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INTRODUCTION 
 
Alternative splicing (AS) is an important post-
transcriptional regulatory mechanism that increases 
protein diversity [1]. AS of pre-mRNA transcribed 
from a single gene can generate isoforms with distinct 
structures and functions [2]. Approximately 95% of 
the genes in the human genome undergo AS [3]. 
Aberrant AS can play a role in cancer development 
and resistance to therapy [2, 4–6]. For example, 
splicing factor mutations or alterations in expression 
can result in the activation of oncogenes and signaling 
pathways that promote tumorigenesis [7–10]. 
Alterative splicing events (ASEs) could therefore 
function as diagnostic or prognostic biomarkers in  

 

various cancers. Additionally, cancer-specific splice 
isoforms or splicing factors could be therapeutic 
targets. 
 
Hepatocellular carcinoma (HCC) mortality rates are 
increasing worldwide [11]. Although many studies have 
identified genes that play key roles in HCC development 
and progression, few studies have focused on the 
potential roles of ASEs in the pathogenesis of HCC [12]. 
The availability of RNA sequencing (RNA-seq) data 
including The Cancer Genome Atlas (TCGA), and the 
development of databases such as TCGASpliceSeq 
(https://bioinformatics.mdanderson.org/TCGASpliceSeq
/index.jsp), has enabled the analysis of ASEs in various 
cancers [13]. 
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ABSTRACT 
 
Alternative splicing events (ASEs) play a role in cancer development and progression. We investigated whether 
ASEs are prognostic for overall survival (OS) in hepatocellular carcinoma (HCC). RNA sequencing data was 
obtained for 343 patients included in The Cancer Genome Atlas. Matched splicing event data for these patients 
was then obtained from the TCGASpliceSeq database, which includes data for seven types of ASEs. Univariate 
and multivariate Cox regression analysis demonstrated that 3,814 OS-associated splicing events (OS-SEs) were 
correlated with OS. Prognostic indices were developed based on the most significant OS-SEs. The prognostic 
index based on all seven types of ASEs (PI-ALL) demonstrated superior efficacy in predicting OS of HCC patients 
at 2,000 days compared to those based on single ASE types. Patients were stratified into two risk groups (high 
and low) based on the median prognostic index. Kaplan-Meier survival analysis demonstrated that PI-ALL had 
the greatest capacity to distinguish between patients with favorable vs. poor outcomes. Finally, univariate Cox 
regression analysis demonstrated that the expression of 23 splicing factors was correlated with OS-SEs in the 
HCC cohort. Our data indicate that a prognostic index based on ASEs is prognostic for OS in HCC. 
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The TCGASpliceSeq dataset includes seven types of 
ASEs: (1) exon skip (ES), (2) mutually exclusive exons 
(ME), (3) retained intron (RI), (4) alternate promoter 
(AP), (5) alternate terminator (AT), (6) alternate donor 
site (AD), and (7) alternate acceptor site (AA) (Figure 1) 
[14, 15]. In this study, we investigated whether the seven 
types of ASEs were prognostic for overall survival (OS) 
among 343 HCC patients in the TCGA dataset. 
 
RESULTS 
 
Analysis of ASEs in HCC 
 
We analyzed ASEs in pooled mRNA samples from 
343 HCC cases included in the TCGA dataset. 

Individual ASEs were assigned a unique annotation 
that was a combination of the gene name, splicing 
type, and the ID number in the SpliceSeq database (AS 
ID). For example, in the annotation term “C1orf159-
AA-20”, the gene name is C1orf159, the splicing 
pattern is AA, and the AS ID is 20. A total of 34,163 
ASEs in 8,985 genes were identified in the cohort of 
HCC cases: 2,666 AA events in 1,937 genes, 2,331 
AD events in 1,663 genes, 6,352 AP events in 2,566 
genes, 8,087 AT events in 3,532 genes, 12,327 ES 
events in 5,343 genes, 137 ME events in 135 genes, 
and 2,263 RI events in 1,561 genes (Table 1). Thus, 
individual genes were associated with multiple types 
of splicing patterns. Additionally, ES was the 
dominant splicing pattern observed. 

 

 
 

Figure 1. Diagram showing the seven types of ASEs. AA, alternate acceptor; AD, alternate donor; AP, alternate promoter; AT, alternate 
terminator; ES, exon skip; ME, mutually exclusive exons; RI, retained intron. 
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Table 1. Counts of total and OS-SEs according to ASE type. 

Type Total splicing events OS-SEs 
Splicing events Genes Splicing events Genes 

AA 2,666 1,937 277 257 
AD 2,331 1,663 282 248 
AP 6,352 2,566 687 381 
AT 8,087 3,532 887 486 
ES 12,327 5,343 1,423 1,092 
ME 137 135 14 14 
RI 2,263 1,561 244 219 
Total 34,163 8,985 3,814 2,351 

 
 
Identification of OS-SEs 
 
We next performed univariate Cox regression analysis 
to determine whether ASEs were correlated with the OS 
of HCC patients. A total of 3,814 OS-SEs were 
identified, which included ES and AT events in TP53, 
and AA and ES events in VEGF (All P < 0.05, 
Supplementary Table 1). UpSet plots were generated to 
visualize the interactions between the seven types of 
ASEs that were associated with OS (Figure 2A). We 
found that single genes could have multiple OS-SEs. 
For example, AA, AD, ES, and RI events in TMEM205, 
and AA, AP, ES, and RI events in CIRBP were all 
correlated with OS in HCC patients (Supplementary 
Figure 1). We selected the 500 most significant OS-SEs 
and input the genes into Cytoscape to generate gene 
interaction networks (Figure 2B). Cancer-associated 
proteins such as P53 and VEGF were found to be major 
hubs in the resulting networks. 

Prognostic predictors of OS in HCC 
 
We next performed multivariate Cox regression analysis 
based on the 10 most significant OS-SEs for each of the 
seven splicing types and for all types. Eight prognostic 
indices (PIs) were generated based on event type: PI-
AA, PI-AD, PI-AP, PI-AT, PI-ES, PI-ME, PI-RI, and 
PI-ALL. The median values for the eight PIs were then 
used to categorize HCC patients into low and high risk 
groups. We then analyzed the efficacy of the PIs to 
predict OS at 2,000 days for the two subgroups using the 
Kaplan-Meier method. The greatest difference in OS 
was observed when the HCC patients were stratified 
based on the median value of PI-ALL (2,542 vs. 768 
days in the low and high risk groups, respectively; P = 
6e−16) (Figure 3H and Table 2). Receiver operator 
characteristic (ROC) curves were generated and the area 
under the ROC curve (AUC) calculated to evaluate the 
predictive efficiencies of the different models. We found 

 

 
 

Figure 2. UpSet plot of OS-SEs and gene interaction network in HCC. (A) UpSet plot showing OS-SEs for HCC; (B) Gene interaction 
network showing all interactions between genes corresponding to the 500 most significant OS-SEs in HCC. 
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Figure 3. Comparison of the prognostic efficacy of the eight PIs for OS survival among HCC patients in the low and high risk 
subgroups. (A–I) Kaplan-Meier survival curves for patients in the low and high subgroups for each PI. Time-dependent ROC curves 
demonstrating the ability of each PI to predict patient survival after 2,000 days. 
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Table 2. Kaplan-Meier survival analysis to evaluate the prognostic efficacy of the different models. 

Type/group Survival, days (95% CI) P-value 
PI-AA   
 Low 2,486 (2131 - NA) 7e-06 
 High 1,271 (899 - 1694)  
PI-AD   
 Low 2,116 (1622 - NA) 0.001 
 High 1,149 (827 - 3258)  
PI-AP   
 Low 3,258 (2116 - NA) 3e-04 
 High 1,372 (1088 - 1791)  
PI-AT   
 Low 2,131 (1560 - NA) 0.007 
 High 1,624 (1005 - NA)  
PI-ES   
 Low 2,456 (1624 - NA) 6e-04 
 High 1,372 (757 - NA)  
PI-ME   
 Low 2,456 (1852 - NA) 1e-04 
 High 1,135 (768 - 2542)  
PI-RI   
 Low 2,486 (2131 - NA) 3e-07 
 High 1,088 (770 - 1622)  
PI-ALL   
 Low 2,542 (2456 - NA) 6e-16 
 High 768 (639 - 1149)  

 

that the PI based on all ASE types demonstrated the 
greatest efficacy in distinguishing patients with 
favorable vs. poor prognosis. The AUC for PI-ALL was 
0.752, which was significantly higher than those of the 
other models (Figure 3A–3I). 
 
We next performed univariate and multivariate Cox 
regression analysis to evaluate prognostic value of the PIs 
and other clinical parameters including age, gender, and 
tumor stage. The hazard ratios (HRs) for PI-ALL in the 
univariate and multivariate Cox regression analyses were 
2.798 (95% confidence interval [CI]: 2.286–3.424) and 
2.603 (95% CI: 2.108–3.215), respectively (Figure 4A–
4B). We identified distinct clusters of HCC patients using 
consensus clustering. We found that k = 3 achieved 
adequate selection (Figure 5A–5F). Therefore, the 
patients were clustered into three subgroups. We then 
compared ASEs and OS among patients in the subgroups 
(Cluster 1, Cluster 2, and Cluster 3) and found that 
Cluster 3 had a higher frequency of ASEs compared to 
Clusters 1 and 2 (ME, P < 0.01; all other patterns P < 
0.001; Figure 5G), which was associated with reduced 
OS and an unfavorable prognosis according to Kaplan-
Meier analysis (P = 3e−4, Figure 5H). 

Correlation between OS-SEs and splicing factor 
expression 
 
Because alternate splicing is regulated by splicing 
factors, we investigated whether the OS-SEs were 
regulated by a subset of splicing factors. Splicing factor 
expression data were extracted from the SpliceAid2 
database (http://www.introni.it/splicing.html). 
Univariate Cox regression analysis demonstrated that 
the expression of 23 splicing factors was correlated with 
OS in the HCC cohort (Table 3). The Kaplan-Meier 
survival curves are shown in Supplementary Figure 2. 
We analyzed the associations between OS-associated 
splicing factors and the percent spliced in (PSI) values 
for OS-SEs using the Spearman correlation method. 
Correlation plots were then generated using Cytoscape 
(Figure 6A and Supplementary Table 2). These results 
indicated that the expression of 23 survival-associated 
splicing factors (triangular nodes) was correlated with 
447 OS-SEs. Of the 447 OS-SEs, 146 that were 
associated with favorable OS (red ovals) and 301 were 
associated with poor OS (green ovals). Interestingly, the 
majority of the ASEs associated with poor OS were 
positively correlated with splicing factor expression (red 

http://www.introni.it/splicing.html
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lines), whereas the majority of the ASEs associated with 
favorable OS were negatively correlated with splicing 
factor expression (blue lines) (Figure 6A). The 10 most 
significant associations between genes and splicing 
factors by P value are shown in Figure 6B–6H. The top 
splicing factors were HNRNPA0, TIAL1, QKI, SRSF6, 
HNRNPA1, SRP54, NOVA1, HNRNPH2, and CELF1. 
 
Functional enrichment analysis 
 
Functional enrichment analysis indicated that genes 
corresponding to the 500 most significant OS-SEs were 

involved in ‘protein targeting’, ‘fatty acid metabolic 
process’, ‘signaling by interleukins’, ‘regulation of 
TP53 degradation’, ‘protein targeting to membrane’, 
‘metabolism of amino acids and derivatives’, ‘fatty acid 
catabolic process’, ‘interleukin-1 family signaling’, 
‘adaptive immune system’, ‘regulation of lipase 
activity’, ‘Hepatitis C’, ‘p53 signaling pathway’, 
‘infectious disease’, ‘cellular component disassembly’, 
‘cellular ketone metabolic process’, ‘response to 
estrogen’, ‘stress granule assembly’, ‘small GTPase 
mediated signal transduction’, ‘platelet degranulation’, 
and ‘lipoprotein metabolic process’ (Figure 7). 

 

 
 

Figure 4. Cox regression analysis of OS-associated clinical features PI-ALL. (A) Univariate analysis; (B) Multivariate analysis. 
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Figure 5. Identification of three clusters of HCC patients that exhibited distinct ASE features and clinical outcomes using 
consensus clustering. (A) Cumulative distribution function for k = 2 to 10. (B) Relative change in the area under the CDF curve for k = 2 to 
10. (C) Tracking plot for k = 2 to 10. (D–F) Consensus clustering matrix for k = 2, 3, and 4. (G) Heatmap of the consensus matrix. aP< 0.01, bP< 
0.001. (H) Kaplan-Meier OS curves for the 343 HCC patients stratified by cluster.  
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Figure 6. Correlation analysis between splicing factor expression and OS-SEs. (A) Triangles represent the splicing factors and oval 
nodes represent the OS-SEs. Red ovals represent the OS-SEs that displayed a positive correlation with OS while the green ovals represent OS-
SEs that exhibited a negative correlation with OS. The blue and red lines indicate negative and positive correlations, respectively. (B–K) Top 
10 correlations between the genes corresponding to the OS-SEs and splicing factors according to P-value. 
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DISCUSSION 
 
Aberrant AS may play a key role in cancer development 
[16, 17]. TCGA RNA sequencing data has enabled 
investigation of AS patterns in various cancers 
including HCC [18, 19]. For example, Zhu et al. 
identified an AS signature that was prognostic in HCC 
using data derived from the TCGA dataset [20]. 
However, this study included several patients with 
limited survival and follow-up data. Therefore, we 
removed them in accordance with more recent studies 

[14, 21]. Several studies have demonstrated that ASEs 
are frequently present in HCC tumors [22]. For 
example, Wu et.al identified 45 ASEs that were 
observed in tumor tissue from HCC patients but not in 
adjacent normal tissue samples. These ASEs were 
associated with survival and cell differentiation [23]. 
Additionally, Wang et al. demonstrated that a 
CCDC50S splice variant was modulated by the 
HBx/SRSF3/14-3-3β complex and promoted tumor 
progression in HCC through the Ras/Foxo4 signal 
transduction pathway [24]. 

 

 
 

Figure 7. Enrichment analyses of the genes corresponding to the 500 most significant OS-SEs. (A) Bar graph showing the top 20 
results from the enrichment analysis; (B) Enrichment analysis showing the gene networks and enrichment of various pathways. Colors 
correspond to different cluster IDs. 
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In this study, we investigated whether other ASEs 
could function as prognostic biomarkers in HCC. We 
identified at least 1,000 distinct ASEs that were 
observed in HCC (Supplementary Table 1). 
Functional enrichment analysis revealed enrichment 
of genes in several pathways that could impact HCC 
development and progression. The genes 
corresponding to the ASEs we identified included 
TP53 and VEGF, which play critical roles in cancer 
biology. Interestingly, ASEs in the same gene can 
result in protein isoforms with opposing functional 
effects. For example, AS of the BCL2L1 gene results 
in the generation of two distinct isoforms: BCL-XL 
and BCL-XS [25]. BCL-XS has pro-apoptotic effects, 
while BCL-XL has anti-apoptotic effects. The BCL-
XL isoform is the predominant variant observed in 
HCC and protects tumor cells from p53-mediated 
apoptosis [26]. We identified two ASEs in BCL2, 
ID_45706 and ID_45707, which were positively and 
negatively correlated with OS, respectively 
(Supplementary Table 1). Because these ASEs result 
in aberrant proteins and were correlated with 
prognosis, they may play important roles in HCC 
development. 
 
Alterations in splicing factor expression have been 
observed in tumor compared to normal tissue [27]. 
Splicing factors regulate AS and can function as 
oncogenes or pseudo-oncogenes thereby promoting 
tumorigenesis [28, 29]. We identified 23 splicing 
factors that exhibited aberrant expression in HCC 
tumors (Table 3). Altered expression of several of these 
factors has been reported previously, such as QKI [30], 
SRSF6 [7], HNRNPA1 [31], NOVA1 [32], and 
HNRNPH2 [33]. However, the functions of the majority 
of the splicing factors we identified in HCC 
development and progression have not yet been 
elucidated.  
 
We hypothesized that alternations in splicing factor 
expression could be correlated with ASEs and OS in 
HCC. Indeed, the PSI values and network analysis 
indicated that multiple ASEs were correlated with 
splicing factor expression in HCC. The majority of the 
OS-associated splicing factors were highly expressed 
in HCC and were correlated with  
poor OS (Figure 6A, Supplementary Table 2). These 
findings provide insight into the mechanisms by  
which ASEs function in HCC development and 
progression. Although our study has several 
limitations (e.g. sample size, lack of therapeutic 
strategies, and lack of in vitro/in vivo functional 
validation studies), our data indicate that ASEs are 
frequent in HCC and are correlated with patient 
prognosis. These ASEs may be part of a prognostic 
signature in HCC. 

METHODS  
 
Data extraction 
 
RNA-seq data for 377 HCC cases was downloaded 
from the TCGA Data Portal (https://tcga-
data.nci.nih.gov/tcga/; accessed January 2019). We 
excluded 28 cases due to limited (< 30 days) of clinical 
follow-up data. The remaining 349 patients were then 
matched with their corresponding entries in the 
TCGASpliceSeq database, and 343 cases were finally 
enrolled into this study. A schematic of the overall 
study design is shown in Figure 8.  
 
Identification of OS-SEs 
 
Univariate Cox regression analysis was performed to 
identify and analyze OS-SEs. Interactions between the 
genes corresponding to the OS-SEs were plotted using 
Cytoscape and the Reactome FI plugin. Metascape 
(http://metascape.org) was to perform Gene Ontology 
(GO) term enrichment and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis of the 
genes corresponding to the 500 most significant OS-SEs 
[34]. The top 20 enrichments were displayed. A P 
< 0.01 and ≥ 3-fold enrichment were considered 
significant). 
 
Analysis of the prognostic values of the PIs 
 
Multivariate Cox regression analysis was performed on 
the top 10 OS-SEs that had the highest prognostic 
values for each type of splicing pattern and the top 10 
OS-SEs that had the highest prognostic values for all 
splicing patterns [15]. OS-SEs with P values < 0.05 
were selected to construct the PI. The PI was calculated 
using the following formula βOS-SE1 × PSIOS-SE1 + βOS-SE2 
× PSIOS-SE2 + · ···· + βOS-SEn × PSIOS-SEn, where β 
corresponded to the regression coefficient. We then 
evaluated the efficacy of the PIs in predicting cancer 
status after 2,000 days using ROC analysis with the 
survivalROC package for R as described [35]. Kaplan-
Meier survival curves were generated to analyze the 
prognostic efficacy of the PIs based on the OS-SEs as 
described [21]. Finally, Cox regression analysis was 
performed to calculate the HR values for the PIs and 
other clinical parameters including T, N, M stage as 
well as patient age and gender.  
 
Construction of the correlation network of OS-SEs 
in HCC 
 
Splicing factor data was extracted from the SpliceAid2 
database (http://www.introni.it/splicing.html). Univariate 
Cox regression analysis was performed to evaluate the 
correlation between splicing factor expression and OS. 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://metascape.org/
http://www.introni.it/splicing.html
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Table 3. Survival-associated splicing factors in HCC. 

Gene P value HR Low 95% CI High 95% CI 

HNRNPH3 0.000114599 1.000198214 1.000097496 1.000298943 
KHSRP 0.000140663 1.000101218 1.000049107 1.000153333 
RBMX 0.000141713 1.000155924 1.000075608 1.000236248 
HNRNPH1 0.00020603 1.000073002 1.00003445 1.000111554 
SRRM1 0.000215379 1.000321498 1.000151193 1.000491832 
HNRNPD 0.000394558 1.000108442 1.000048463 1.000168425 
HNRNPA0 0.000443747 1.000110171 1.000048696 1.00017165 
SF3B1 0.000470644 1.000062038 1.000027267 1.000096811 
SRSF6 0.000693532 1.000123045 1.000051948 1.000194147 
QKI 0.000735229 1.000133641 1.000056054 1.000211233 
ELAVL1 0.000759962 1.000221746 1.000092659 1.00035085 
RBM5 0.00114814 1.000238603 1.000094767 1.000382458 
SLU7 0.001379709 1.000375697 1.000145488 1.000605959 
RBM25 0.001517641 1.000235296 1.000089869 1.000380745 
TIA1 0.00315535 1.000158364 1.000053223 1.000263516 
TIAL1 0.003611166 1.000261118 1.000085257 1.00043701 
CELF1 0.005043395 1.000132251 1.000039815 1.000224695 
SRP54 0.007115521 1.000200907 1.000054596 1.00034724 
HNRNPA1 0.007692925 1.000023802 1.000006298 1.000041305 
PSMD4 0.014768251 1.000019396 1.000003803 1.000034989 
HNRNPH2 0.016730783 1.000114259 1.000020658 1.000207868 
NOVA1 0.032365794 1.000579807 1.000048732 1.001111164 
HNRNPDL 0.035203634 1.000072128 1.000005002 1.000139259 

 
 
 

 
 

Figure 8. Overall study design. 
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The correlations between splicing factor expression and 
the PSI values for OS-SEs were analyzed using 
Spearman’s rank order correlation. Correlation plots 
were generated using Cytoscape (3.6.0) and the 
Reactome FI plugin. 
 
Statistical analysis 
 
R version 3.4.1 was used for all statistical analysis. All 
P values were two-sided, and a P < 0.05 was considered 
statistically significant. UpSet was used to visualize the 
associations between genes and the different types of 
SEs. Consensus clustering was performed using the 
ConsensusClusterPlus package for R [36]. 
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SUPPLEMENTARY MATERIALS 
 

 

 

 
Supplementary Figure 1. Venn diagrams demonstrating that individual genes could be associated with at least four AS 
patterns. (A) AA, AD, ES, and RI events in the TMEM205 gene; (B) AA, AP, ES, and RI events in the CIRBP gene. 
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Supplementary Figure 2: Kaplan-Meier curves showing correlations between the expression of 23 splicing factors with OS in 
the HCC cohort. 
 
 
 
Please browse Full Text version to see the data of Supplementary Tables 1 and 2: 
 
Supplementary Table 1. Prognostic ASEs. 

 
Supplementary Table 2. Prognostic splicing factors. 

 
 


