamics of different components of the system are correlated. This situation is 
described in terms of fractional Brownian motion or a fractional Langevin equation19–21 by relaxing the white noise 
assumption in simple Brownian motion and a priori inclusion of a power law for time correlations of thermal noise. 
A more interesting situation occurs when this diffusion anomaly is induced by dynamics of the problem itself and 
is not related to genuine disorder or is not introduced ab initio with broad distributions or strong correlations. We 
can mention models of anomalous diffusion (both subdiffusion and superdiffusion) in discrete deterministic sys-
tems22,23. In contrast, here we use a bottom up approach: by analysing the Langevin equation for a Brownian ratchet 
driven by thermal white noise, we reveal a new mechanism how subdiffusion may emerge from deterministic 
dynamics superimposed with thermal noise.

Results
We consider an archetype of the Brownian motor24,25 consisting of an inertial Brownian particle moving in a 
one-dimensional periodic potential of a ratchet type (i.e. with broken reflection symmetry) and driven by an 
external unbiased time-periodic force. Its dynamics is determined by the following dimensionless Langevin 
equation26

̈mx x U x a t t( ) cos( ) 2 ( ) (3)ω θ ξ+ = − ′ + + .

We refer the reader to the section Methods where we describe in detail the scaling procedure. The dot and the 
prime denote differentiation with respect to time t and the Brownian particle coordinate x ≡ x(t), respectively. 
The dimensionless friction coefficient is 1 and the parameter m is the dimensionless mass of the particle moving 
in a spatially periodic potential U(x) = U(x + L) of period L and driven by the external unbiased time-periodic 
deterministic force F(t) = a cos (ωt) of amplitude a and angular frequency ω. Thermal fluctuations due to coupling 
of the particle with the thermal bath of dimensionless temperature θ are modelled by δ-correlated Gaussian white 
noise ξ(t) of zero mean and unit intensity, i.e.,

ξ ξ ξ δ〈 〉 = 〈 〉 = − .t t s t s( ) 0, ( ) ( ) ( ) (4)

The potential is assumed to be in the ratchet (asymmetric) form24

U x x x( ) sin 1
4

sin2 (5)= − −

of the period L = 2π. Due to the presence of the external driving F(t) = a cos (ωt) and the friction term x the par-
ticle velocity approaches for t → ∞ a unique nonequilibrium stationary state which is characterized by a tempo-
rally periodic probability density. Then the mean velocity 〈 〉x t( )  takes the form of a Fourier series over all possible 
harmonics27

x t v t v tvlim ( ) ( ) ( ) , (6)t
2〈 〉 = 〈 〉 + + + …ω ω

→∞

where 〈v〉 is the directed (time independent) velocity while vnω(t) denote harmonic functions of vanishing aver-
age over the fundamental period T = 2π/ω. Due to this particular decomposition it is useful to study the period 
averaged velocity v(t) defined as

t
T

x s dsv( ) 1 ( ) (7)t

t T
∫=

+

which may be exploited to evaluate the directed velocity as tv vlim ( )t〈 〉 = 〈 〉→∞ . A sufficient and necessary condi-
tion for the emergence of the directed transport 〈v〉 ≠ 0 is breaking of the mirror symmetry of the potential U(x) 
which is the case for the form described by Eq. (5) 24. This operating principle can be seen as a key for understand-
ing the intracellular transport28. Despite of simplicity of this system, it exhibits a number of notable and unusual 
features29–34 including the anomalous diffusion26,35. The origin of observed superdiffusion has already been satis-
factorily explained in ref.26. Unfortunately, the mechanism standing behind subdiffusion still lacks a rewarding 
illumination. Within this work we aim to fill this major gap.

In panel (a) of Fig. 1 we depict the time-dependent “diffusion coefficient” D(t) defined as

σ= .D t t t( ) ( )/2 (8)x
2

From Eq. (2) it follows that superdiffusion occurs when D(t) is an increasing function of time, the case of decreas-
ing D(t) corresponds to subdiffusion and for non-varying D(t) normal diffusion takes place. The evolution of 
D(t) can be divided into three time-domains, c.f. the blue curve for temperature θ = 0.0007 in panel (a): the early 
period of superdiffusion in the time-interval (0,τ1), the intermediate regime of subdiffusion in the window (τ1,τ2) 
shaded with the cyan colour and the asymptotic long time regime of normal diffusion for t > τ2. The crossover 
times τ1 and τ2 separating these domains can be controlled by temperature and are monotonically decreasing 
function of thermal noise intensity26. For example, when θ = 0.0007 (the blue curve in Fig. 1), τ1 ≈ 3.2 · 103 and 
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τ2 ≈ 108. If temperature is lowered to θ = 0.00016 (the red curve in Fig. 1) the superdiffusion lifetime is extended 
to τ1 ≈ 3.2 · 106. It is difficult to numerically determine τ2 due to limited stability of the utilized algorithm leading 
to uncontrolled propagation of roundoff and truncation errors. However, if we adopt a more reserved extrapo-
lation from the case θ = 0.0007, the time τ2 is at least of order 1011~1013. So, these two times τ1 and τ2 are many, 
many orders longer than characteristic time scales of the system which in the dimensionless form are of the order 
of unity! Therefore from the experimental point of view for tailored parameter regimes these diffusion anomalies 
may be safely treated as nearly persistent effects.

To explain the mechanism standing behind the subdiffusion in such a periodic system let us now study the 
period averaged velocity v(t) of the Brownian particle, c.f. Eq. (7). Its variance t t tv v( ) ( ) ( )v

2 2 2σ = 〈 〉 − 〈 〉  charac-
terises fluctuations of the actual period averaged velocity around its mean value and is depicted in Fig. 1(b) for 
selected values of temperature θ. On its basis, we can make two observations. The first is that the crossover time 
τ1 of superdiffusion is related to the relaxation of the period averaged velocity v(t) to its stationary state which for 
low to mid temperature may be ultraslow26. The second is that when the particle subdiffuses then the variance of 
the period averaged velocity t( )v

2σ  is much smaller than it is for superdiffusion. This fact suggests that during 
subdiffusion the coherence of motion is enhanced not only in the coordinate space but also in the velocity space. 
It is better visualized in Fig. 2(b) where we present the asymptotic value of the period averaged velocity variance 
σv computed for the final moment of time tf = 106 in our numerical simulations as a function of temperature θ. 
The interval corresponding to subdiffusion is shaded with the cyan colour, c.f. panel (a) of the same figure where 
we depict the scaling index α fitted to the asymptotic parts of the mean square deviation of the particle coordinate 

t( )x
2σ  evolved up to the same tf. The variance is more than three times smaller in this temperature window than for 

values describing superdiffusion and normal diffusion. Moreover, the scaling index α can be controlled by tem-
perature of the system in the non-monotonic way. There is a window of thermal noise intensity θ ∈ [7 · 10−4, 
8.5 · 10−4] for which it is very small but still non-zero α ≠ 0 indicating nearly coherent transport or the ultraslow 
subdiffusion. For slightly lower and higher temperature the asymptotic evolution of σ t( )x

2  is essentialy subdiffu-
sive, e.g. α = 0.5 for θ = 1.175 · 10−3, c.f. Fig. 2(a). These findings suggest the prominent role which is played by 
thermal noise in the observed subdiffusive behaviour.

We further examine it by constructing a rough-and-ready three state stochastic process. In the deterministic 
limit θ = 0 the system is non-chaotic and possesses three coexisting attractors for the period averaged velocity: 
v− ≈ −0.4, v0 ≈ 0 and v+ ≈ 0.426. Therefore we now analyse transitions between these states induced by thermal 
fluctuations. We introduce the following notation: p++ stands for the (conditional) probability to remain staying 
in the plus state v+ → v+, p+− denotes the probability for a jump between the opposite states v+ → v− and p+0 is 
the probability of a transition between the plus and the zero state v+ → v0. This convention is analogous for the 
remaining six probabilities {p00, p0+, p0−, p−−, p−0, p−+}. By introducing the threshold ν = 0.2 the above probabil-
ities can be estimated from simulations of the Langevin equation (3) as the relative frequencies with which the 
period averaged velocity v(t) visits the three coarse grained regions V+ = {|v(t) − 0.4| < ν}, V0 = {|v(t)| < ν} and 
V− = {|v(t) + 0.4| < ν}. A chosen value of the threshold ν = 0.2 follows naturally from inspection of the probability 
distribution of the period averaged velocity where for low to moderate temperature regimes there are three peaks 
corresponding to the deterministic coexisting attractors which are approximately ν = 0.2 apart (not depicted). 
Figure 2(c) presents all transition probabilities as a function of temperature θ. In the low temperature regime the 
probabilities for the particle to survive in the opposite running states p++ and p−− corresponding to the velocities 
v+ ≈ 0.4 and v− ≈ −0.4, respectively, are particularly large and almost equal. On the other hand, the probability for 
staying in the locked state p00 is twice lower. Consequently, the spread of trajectories is large and ballistic motion 
is observed. The temperature interval for which subdiffusion is developed is again marked by the cyan colour. 
There thermal noise induces dynamical localization of the period averaged velocity (momentum), i.e. it resides 
in the positive running state v+ with the probability p++ very close to unity. It means that once the ensemble of 

Figure 1.  Diffusion anomalies of an inertial Brownian particle moving in a periodic potential and driven by a 
unbiased time-periodic force. (a) The time dependence of the diffusion coefficient D(t). (b) The evolution of 
variance of the period averaged velocity σ t( )v

2  is presented for three values of thermal noise intensity θ 
proportional to temperature. The region corresponding to the subdiffusive behaviour for θ = 0.0007 is indicated 
with the cyan colour. Parameters are m = 6, a = 1.899, ω = 0.403. At zero temperature θ = 0, the system is non-
chaotic.



www.nature.com/scientificreports/

4Scientific REPOrts | 7: 16451  | DOI:10.1038/s41598-017-16601-0

particles enter this state in the velocity space it moves almost coherently, i.e. with marginal fluctuation allowed in 
the chosen threshold |v(t) − 0.4| < ν. These fluctuations are responsible for the ultraslow subdiffusion where the 
observed scaling index is very small but still nonzero α ≠ 0. We also note that in this interval the probability for 
surviving in the locked state p00 corresponding to the particle locked in one of the potential wells is enlarged. Each 
stay of the particle in the locked state hampers the increase of the spread of trajectories leading to slowing down 
of diffusion. Similar mechanism contributes to subdifussion observed in systems with disorder, e.g. random bar-
riers, where the particle dynamics is governed by trapping-untrapping events in energy wells. However, certainly 
the dominant factor which is responsible for the detected subdiffusion is dynamical localization in the positive 
running state as it is depicted in Fig. 2(c). Further increase of temperature immediately delocalizes the particle. 
However, since then the probability for being in the locked state p00 is at the level of p−− and noticeable smaller 
than p++ we observe the occurrence of normal diffusion. In the high temperature limit all transition probabilities 
are almost the same.

To better visualize the explained mechanism we now focus on the single representative Brownian particle tra-
jectory for temperature θ = 0.0004 corresponding to subdiffusive behaviour. The result is shown in Fig. 3. In panel 
(a) and (b) we present the evolution of the coordinate x(t) and the period averaged velocity v(t), respectively. Each 
red dot in panel (b) depicts the latter quantity for a given t. The time intervals corresponding to motion in each 
of the observed states v−, v0, v+ can be easily identified. Since in this regime p++ ≈ 1 once the particle enters the 
plus state it stays in its vicinity v(t) = v+ ≈ 0.4 (c.f. panel (b)) for very long time. After the dynamical localization 
all particles travel with almost identical velocity and the spread of their trajectories changes very little over time 
implying the subdiffusive behaviour. We illustrate this mechanism in the inset of Fig. 3(a) where we depict an 
ensemble of 100 trajectories of Brownian particle dynamics for the same temperature. However, we stress that 
the magnitude of the estimated probability for surviving in the plus state p++ naturally depends on the chosen 
threshold ν of the velocity space coarse graining procedure. We restricted ourselves to the simplest stochastic 
model capturing the essence of the mechanism standing behind the observed subdiffusion. Summing up this 
part, for the fixed temperature θ and small times t < τ1 the dynamics of each trajectory is mostly deterministic 
giving rise to the (ballistic) superdiffusive behaviour provided that it is averaged over unbiased initial conditions 
for the particle position and velocity. The escape rates from the minus and zero attractors are related to the cross-
over time τ1 of the superdiffusive stage of motion. For intermediate time regime τ1 < t < τ2 thermal fluctuations 
induce transitions from the minus and the zero states onto the plus velocity. The observed dynamical localization 
in the plus state means that the typical escape rate from this solution - which is related to the crossover time τ2 of 
subdiffusion - is much larger than the corresponding quantity for two other attractors thus eventually luring there 

Figure 2.  (a) The scaling index α vs temperature θ fitted to the asymptotic parts of t( )x
2σ . The temperature 

interval corresponding to subdiffusion is indicated with the cyan colour. Superdiffusion is for lower 
temperatures (α > 1) and normal diffusion - for higher temperatures (α = 1). (b) The period averaged velocity 
variance σ t( )v

2  in the long time regime. The vertical lines indicate three values of θ = 0.00016 (red), θ = 0.0007 
(blue) and θ = 0.001175 (green). (c) The conditional probabilities in the three-states model: the minus 
v− ≈ −0.4, the zero v0 ≈ 0 and the plus v+ ≈ 0.4 solution all presented as function of temperature θ of the system. 
Other parameters are the same as in Fig. 1.
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almost all trajectories and hindering the diffusion rate. We numerically verify that for temperature θ ≈ 0.0007 for 
which the power exponent α ≈ 0 in the interval τ1 < t < τ2 the probability for the particle to be in the plus state 
is very, very close to one p+ ≈ 1 meaning that almost all particles are localized in this solution. Finally, for suffi-
ciently long times t > τ2 random dynamics induced by thermal fluctuations activates escape from all attractors 
and jumps between various trajectories leads to normal diffusion.

Discussion
In conclusion, we explained the mechanism of long lasting subdiffusion in a nonequilibrium noisy system, which 
in the deterministic limit is non-chaotic. As the reason for this anomalous behaviour we identified classical 
dynamical localization36 of the particle velocity (momentum) induced by thermal equilibrium fluctuations, i.e. 
there is a temperature window for which the particle localizes in the positive running state v+ with the proba-
bility very close to unity. This temperature interval matches exactly the region where the subdiffusive regime is 
observed in the finite data acquisition time.

Dynamical localization is a well known phenomenon in quantum systems and was introduced in ref.37. It 
manifests itself in quantum suppression of the chaotic classical diffusion in momentum space due to interfer-
ence effects38. A different but closely related phenomenon to dynamical localization in deterministic systems is 
Anderson spatial localization in disordered systems39,40. With this work we established a relation between sub-
diffusion in the coordinate space and the dynamical (quasi)localization in the momentum space. To the best of 
our knowledge, a similar idea has never been reported for any other classical or quantum systems. The findings 
are distinct from existing knowledge and suggest reconsideration of generally accepted views that subdiffusion is 
due to broad distributions or strong correlations which reflect disorder, trapping, viscoelasticity of the medium 
or geometrical constraints.

Since we demonstrated the new mechanism of subdiffusion using the model of a Brownian ratchet, the results 
provide essentially new insight into processes governing transport in complex systems especially of biological 
origin. Notably, they may explain certain aspects of strange kinetics occurring in living cells, with a particu-
lar emphasis on subdiffusive motion of molecular motors which are responsible for the intracellular transport. 
While we illuminate this phenomenon in the case of the driven Brownian particle moving in the asymmetric 
(ratchet) potential, in principle there are no restrictions for this universal mechanism to be likely observed also 
for other nonequilibrium setups: driven or non-driven but tilted symmetric periodic systems31,32 and including 
those which operate in strong disspation regime or in overdamped limit. The latter is especially true due to the 
fact that in the deterministic limit our setup is in a non-chaotic regime. Therefore complex chaotic dynamics 
which is characteristic in one dimension for driven inertial systems is not needed for this mechanism to occur. 
Moreover, due to simplicity and universality of the system with its physical clarity as well as appealing strength of 
Brownian motion with its intrinsic Gaussian noise propagator our findings can open a wide area of studies and 
may be corroborated experimentally with a wealth of physical systems. One of the most promising setups for this 
purpose are optical lattices41–44 and asymmetric SQUID devices45,46.

Methods
In this work we analyse the generic model of a ratchet system which consists of (i) a classical inertial parti-
cle of mass M, (ii) moving in a deterministic asymmetric ratchet potential U(x), (iii) driven by an unbiased 
time-periodic force Acos(Ωt) of amplitude A and angular frequency Ω, and (iv) subjected to thermal noise of 
temperature T. The corresponding Langevin equation reads26

Mx x U x A t k T t( ) cos( ) 2 ( ), (9)B̈ ξ+ Γ = − ′ + Ω + Γ

The parameter Γ stands for the friction coefficient and kB is the Boltzmann constant. Thermal equilibrium fluctu-
ations are modeled by δ-correlated, Gaussian white noise ξ(t) of zero mean and unit intensity, i.e.,

Figure 3.  A representative trajectory of the Brownian particle coordinate x(t) and the period averaged velocity 
v(t). Each red dot in panel (b) depicts the period averaged velocity v(t) for a given t. The dynamical localization 
of the latter in the state pointing to the positive direction v+ ≈ 0.4 is illustrated. In the inset of panel (a) we show 
the ensemble of 100 trajectories of the Brownian particle. Parameters are the same as in Fig. 1 with θ = 0.0004.
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ξ ξ ξ δ〈 〉 = 〈 〉 = − .t t s t s( ) 0, ( ) ( ) ( ) (10)

The spatially periodic potential U(x) is assumed to be in a double-sine form of period 2πL and a barrier height 
ΔU, namely

U x U x
L

x
L

( ) sin 1
4

sin 2
2 (11)

ϕ π
= −∆












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 +



 + −









.

As only relations between scales of length, time and energy are relevant but not their absolute values we next 
formulate the above equations of motion in its dimensionless form. To do so, we first introduce the characteristic 
dimensionless scales for the system under consideration

~
~ˆ ˆx x

L
t t L

U
, , ,

(12)0
0

2

τ
τ= = =

Γ
∆

so that the dimensionless form of the Langevin dynamics (3) reads

ˆ ̈ ˆ ˆ ˆ ˆ ˆ ˆmx x U x a t Q t( ) cos( ) 2 ( ) (13)ω ξ+ = − ′ + + .

Here, the dimensionless potential π= ∆ = ∆ = +U x U x U U Lx U U x( ) ( )/ ( )/ ( 2 )ˆ ˆ ˆ ˆ ˆ  possesses the period 2π and the 
unit barrier height is ΔU = 1. Other parameters are: m = M/(Γ~0τ ), a = (L/ΔU)A, ω = ~τ0Ω. The rescaled thermal 
noise reads ~ξ ξ ξ τ= ∆ = ∆ˆ ˆ ˆt L U t L U t( ) ( / ) ( ) ( / ) ( )0  and assumes the same statistical properties, namely t( ) 0ˆ ˆξ〈 〉 =  
and ξ ξ δ〈 〉 = −ˆ ˆ ˆ ˆ ˆ ˆt s t s( ) ( ) ( ). The dimensionless noise intensity Q = kBT/ΔU is the ratio of thermal and the activa-
tion energy the particle needs to overcome the nonrescaled potential barrier.

The system described by Eq. (9) possesses four characteristic time scales

~ ~ ~ ~τ τ τ τ π
=

Γ
∆

=
Γ

=
∆

=
Ω

.
L
U

M ML
U

, , , 2
(14)0

2

1 2
2

2

3

The quantity ~τ0 is used as a unit of time in our scaling procedure, see Eq. (12). It is a characteristic time for an 
overdamped particle to move from the maximum of the potential U(x) to its minimum. The scale ~τ1 is a relaxation 
time of the velocity of the free Brownian particle (when U(x) = A = 0). Note that the dimensionless mass m = ~τ1/~τ0
is a ratio of the two characteristic times. The time ~τ2 is a characteristic scale for the conservative system (when 
Γ = A = 0). The last scale ~τ3 is a period of the external time-periodic force. Thermal fluctuations are modelled here 
approximately as white noise so its correlation time is zero and there is no characteristic time scale associated with 
it. However, in real systems it is non-zero but much, much smaller than the other characteristic time scales.

The Langevin equation (9) has been originally derived for the asymmetric superconducting quantum inter-
ference device (SQUID) which is composed of a loop with three capacitively and resistively shunted Josephson 
junctions, see Eq. (14) in ref.45. The particle coordinate x and velocity v corresponds to the Josephson phase and 
the voltage drop across the device, respectively. The particle mass stands for the capacitance of the SQUID, the 
friction coefficient translates to the reciprocal of the SQUID resistance. The time-periodic force corresponds to 
the external current. The asymmetry parameter ϕ of the potential (11) can be controlled by the external magnetic 
flux which pierces the device.

The Langevin equation (13) is solved by employing a weak version of the stochastic second-order predictor 
corrector algorithm and using a CUDA environment implemented on a modern desktop GPU. This procedure 
allows for a speedup of a factor of the order 103 times as compared to a common present-day CPU method. 
Details on this implementation can be found in47. Since Eq. (13) is a second-order differential equation we need 
to specify two initial conditions: one for the position x(0) and the other one for the velocity x(0) of the Brownian 
particle. For some regimes of system parameters the studied dynamics may depend on a specific choice of these 
initial conditions and therefore to avoid this unwanted behaviour we chose x(0) and x(0)  to be equally distributed 
over the intervals [0, 2π] and [−2, 2]. However, we note that the effects discussed in the paper are robust with 
respect to variation of these initial conditions. In particular, in ref.26 we have considered three various forms of the 
probability distribution for the initial velocity of the particle: the Dirac delta P(v) = δ(v), uniformly distributed 
P(v) = U(−2, 2) on the velocity interval [−2, 2] and normally distributed (Gaussian) P(v) = N(0, 1) of zero mean 
and standard deviation equals to one. All considered forms lead to the consistent results proving that the observed 
behaviour is robust with respect to the probability distribution for the initial velocity of the particle.
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