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Deep learning‑enabled mobile 
application for efficient and robust 
herb image recognition
Xin Sun1*, Huinan Qian1, Yiliang Xiong2, Yingli Zhu3, Zhaohan Huang1 & Feng Yang1

With the increasing popularity of herbal medicine, high standards of the high quality control of herbs 
becomes a necessity, with the herb recognition as one of the great challenges. Due to the complicated 
processing procedure of the herbs, methods of manual recognition that require chemical materials 
and expert knowledge, such as fingerprint and experience, have been used. Automatic methods 
can partially alleviate the problem by deep learning based herb image recognition, but most studies 
require powerful and expensive computation hardware, which is not friendly to resource‑limited 
settings. In this paper, we introduce a deep learning‑enabled mobile application which can run entirely 
on common low‑cost smartphones for efficient and robust herb image recognition with a quite 
competitive recognition accuracy in resource‑limited situations. We hope this application can make 
contributions to the increasing accessibility of herbal medicine worldwide.

As the primary healthcare system for about 80% of the world’s population, especially in the developing  countries1 
and also an increase in developed  countries2 such as France and Germany, herbal medicine has gained cumula-
tive popularity in today’s medical practice due to its cultural acceptability, availability, affordability, efficacy and 
safety  claims3.

Herbal medicine, as defined by World Health Organization (WHO), is the practice which includes herbs, 
herbal materials, herbal preparations and herbal products containing active ingredients parts of plants, or other 
plant materials, or  combinations3. Among the four forms of herbal medicine, the herbs are basic and distinctly 
important as they are the source and main component of other forms. Therefore, the quality control of the herbs 
becomes a key problem, which will directly influence herbal products in their acceptability and  efficacy4–6. Mean-
while, the worldwide upsurge of applying herbal medicine is calling for high standards for the herb quality, of 
which the herb recognition telling herb category and providing herb quality rating is the key step.

Herb recognition faces great challenges. Firstly, the herb quality is closely related to many factors, such as 
the temperature, use of fresh plants, light exposure, nutrients, water availability, period and time of harvest, 
method of harvesting, drying, packing, storage and transportation. Secondly, herbs are usually complicatedly 
processed from plants, and their appearance will be much different from their original forms. Thirdly, there 
are thousands of common herbs worldwide, which makes it difficult and time-consuming to recognize all the 
categories. Over the past decades, two primary solutions have been proposed, namely, the manual recognition 
and automatic recognition.

In manual recognition, one popular method is the herb fingerprint technology (Fig. 1b). It extracts the biolog-
ical fingerprint of herbs by complicated chemical steps, which include herb splitting, Gas Chromatograph-Mass 
Spectrometer-computer (GC-MS) analysis and fingerprint generating, and then the fingerprint is compared to the 
template of each category based on their  similarity7,8. Because of its reliability and accuracy in herb recognition, 
it has been accepted as a standard pipeline  worldwide3. Another solution of manual recognition is the experience 
based method, wherein professionals use their long-time experiences by looking, smelling, tasting, touching and 
hearing (Fig. 1c). However, manual recognition has its limitations. Firstly, it cannot work without professionals 
with rich knowledge and experience, or chemical materials and devices that may not be available for resource-
limited settings. Secondly, it will cost too much resources and time to recognize thousands of herbs manually.

In order to alleviate these drawbacks of manual recognition, automatic recognition has been introduced based 
on the idea that utilizing herb images and giving quick candidate categories to assist the manual recognition to 
speed up making final decisions (Fig. 1c). In conventional approaches differentiating herbs according to color, 
shape and texture, the accuracy cannot be satisfied due to their low-level appearance  property9–11. Recently, 
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inspired by the development of image recognition in computer  vision12–16 and medical  areas17–23, deep learning 
based methods have shown great  improvements24–29, which makes it feasible to provide candidate decisions with 
satisfied accuracy. Most studies have used the Deep Neural Network (DNN), which combines with powerful and 
expensive computation hardware to support the computation. This combination is commonly used in hospitals 
and laboratories, and it aims towards a high degree of system automation and high system stability.

However, due to the high price of the hardware, it is not suited to dispensaries or hospitals in resource-limited 
settings. Simply reducing the hardware requirements is not feasible, as the DNNs are usually large and heavily-
designed, costing too much computation. Therefore, the key of our application design is to obtain an efficient and 
accurate small DNN that can be deployed in resource-limited devices. One intuitive idea is to use a small DNN 
directly. However, the recognition ability will be weakened due to its fewer parameters, which will lead to the 
large drop of accuracy, even though the efficiency can be largely improved. As a result, we shifted into another 
direction: can we compress the large DNN into a small one? Though cutting a small portion of parameters of 
the large DNN can work in some  cases30–32, it still has three main limitations. Firstly, cutting the parameters 
cannot change the inner network structure, but can only make the network smaller, which may not achieve the 
expected efficiency in low-cost situations. Secondly, due to the huge gap between the large and small DNN in 
the number of parameters, cutting a large portion of parameters will lead to the obvious drop of recognition 
accuracy. Thirdly, the large gap also makes it hard to give accurate control on how much to cut to the target level. 
To meet these challenges, we propose a three-step network compression algorithm with each step correspond-
ing to each limitation in order. Some recent studies show that specific network structures are appropriate for 
low-cost  situations33,34, and the DNN with these structures can obtain satisfying accuracy with fewer parameters 
and higher efficiency, which matches our motivation perfectly. Inspired by this, our first motivation is to use a 
separate small DNN with these efficient structures. Then, given the fact that cutting parameters cannot be done 
with different network structures, our second motivation is to transfer the recognition ability from the large 
DNN to the small one to keep accuracy. Finally, within the same structure, our third motivation is to give precise 
control of cutting the small DNN to achieve the best trade-off between accuracy and efficiency.

In this paper, we propose a novel deep learning based network compression algorithm to compress the 
heavily-designed DNN to a small one. Further, we develop a deep learning-driven mobile application for herb 
image recognition, which can run entirely on a single smartphone. The application runs in three steps (Fig. 1d). 
Firstly, image processing is operated on each herb image for the preparation of DNN computation. Then, a DNN 
is running on the image to get confidence scores for each herb category. Finally, the scores are ranked with top 
K herb categories to display recognition results. The key step is the second one, wherein the proposed network 
compression algorithm can guarantee the fast response and accurate recognition for good user experience. 
Experimental results on a public herb image  dataset24 show that the compressed small DNN can run much 
faster ( 4X−5X ) with the near-realtime speed around 20 Frames Per Second (FPS) on common smartphones, 
while it still maintains a quite comparable recognition accuracy to the original small DNN. Without requiring 
any hardware, the whole recognition takes place entirely on a common smartphone and it can work completely 
offline (without internet), which is perfectly suitable for resource-limited settings.

Figure 1.  An illustration on how the deep learning-driven mobile application works for herb recognition. 
Given some herbs (a), manual methods use fingerprint technology (b) or expert experience (c) for recognition. 
We consider the automatic way to recognize the herb image with a deep learning method on a single 
smartphone (d), which can provide candidate decisions to speed up the manual recognition.
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The main contribution of the App in this study is to facilitate the implementation of herb recognition in 
resources-limited laboratories, hospitals and dispensaries. Firstly, not designed to compete with large DNNs with 
powerful hardware, they pay more attention to high degree of automation. Secondly, not meant to compete with 
manual herb recognition, our objective is to alleviate the need of expert resources and chemical materials by being 
a qualified assistant that can make candidate decisions to accelerate the manual process (Fig. 1). Moreover, we 
believe this study can promote the accessibility of herbal medicine worldwide and possibly facilitate the collection 
of valuable herbal medicine data, which has long been a key problem in artificial intelligence and deep learning.

In the following, we explore a deep learning based network compression algorithm for efficient and robust 
herb image recognition on a single smartphone. Then, we demonstrate that the accuracy of the compressed small 
DNN is quite consistent to that obtained by the original small DNN. The full procedure is evaluated on a public 
herb image dataset, and an additional large-scale image classification dataset is also adopted to further validate 
the effectiveness and generality of the algorithm.

Related work
In automatic recognition of herbs, researchers first utilize herb images and analyze their low-level appearance 
for recognition. Chen et al.9 construct the color matching template by integrating two observation surfaces of 
herb pieces, and they show some anti-interference invariance in rotation, shape and color. Liu et al.10 extract 
texture features by converting color images to gray-scale images, wherein the gray level co-occurrence matrix is 
used for recognition. To distinguish herbs with similar appearance, Ming et al.11 combine raman spectroscopy 
with the support vector machine. However, these studies mainly focus on a few herb categories, due to the fact 
that low-level property cannot handle large variations in many categories. Recently, inspired by the development 
of image recognition in computer  vision12–16 and medical  areas17–23, deep learning based methods have shown 
great improvements in herb  recognition24–29. Sun et al.24 apply convolutional neural network in herb image 
classification, and they also release a herb image dataset with 95 categories. Vo et al.25 extract image features 
by a VGG16-based  network13, and the features can work well with the LightBGM classifier. To incorporate the 
expert knowledge, Lai et al.26 extract a set of selected traditional features, which are further combined with deep 
features for joint classification. To deal with the background noise, Zhu et al.28 propose the two-way attention 
method, which combines the instance and category for better discrimination. To assess the feasibility of auto-
mated machine learning, Chen et al.27 use the open-source platform and built a dataset with 315 commonly 
used herb categories, but the dataset has not been released yet. To popularize the knowledge of herb medicine, 
Weng et al.29 develop a smartphone application for herb image classification, but the entire process is run on the 
cloud server. The above studies have used the Deep Neural Network (DNN), which combines with powerful and 
expensive computation hardware to support the computation. However, due to the high price of the hardware, 
it is not suited to dispensaries or hospitals in resource-limited settings.

To enable the use of DNN in resource-limited devices, one primary method is to design efficient net-
work structures. One series of studies is the MobileNets. Howard et al.33 propose a lightweight DNN, namely 
MobileNet-V1, for embedded vision applications, and the main contribution is the depth-wise separable con-
volutions. To further improve the efficiency and accuracy, Sandler et al. design the MobileNet-V234 wherein an 
inverted residual structure is introduced with removing non-linearities in the narrow layers to maintain repre-
sentational power. To explore automated search algorithms in network design, Howard et al. further propose 
the MobileNet-V335, which adopts Neural Architecture Search (NAS) to better tune on the mobile phone CPU. 
Another series of studies is the ShuffleNets. Zhang et al. introduce the ShuffleNet-V136, which utilizes two new 
operations, namely pointwise group convolution and channel shuffle, to greatly reduce computation cost while 
maintaining accuracy. To guide the network design towards direct metrics such as FLOPs, speed and memory 
access cost, Ma et al. propose the ShuffleNet-V237 to derive several practical guidelines for efficient design. In 
this paper, we adopt the MobileNet-V2 as the small DNN for its convenient design for subsequent network 
transfer and cut.

Another primary method is the network compression, which usually contains two main parts, namely net-
work transfer and network cut. In network transfer, Hinton et al.38 propose to transfer the logits from the large 
DNN to the small DNN. To incorporate context information in a single layer or between layers, Zagoruyko 
et al.39 and Yim et al.40 construct the attention maps and pairwise relation to improve the accuracy of the small 
DNN. However, these studies neglected the relation among samples. Park et al. and Liu et al. propose to model 
the sample relation by the similarity of  pairs41 and  triplets42. In this paper, instead of using logits or relation, we 
adopt the hidden layer for network transfer as it is a compact representation and can be used between different 
network structures. In network cut, some researchers proposed the sparsity based  methods32,43,44, but this sparsity 
is not friendly to hardware acceleration, which requires cutting a whole channel or filter. Based on this fact, the 
weight based methods have been proposed by jointly cutting network parameters of all the layers with some 
weight  regularization45–49, but the accuracy drops obviously due to the difficulty in joint optimization. Motivated 
by the feature map  approximation50, we propose a top-down layer-wise network cut method, which is further 
combined with network transfer to minimize the loss of accuracy in cutting each layer.

Methods
In this section, we will give a full introduction on how to obtain an efficient and accurate DNN for use on a 
smartphone. We first give a brief introduction of the DNN and explain the importance of image processing, 
and then we present a novel deep learning based network compression algorithm to learn a compressed DNN. 
Finally, we show how to deploy the compressed DNN on the smartphone.
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Brief introduction. In this part, we introduce some key concepts and notations in DNN that are related to 
our method. Figure 2a shows a simple DNN, which contains a sequence of data representation and parameter 
layers, and it is trained with a one-hot label that denotes which category the herb image belongs to. Among this 
simple structure, feature map, hidden vector, convolution layer and fully-connection layer are important con-
cepts. The former two are data representation, while the latter two are parameter layers.

Feature map. It is a general form of data representation in DNN. It has the form of F ∈ RC×H×W , wherein C, 
H and W are the size of the feature map and they denote channel, height and width respectively. For example, an 
input RGB image has the data size of 3×H ×W , wherein the channel C is 3. For clarity, we denote the feature 
map in the t  th layer as Ft ∈ RCt×Ht×Wt , and we will adopt this notation throughout the paper.

Convolution. It can extract information from local regions, and Fig. 2b shows how it works. For the t  th layer, 
the convolution consists of filters Pt ∈ RCt×Ct−1×kt×kt , wherein Ct−1 × kt × kt is the parameter size for a single 
filter and Ct is the number of filters. Especially, Ct−1 must equal to the number of channels in the input feature 
map Ft−1 . Each filter will convolve with local regions in Ft−1 on every s locations to form a new map, and the 
maps of all Ct filters are stacked together to generate the output map Ft ∈ RCt×Ht×Wt.

Fully‑connection. It is a special form of convolution. Given the input feature map Ft+1 ∈ RCt+1×Ht+1×Wt+1 , the 
layer has filters P ∈ RD×Ct+1×Ht+1×Wt+1 , and these filters act the same to the ones in convolution. But different 
from the convolution, the layer generates a special form of feature map H ∈ RD , wherein the height and width 
both equal to 1, as shown in Fig. 2c.

Hidden vector. We refer to the output feature map H of the fully-connection layer as the hidden vector through-
out the paper. The reason we transform the feature map into the hidden vector is to enhance the recognition 
ability with global image information, and meanwhile prepare the data form for training.

Image processing. Given a herb image, the objective of image processing is twofolds. Firstly, it processes 
the image to be prepared for DNN computation. The image size varies a lot due to the different hardware and 
resolution, but the input image size of the DNN is fixed, e.g. 224× 224 throughout our evaluation. Therefore, it 
is necessary to process the image to the target size, and this rule applies both in the training and testing phase. 
Secondly, image processing can be used as an effective data augmentation method to improve the robustness of 
recognition. We train and evaluate our method on the largest public herb image  dataset24 that contains 95 herb 
categories with 5640 herb images, but it is actually a small-scale dataset compared to some large ones in com-
puter  vision51. Training DNN on this dataset without any data augmentation will easily cause over-fitting, which 

Figure 2.  An illustration of a simple DNN for image recognition. (a) A simple DNN consists of the feature 
map, convolution layer, fully-connected layer and hidden vector; (b) The convolution layer extracts local 
information to generate a new map; (c) The fully-connected layer aggregates global information to generate the 
hidden vector.
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will degrade the generality of herb image recognition. Particularly, this rule applies mainly at the training phase, 
while the processing in the testing phase is quite simple.

In the training phase, inspired by the data augmentation method in computer  vision15,16, we use four types 
of augmentations in order: random scaling, random ratio, random cropping and resizing, as shown in Fig. 3a.

Random scaling. The motivation is to adapt to different herb scales caused by the different distance between the 
herbs and a smartphone. As the smartphone moving away from the herbs, their size in the image will become 
smaller, which is actually the zoom-out operation. This operation only changes the image scale that is randomly 
selected, but keeps the width-height ratio fixed, as shown in the “Scale” column in Fig. 3a.

Random ratio. The motivation is to adapt to different herb shapes caused by the different angle between the 
herbs and a smartphone. As the smartphone rotating around the herbs, their shape in the image will be differ-
ent, i.e. the width-height ratio will change. This operation only modifies the width-height ratio that is randomly 
selected, but remains the image area unchanged, as shown in the “Ratio” column in Fig. 3a.

Random cropping. The motivation is to fully learn the representation ability from every herb detail. Cropping 
is equivalent to concentrating on a local region, which is actually the zoom-in operation. By this way, DNN has 
to learn to correctly recognize the herb category from different local regions, which can increase the learning 
ability from every part of the herbs. Due to the crop location and region are randomly selected, this operation 
will change both the image scale and width-height ratio, as shown in the “Crop” column in Fig. 3a.

Resize. As previously mentioned, the motivation is to prepare for the fixed input size for DNN computation, as 
shown in the “Resize” column in Fig. 2a.

For each training iteration, the above steps are processed in order to get the input image for DNN computa-
tion. With the randomness in each step, the DNN can see various combinations in training, which can largely 
improve the generality of the herb image recognition. In the testing phase, we only adopt resizing and center-
cropping, as used  in15. The testing image is first resized to 256× 256 , then the center region with 224× 224 is 
cropped to feed the DNN for recognition, as shown in Fig. 3b. Different from the training phase, we want the 
testing condition to be simple by assuming the herbs are at the near-center region of the image.

Network compression. In this part, we introduce the deep learning based network compression algo-
rithm, which compresses the large DNN into a small one that can run efficiently and meanwhile maintain con-
siderable accuracy. The algorithm contains three main steps, namely network pre-train, network transfer and 

Figure 3.  An illustration of data augmentation for training and testing. (a) In training, the augmentation 
includes random scaling, random ratio, random cropping and resizing, and these four steps are processed in 
order; (b) In testing, only resizing and center-cropping are used.
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network cut. One may wonder why we need an extra cutting step but not designing a small DNN that is small 
enough? For this question, we will explain it later and validate it in the result part.

Network pre‑train. Network pre-training is a strategy that trains the DNN initially on a large-scale dataset, and 
then based on the initialization, the DNN is further trained on the target dataset. The advantage of this strategy 
is twofolds. Firstly, pre-training is a regularization technique, and it improves recognition generalization ability. 
Since the DNN is first exposed to a large amount of data, its parameters will be carried to a space that is more 
likely to represent the data distribution in overall rather than over-fitting a specific subset of underlying data 
 distribution52,53. Secondly, pre-training can improve the training stability and speed up the convergence. Deep 
neural networks, especially those with high representation capacity with tons of parameters, are tend to be 
vulnerable to random parameter  initialization12. Pre-training can initialize the parameters in a supervised way, 
which can provide a good starting point for stable training.

In our strategy, we adopt the ImageNet  dataset51 as the large-scale set and pre-train the DNN on it, and then 
the DNN is further trained on the herb image dataset. The ImageNet dataset is a large-scale set in image recogni-
tion, and it contains 1000 common object categories and 1.2M  images51. Though its target is not for herb image 
recognition, it can share general representation, which can bring better recognition generality. Especially, this 
pre-training rule applies to both the large and small DNN.

Let Xi ∈ R3×H×W (i = 1, ...,N) be the input RGB image, wherein H and W are the height and width, and N 
is the number of herb images. For each image Xi , the recognition label is defined as Yi ∈ RC , which is a one-hot 
vector with C herb categories. We denote the pre-trained large and small DNN as WL and WS respectively, and 
they are further trained on the herb image dataset with the cross-entropy loss in a mini-batch way:

wherein φ(Xi) and ϕ(Xi) are the softmax output of the large and small DNN respectively, and B is the training 
batchsize. In this step, both DNNs are trained individually, i.e. without any interaction between them, as shown 
in Fig. 4a. With enough training, they can learn some recognition ability for herb image recognition.

Network transfer. After the pre-training, the large DNN is fixed and all the subsequent steps will be operated 
only on the small DNN. Due to the much fewer parameters, the small DNN cannot learn the recognition ability 
as good as the large one, thus its recognition accuracy is usually lower. To reduce the accuracy gap, we propose 
to transfer the recognition ability from the large DNN to the small one.

Some studies in computer vision have found that given the same input image, if the feature map of the small 
DNN can be close to the one of the large DNN, then their predicted category will also be similar, thus their recog-
nition ability can be  comparable39–42,54,55. Based on this understanding, we can formulate the transfer process to be 
matching the feature map of both networks in a specific layer. As each network has dozens of layers, one problem 
is which layer to use. Inspired by the fact that the layer of higher level has better semantic  representation38,52,53,55, 
we propose to use the hidden vector H , as it is a compact and high-level representation. Let HL ∈ RD and HS ∈ RD 
be the hidden vector for the large and small DNN respectively, then the network transfer on the small DNN can 
be formulated with the additional transfer loss as follows:

(1)
L(WL) = min

∑

B

i=1 −Yi logφ(Xi)
/

B,

L(WS) = min
∑

B

i=1 −Yi logϕ(Xi)
/

B

Figure 4.  An illustration of the pipeline for the network compression algorithm. (a) Firstly, the large and small 
DNN are pre-trained on the ImageNet dataset and further trained on the herb image dataset, and they are 
trained individually; (b) Secondly, the recognition ability of the large DNN is transferred to the small DNN, as 
shown by the dotted red line; (c) Finally, network cutting is processed in a top-down way from the top layer to 
the bottom layer; (d) The network cutting for a single layer, wherein some unimportant filters are removed.
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wherein the transferred small DNN is denoted as WS
K , and it is trained based on the previously trained WS . 

Besides, � is the weight of the network transfer that controls how much ability should be transferred from the 
large DNN. In this way, the recognition ability can be transferred to the small DNN, which maintains the high 
accuracy of the large DNN but runs faster at the same time, as shown in Fig. 4b.

Network cut. The objective of this step is to improve the network efficiency by cutting its parameters, which can 
reduce the amount of computation. As mentioned before, one confusing idea is why we need an extra cutting 
step but not using a small DNN that is small enough? Actually, in network transfer, the gap in the parameter 
number of the large and small DNN cannot be too large. As the small DNN only has limited learning ability, 
the large gap cannot guarantee the efficacy of the transfer, and this observation will be validated in the result 
part. This implies the small DNN cannot be too small, but it causes another problem that the small DNN cannot 
achieve high efficiency at the same time. Therefore, we propose a network cutting method to achieve the best 
trade-off between accuracy and efficiency.

Before going into it, we need to ask three questions: (1) which parameters should be cut? (2) what if the 
accuracy drops after cutting them? (3) do we cut all layers jointly or each layer individually? In fact, the answers 
constitute the three steps in network cutting. Inspired by some recent  studies47,48,56, we will give our answers for 
these questions as follows.

For the t  th layer, cutting parameters is equivalent to removing unimportant filters in Pt ∈ RCt×Ct−1×k×k , 
i.e. to reduce the filter number Ct . To measure the importance of each filter, one intuitive idea is to see how 
much it affects subsequent feature maps if we remove it, and the unimportant ones will have lower influences. 
Specifically, assume one filter has been removed, then we will have Pt ∈ R(Ct−1)×Ct−1×k×k , Ft ∈ R(Ct−1)×H×W , 
Pt+1 ∈ RCt+1×(Ct−1)×k×k and Ft+1 ∈ RCt+1×H×W . We see that Ft+1 is the nearest feature map with its size 
unchanged, thus we use it as the reference map. To measure the importance, we use a subset of herb images and 
calculate the reconstruction error of the reference map by removing each filter individually:

wherein {Xm|m = 1, ...,M,M ≪ N} is the sampled subset, FCi

t+1
(Xm) is the feature map for image Xm by remov-

ing the i th filter from Pt , and ScoreCi is the importance score by removing the i th filter from Pt . By ranking the 
importance scores, we can cut the filters with smaller scores by a given cutting ratio α , i.e. ⌈Ct × α⌉ filters will 
be cut and ⌈Ct × (1− α)⌉ filters will be reserved, which gives the new filters Pt ∈ R

⌈Ct×(1−α)⌉×Ct−1×k×k for the 
t  th layer, as shown in Fig. 4d.

The unimportant filters, though they contribute less to the recognition, they still learn some image representa-
tion that can be helpful. Therefore, simply removing them will cause the loss of recognition  ability43,57. To recover 
the loss back, one common solution is to re-train the after-cut  network56,58, and this can make the reserved filters 
fully learn the image presentation that is necessary for the recognition. Specifically, we use all the herb images 
to re-train the after-cut small DNN, and the same training rule in Eq. (2) is adopted:

wherein WS
t is the re-trained small DNN for the t  th layer, and it is trained based on the transferred small DNN 

WS
K with cutting the filters at the t  th layer. With the re-training step, the accuracy can be well recovered, and 

the whole cutting process at the t  th layer is then finished, as shown in Fig. 4d.
By far, we have answered the first two questions. For the third one about cutting all layers jointly or each layer 

individually, we adopt an iterative approach that cuts layers one by one. Assume there are T filter layers in the 
transferred small DNN WS

K , and we start the cutting from layer T all the way down to layer 1. For each layer t, 
the cutting is very similar to the above two steps with only one difference in Eq. (4): the top layer T ( t = T ) is 
trained based on the after-cut WS

K , while others ( 1 ≤ t < T ) use the after-cut WS
t+1 as initialization, as shown 

in Fig. 4c. Especially, the cutting ratio α can be adjusted to satisfy different efficiency requirements, but we should 
also pay attention to the trade-off between accuracy and efficiency. After the top-down iterative cutting on each 
layer, WS

1 is the final compressed small DNN for deployment on smartphones.

A short summary. To give a short summary of the network compression pipeline, we conclude the algorithm 
pipeline as follows. 

(2)L(WS
K |WS ) = min

∑B

i=1
(−Yi logϕ(Xi)+ ��HS −HL�

2
2)
/

B,

(3)Score
Ci =

∑M

m=1

∥

∥

∥
F
Ci

t+1
(Xm)− Ft+1(Xm)

∥

∥

∥

2

2

/

M,

(4)L(WS
t |WS

K ) = min
∑B

i=1
(−Yi logϕ(Xi)+ ��HS −HL�

2
2)
/

B,
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Network deployment. After the network compression, we deploy the final compressed small DNN on a 
smartphone. Given a smartphone, a video sequence is first taken from the camera, and the sequence is split into 
each individual image frame. Then, the data augmentation for testing will be operated in each frame to generate 
the input data, as shown in Fig. 3b. Finally, the compressed small DNN will run on each input data to output the 
ranked predicted herb categories. All these steps are illustrated in Fig. 1c.

Results
We first introduce experimental settings, then the efficacy of image processing and network compression will be 
validated, lastly we show the running efficiency on three common smartphones.

Experimental setting. The setup is given based on seven parts: dataset, image processing, network selec-
tion, network pre-train, network transfer/cut, network deployment and evaluation.

Dataset. We use the public largest herb image dataset released  in24. It contains 95 herb categories with 5640 
images, which are all collected from the internet with the herbs having mutual occlusion and cluttered back-
grounds. Some herb images in the dataset are shown in Fig. 3. For each herb category, the number of herb images 
varies from 15 to 180, and we randomly split them into 70% training and 30% testing, which contain 3904 and 
1736 images respectively. This random split is repeated 5 times for fivefold cross-validation.

Image processing. In training, we use a four-step image processing method for each image. (1) Random Scale: 
the raw image is scaled with the scale randomly selected in [0.08, 1.0] ; (2) Random Ratio: the scaled image is 
reshaped to different width-height ratios with the ratio randomly selected in [3/4, 4/3] ; (3) Random Crop: the 
ratio image is cropped with the crop location and region size randomly selected within the image; (4) Resize: the 
cropped image is resized to 224× 224 . In testing, we use a two-step image processing method for each image. (1) 
Resize: the original image is resized to 256× 256 ; (2) Center Crop: the center region with 224× 224 is cropped. 
For both training and testing, the result image is converted into the Float type ([0, 1]) and normalized with mean 
and variance to generate the input data for DNN computation.

Network selection. We adopt the standard ResNet-5015 and MobileNet-V234 as the large and small DNN respec-
tively. The two DNNs have different network structures, wherein the large one uses deep residual blocks for 
better  accuracy15, while the small one uses separable depth-wise convolutions and inverse bottleneck for fewer 
parameters and higher  efficiency34.

Network pre‑train. For the pre-training on the  ImageNet51 dataset, both DNNs start with the learning rate of 
0.1 and ends with 0.0001, and each rate is divided by 10 for every 30 epochs, i.e. four rates with 120 epochs are 
used in total. For the training on the herb image dataset, the large and small DNN are trained with the starting 
rate of 0.01 and the ending rate of 0.0001, and each rate is divided by 10 for every 5000/10,000 iterations, i.e. 
three rates with 15,000/30,000 iterations are used in total. Besides, the optimizer of stochastic gradient descent 
is adopted with the batchsize of 32, momentum of 0.9, and weight decay of 0.0005 throughout the whole evalu-
ation.

Network transfer/cut. In network transfer, the training starts with the rate of 0.001 and ends with 0.0001, and 
the number of iterations for each rate is set to be 10,000 and 5000 respectively. Besides, the transfer weight � in 
Eq. (2) is set to be 1.0. In network cut, we use the same learning rates as in the transfer process, while the number 
of iterations for each rate is set to be 5000 and 2000. Especially, we use the cutting ratio of 0.5 for the best trade-
off between accuracy and efficiency, which will be validated later.
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Network deployment. We train and evaluate our DNNs with the open-source PyTorch  framework59, which 
also provides the tool to deploy the DNN on smartphones. We deploy the final compressed DNN based on the 
Android system, and three smartphones are used with their increasing CPU computation ability: HUAWEI 
Mate9 Pro, Xiaomi MI 9 and HUAWEI P30 Pro. For use in low-cost situations, the smartphones we have used are 
rather common and typical, as all of them have been released for more than two years with a low price.

Evaluation. The proposed method will be evaluated based on accuracy and efficiency. For the accuracy part, 
it is computed by dividing the total number of images with the number of correctly recognized images in each 
category, and we report the top1 and top5 average accuracy of all 95 categories. Especially, due to the training and 
testing sets have been randomly selected with 5 times for the fivefold cross-validation, the mean and variance 
of the average accuracy will also be reported. For the efficiency part, we evaluate the time cost of image process-
ing and DNN computation, and the average time cost with 100 runs on the smartphone CPU will be reported.

Image processing. In this part, we validate the effectiveness of the training data augmentation. We adopt 
the small DNN for evaluation, and the top1/top5 average accuracy will be reported, wherein topn denotes if the 
correct category is in the top n predicted categories. Table 1a shows the results of the small DNN with and with-
out image processing. We see that training without processing obtains the top1/top5 accuracy of 64.65%/86.02% 
respectively, while the extra processing step gives about 4%/2% improvement to 68.89%/88.03% . These improve-
ments imply the image processing can be effective in enhancing the robustness and generality of the herb image 
recognition, and we will give more insights to explain the improvements.

Figure 5a,b show the change of training loss and top1 accuracy along the training process with and with-
out the augmentation, and there are two main observations. Firstly, training without augmentation (Fig. 5b) 
converges quickly within 5000 iterations and achieves the training loss of 0.005, which is 10 times lower than 
the one with augmentation (Fig. 5a) that converges slowly with 20,000 iterations. Secondly, the top1 accuracy 
without augmentation quickly saturates around 10,000 iterations but then slightly decreases, while the one with 
augmentation keeps going up to a higher level with the increasing number of iterations. When the augmenta-
tion is adopted, different training samples are generated in each iteration, and the enough training can fully 
learn the representation from every herb detail and also simulate the different setup between the camera and 
herbs, which can easily adapt to different testing situations with high robustness and generality. However, if the 
augmentation is removed, the training will always see the same samples, and the limited number of training 
samples cannot learn the herb detail and generalize to different testing situations, which causes the over-fitting 
to happen. These observations indicate that data augmentation can effectively overcome the over-fitting problem 
by learning better recognition generality.

Figure 6a,b give a visualization of the recognition ability by comparing the confusion matrix with and with-
out data augmentation. One main observation is that in the matrix without augmentation (Fig. 6b), there are 
more red points than the one with augmentation, especially in the right area, and these points indicate that 

Table 1.  A summary of main results of the image processing and network compression.

DNN strategy
Top1
Mean ± std (%)

Top5
Mean ± std (%)

a. Image processing

Small DNN w/o image processing 64.65 ± 1.09 86.02 ± 0.51

Small DNN + image processing 68.89 ± 0.69 88.03 ± 0.69

b. Network pre-train

Small DNN w/o pre-train 46.51 ± 0.90 75.38 ± 1.48

Small DNN + pre-train 68.89 ± 0.69 88.03 ± 0.69

c. Network transfer

Large DNN 70.61 ± 1.00 88.97 ± 0.41

Small DNN 68.89 ± 0.69 88.03 ± 0.69

Small DNN + transfer 70.97 ± 0.50 88.72 ± 0.79

Small DNN w/o pre-train + transfer 55.55 ± 3.22 79.25 ± 2.11

d. Network cut

Small DNN + transfer 70.97 ± 0.50 88.72 ± 0.79

Small DNN + cut(α = 0.5 , � = 0) 67.62 ± 0.84 85.69 ± 0.85

Small DNN + cut ( α = 0.5 , � = 1) 69.44 ± 1.10 87.66 ± 0.73

Small DNN + transfer + cut ( α = 0.5 , � = 0) 68.01 ± 0.47 85.88 ± 0.54

Small DNN + transfer + cut ( α = 0.5 , � = 1) 69.98 ± 1.09 87.71 ± 0.73

e. Network structure

Small DNN + transfer + cut ( α = 0.5 , � = 1) 69.98 ± 1.09 87.71 ± 0.73

New small DNN 62.66 ± 1.19 84.91 ± 1.06

New small DNN + transfer ( � = 1) 66.68 ± 1.21 86.44 ± 0.78
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Figure 5.  The training loss and top1 accuracy on different networks. (a) Small DNN with the data 
augmentation and network pre-train; (b) Small DNN without the data augment; (c) Small DNN without the 
network pre-train; (d) Small DNN using the network transfer; (e) Small DNN without the pre-train but using 
the network transfer.

Figure 6.  The confusion matrix of different networks on the testing set. (a) Small DNN with the data 
augmentation and network pre-train; (b) Small DNN without the data augment; (c) Small DNN without the 
network pre-train; (d) Small DNN using the network transfer; (e) Small DNN without the pre-train but using 
the network transfer.
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the corresponding true herb categories are easily confused by others. We further realize that for most of these 
confused herb categories, there are not enough training samples, as the number of training samples ranges from 
10 to 90 across the dataset. Without augmentation, the limited number of training samples cannot well learn 
the discriminability between the true category and others, which results in the confusion. By using the data 
augmentation as in Fig. 6a, more training samples can be generated to incorporate the sample diversity, which 
can alleviate the confusion problem in some degree.

Network pre‑train. In this part, we validate the effectiveness of network pre-train in the network compres-
sion pipeline. Similar to the setup in image processing, the small DNN is adopted for evaluation and the top1/
top5 average accuracy will be reported. Table 1b shows the results of the small DNN with and without the net-
work pre-train. It can be clearly observed that training without the pre-train only gets the top1/top5 accuracy of 
46.51%/75.38% , while the small DNN with pre-train has achieved 68.89%/88.03% , which has obtained a huge 
improvement of 22%/13% respectively. This impressive increase implies that the network pre-train has played a 
vital role in training the DNN. As mentioned in the method part, the pre-train not only brings better recognition 
generality, but also improves training stability and speeds up the convergence with good initialization. We will 
give more insights based on these two points.

Figure5a,c show the change of training loss and top1 accuracy along the training process with and without 
the network pre-train, and we have two main observations. Firstly, the small DNN without pre-train (Fig. 5c) 
only gets the ending loss around 1.0, which is much higher than the one with pre-train (Fig. 5a) that is around 
0.05. Secondly, the loss without the pre-train decreases slowly within 30,000 iterations, while the small DNN 
with pre-train converges quickly around 10,000 iterations. When training a network, shallow layers can learn 
low-level representation such as lines, circles and  squares60. As going deeper into the network, we can learn mid-
level representation such as intricate patterns or combinations of low-level shapes. And finally, the deepest layers 
of the network can learn high-level representation that is specific for target object categories. With pre-training 
on a large-scale dataset such as  ImageNet51, the large number of categories and images can make the network 
learn rich image representation of different levels, wherein the low-level and mid-level representation can be 
general and transferred across different  tasks60. Due to this representation generality, the network can quickly 
adapt to the new task and re-learn only the high-level part efficiently. Combined with the stable initialization 
given by the supervised pre-training process, the pre-train can largely improve the training stability and speed 
up the convergence.

Figure6a,c also visualize the recognition ability by showing the confusion matrix of the small DNN with 
and without the network pre-train. It can be observed that there are many light-colored points in the matrix 
without the pre-train (Fig. 6c), especially at the upper-right region. Given the fact that the top1 accuracy without 
pre-train is only 46.51% , this observation indicates many categories are easily confused by others, which also 
explains that the color of the diagonal points is not as dark as the one with pre-train. Without the pre-training, 
due to the limited number of the categories and images in the small-scale herb image dataset, the representation 
of different levels cannot be fully learned, which will cause the large drop of the recognition ability and accuracy.

Network transfer. In this part, we validate the effectiveness of the network transfer in the network com-
pression pipeline. Table 1c shows the top1/top5 accuracy of the large DNN, small DNN and the small DNN 
with network transfer. The small DNN obtains the top1/top5 accuracy of 68.89%/88.03% , which is a little lower 
than the large DNN with 70.61%/88.97% , and this small gap is caused by the different learning capacity that is 
determined by the number of network parameters. However, by using the transfer, the small DNN can surpass 
the large DNN and achieve the top1 accuracy of 70.97% , which is very encouraging as the small DNN can beat 
the large DNN with a much smaller number of parameters. We further evaluate the influence of using no pre-
train in the transfer process, and there is a large drop on the top1/top5 accuracy, which only gets 55.55%/79.25% 
respectively. This implies that the pre-train cannot be simply replaced by network transfer. We will provide some 
insights into these results.

The result of the transferred small DNN beating the large one implies two facts. For the first fact, the large 
DNN may suffer from the over-fitting problem. Due to the large gap in the parameter number between the large 
DNN and the small one, we can make the small DNN approximate the large one, but hard to surpass it. Besides, 
it is unlikely that the large DNN has not been well trained with data augmentation, network pre-train and enough 
iterations, thus the most probable explanation is the over-fitting. Though pre-training on the ImageNet dataset 
can largely alleviate the problem, the difference on the amount of training data between the ImageNet and our 
task is quite huge (categories: 1000 vs 95, images: 1.2M vs 5.4k), thus the large DNN will suffer from some over-
fitting. For the second fact, the small DNN without the network transfer may be optimized to a local minimum. 
As the DNN is usually trained with a large number of training samples, it can only be optimized with stochastic 
optimization methods in a mini-batch way, but the method such as Stochastic Gradient Decent (SGD) generally 
converges to the local minimum. However, when transferring the stronger recognition ability from the large 
DNN, the transfer can be used as an auxiliary task to help the optimization go to a better direction to the global 
minimum. Combined with the over-fitting of the large DNN, the transferred small DNN may beat the large one.

Given the fact that the large DNN has been pre-trained, one may wonder if we transfer the recognition ability 
from the large DNN, is it necessary to pre-train the small DNN? The answer is still yes, and Fig. 5d,e give the 
comparison on the training loss and top1 accuracy. It can be clearly observed that without the network pre-train 
(Fig. 5e), the small DNN gets a much higher ending loss and a much lower accuracy, which indicates that the 
transfer step cannot make the small DNN learn the same recognition ability as the pre-train does. The main 
reason comes from the fact deep neural networks are tend to be vulnerable to random parameter initialization. 
Without the good starting point given by the supervised pre-training, it is difficult to learn the recognition 
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ability effectively and efficiently. Figure 6d,e also visualize this observation, and basically we observe the same 
phenomenon happens as in the pre-train part.

Network cut. In this part, we validate the effectiveness of the network cut, which will be evaluated from 
three aspects. Firstly, the cutting ratio α will be selected to achieve the best trade-off between accuracy and 
efficiency. Then, we will show the benefits of the network transfer in recovering the loss of recognition ability. 
Finally, we show the cutting step is important to obtain a powerful small DNN. Particularly, the ratio α is first 
evaluated in one split of the training and testing data, and then the best α is used for fivefold cross-validation in 
the latter two aspects.

Figure 7a shows the top1 accuracy of the small DNN with the cutting ratio increasing from 0.1 to 0.9. It 
can be observed that the accuracy drops a little by 0.8% and 1.5% at the ratio of 0.1 and 0.2 respectively, and it 
remains basically stable with the ratio increasing from 0.2 to 0.5, while the accuracy begins to drop after the 
ratio of 0.5. Consider the trade-off between accuracy and efficiency, we select α = 0.5 as the best ratio, which 
indicates that the small DNN is just half the size but with only a minor loss on accuracy. Figure 7b shows the 
change of top1 accuracy with the selected ratio of 0.5 applied on each layer in the small DNN, which contains 
17 layer blocks and will be cut in a top-down way from layer 17 to layer 1. We observe that there are some drops 
on the accuracy at the top layers such as 17/16/11, but with the network going down to the shallow layers, the 
accuracy gradually increases to the level that can be comparable to layer 16. One main reason is the top layers 
learn high-level representation that can be highly related to target categories, and cutting them will harm the 
recognition ability. While for the shallow layers, they learn more general and common low-level and mid-level 
representation that transferred from the pre-trained task, and removing some unimportant representation can 
make the shallow layers focus more on the target task. We use α = 0.5 throughout our evaluation to make the 
best trade-off between accuracy and efficiency.

Table 1d shows the influence of the network transfer and the after-cut re-training with transfer loss on the 
top1/top5 accuracy, wherein α is the cutting ratio and � is the transfer weight in Eq. (4). We have three main 
observations. Firstly, by using no network transfer as initialization (small DNN + cut), the cutting process with 
the re-training transfer loss ( � = 1 in Eq. (4)) achieves the top1/top5 accuracy of 69.44%/67.62% , which is 
about 1.8%/2.0% higher than the one without the transfer ( � = 0 in Eq. (4)). This indicates that the transfer can 
effectively recover the loss of recognition ability while cutting unimportant parameters. Secondly, by adopting 
the network transfer as initialization (small DNN + transfer + cut), the top1/top5 accuracy is stably higher than 
the one without the initialization (small DNN + cut), e.g. the improvement of top1 accuracy is about 0.5% for 
both setup ( � = 0/� = 1 ). Given the fact that the transferred small DNN has improved the top1/top5 accuracy 
by 1.9%/0/7% over the small DNN (Table 1c), it can provide better initialization to stabilize the cutting process. 
Finally, we see that the final compressed small DNN is very competitive (small DNN + transfer + cut ( α = 0.5 , 
� = 1)). Compared to the small DNN, we can still obtain 1% improvement on the top1 accuracy, but only with half 
the network size. Meanwhile, compared to the large DNN, though there is a minor loss about 0.6% on the top1 
accuracy, but we can achieve much higher efficiency with much less computation cost, which will be shown later.

Finally, we answer the question about instead of using the extra cutting step, why not using a small DNN 
that is small enough? To validate the importance of the network cut, we adopt the same network structure of 
the final compressed small DNN to construct a new network, which we call the new DNN. Based on the com-
pressed pipeline, we make the new DNN go through the network pre-train and network transfer, and then its 
top1/top5 accuracy is compared with the final compressed small DNN, as shown in Table 1e. It can be observed 
that the new DNN only achieves the top1/top5 accuracy of 62.66%/84.91% , which is much lower than the small 
DNN with 68.89%/88.03% , and this is reasonable as the new DNN has only half the parameters and has weaker 
recognition ability. However, when using the network transfer, the accuracy of the new DNN is still 3.3%/1.3% 
lower than the final compressed small DNN, which implies the network cut is important in preserving the rec-
ognition ability while cutting the parameters. Actually, in network transfer, the gap in the parameter number of 
the large and small DNN cannot be too large. As the new DNN only has limited learning ability, the large gap 
cannot guarantee the efficacy of the network transfer.

Figure 7.  The evaluation of the network cut on different cutting ratios and different cutting layers. (a) The top1 
accuracy on different cutting ratios; (b) The top1 accuracy on different cutting layers with the fixed ratio of 0.5.
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Network deployment. In this part, we evaluate the running efficiency of the final compressed DNN on 
smartphones. As we develop the app with android, three android phones are selected in the evaluation: HUA-
WEI Mate9 Pro, Xiaomi MI 9 and HUAWEI P30 Pro. Table 2 shows their detailed configuration based on CPU 
type, basic frequency, RAM size, android version and screen resolution. There are two main reasons why we 
select them. Firstly, they are common and typical, and all have been released for more than two years with a low 
price, which can be widely accepted by resource-limited dispensaries or hospitals. Secondly, they have different 
computation ability ranging from the low-level HUAWEI Mate9 Pro to the mid-level HUAWEI P30 Pro, where 
we can evaluate the efficacy and efficiency of the compression algorithm on different low-cost situations.

Table 2 shows the average running time (ms) and frames per second (fps) of the large DNN, the transferred 
small DNN (small DNN + transfer) and the final compressed small DNN (small DNN + transfer + cut) on 
the three smartphones, and we have two main observations. Firstly, from the viewpoint of different networks, 
the transferred small DNN can achieve the speedup of 2.6X−3.5X over the large DNN, and it also obtains a 
higher top1 accuracy. Meanwhile, the final compressed small DNN can further improve by 1.2X−1.7X over the 
transferred small DNN. Thus the final DNN has achieved the total speedup of 4X−5X over the large DNN, but 
with only a minor loss on the top1 accuracy, which demonstrates the network compression can largely reduce 
the computation cost for use in low-cost situations. Secondly, from the viewpoint of different devices, Mate9/
Mi9/Mate30 have achieved the final frequency of 13.4 fps/19.6 fps/21.0 fps respectively. We see that except for 
Mate9, the frequency of all the other two is around 20 fps , which is close to the realtime frequency of 24 fps . This 
near-realtime speed can guarantee the fluency of the app and good user experience, which can be beneficial to 
put forward the application worldwide. For Mate9, we see there is still some gap to the realtime speed, which 
indicates the challenge in the situations with extreme low computation cost, and we will make our effort to 
achieve the goal in our future study. Figure 8 shows some screenshots of the application interface on the above 
three phones with their true resolution ratio. We see the herbs can be correctly recognized in all the phones 
with a high confidence, which provides an effective tool to recognize herb categories and improve the quality 
control of the herbal medicine.

Large‑scale validation. To validate the effectiveness of the proposed network compression on a large-
scale dataset, we further evaluate on the ImageNet with 1000 categories and 1.2 million  images51. This dataset is 
used for general image classification task, thus it is highly related to our task. Different from the above setup in 
network selection, we choose the ResNet-5015 as the small DNN, as the capacity of MobileNet-V2 can no longer 
hold this large-scale case. Correspondingly, we change the large DNN to the powerful ResNeXt-10116.

Table 3 shows the top1 and top5 classification accuracy of the large and small DNN throughout the whole 
compression process, and we have three main observations. Firstly, in the network pre-train step, the small 
DNN only gets the top1/top5 accuracy of 75.3%/92.2% , while the large DNN obtains the top1/top5 accuracy of 
79.2%/94.3% . The accuracy gap between them is expected as the large DNN has a network depth of 101 layers 
and 2X parameters than the small DNN, thus its recognition ability is stronger. Then, in the network transfer 
step, we observe that the small DNN with network transfer has achieved encouraging results by being very 
competitive to the large DNN, i.e. the top1 accuracy difference is within 1%  ( 78.4% vs 79.2% ) and the top5 accu-
racy is even higher than the large DNN ( 94.5% vs 94.3% ). This result is similar to what we have observed in the 
small-scale herb image dataset, which indicates the network transfer can fully discover the potential of learning 
ability and also demonstrates the effectiveness and generality of the network transfer. Finally, in the network 
cut step, we show that by cutting 50% (α = 0.5 ) parameters of the small DNN, the compressed small DNN can 

Table 2.  The efficiency evaluation on three common smartphones with detailed configuration.

Smartphone HUAWEI Mate9 Pro Xiaomi MI 9 HUAWEI P30 Pro

CPU type Kirin 960 Qualcomm 855 Kirin 980 + NPU

Basic frequency 2.36 GHz 2.83 GHz 2.60 GHZ

RAM size 4 GB 8 GB 8 GB

Android version 9 9 10

Screen resolution 1080 x 1920 1080 x 2340 1080 x 2340

Large DNN

Average running time 342 ms 255 ms 187 ms

Frames per second 2.9 fps 3.9 fps 5.3 fps

Top1 accuracy 70.61 ± 1.00

Top5 accuracy 88.97 ± 0.41

Small DNN + transfer

Average running time 130 ms 73 ms 59 ms

Frames per second 7.7 fps 13.6 fps 16.7 fps

Top1 accuracy 70.97 ± 0.50

Top5 accuracy 88.72 ± 0.79

Small DNN + transfer + cut

Average running time 75 ms 51 ms 48 ms

Frames per second 13.4 fps 19.6 fps 21.0 fps

Top1 accuracy 69.98 ± 1.09

Top5 accuracy 87.71 ± 0.73
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still be competitive to the original small DNN, i.e. the top1 accuracy difference is 0.5% ( 74.8% vs 75.3% ) and the 
top5 accuracy is higher ( 92.4% vs 92.2% ). This result means a lot in the industry as with only half the network 
parameters, the compressed small DNN can achieve the comparable accuracy to the original small DNN, but 
runs much faster in efficiency with only half the network size in memory cost. The above results have validated 
the effectiveness of the proposed network compression method in the large-scale situation.

Discussion
In this part, we will discuss the possible future work of deep learning algorithms on herb image classification.

Neural architecture search. A network structure with efficient design plays a vital role in herb image 
classification in resource-limited settings. In light of this, we choose mobilenets as the small DNN because of the 
comparable accuracy and higher efficiency with fewer parameters. Though some efficient structures have shown 
promising  results33–37, there is still plenty of room for improvement, as most of them are manually designed. The 
Neural Architecture Search (NAS), which is a hot research topic in recent years, can automatically search for the 
best structure that fits the training task. By setting some targets such as comparable accuracy with fewer param-
eters and higher efficiency, NAS will search for the best design that can maximize the targets. Besides, NAS can 
contribute to the network compression. In the network cut step where a fixed cutting ratio has been used for all 
layers, NAS can search for the best cutting ratio in each layer to jointly give the best trade-off between accuracy 
and efficiency. There’s reason to believe that NAS is the future of herb image classification, as it can largely reduce 
human effort on network design and hyper-parameter tuning, especially in resource-limited settings with strict 
requirements on accuracy and efficiency.

Public dataset construction and automatic annotation. Public datasets have a place in creating new 
techniques all over the world. As in the case for the large-scale ImageNet  dataset51 (1000 categories, 1.2 million 
images), plenty of new methods have been proposed over the past 10 years since the ImageNet competition in 

Figure 8.  The screenshots of the application interface on three smartphones with their true resolution ratio. (a) 
HUAWEI Mate9 Pro; (b) Xiaomi MI 9; (c) HUAWEI P30 Pro.

Table 3.  Main results for evaluation on the ImageNet dataset.

DNN strategy Top1 acc (%) Top5 acc (%)

large DNN (ResNeXt-101) 79.2 94.3

small DNN (ResNet-50) 75.3 92.2

small DNN + transfer 78.4 94.5

small DNN + transfer + cut ( α = 0.5) 74.8 92.4
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2012. However, in herb image classification, there are mainly two datasets of small scale: one is the dataset used 
in this paper with 95 categories and 5600+  images24, and the other one is the unpublished dataset with 315 cat-
egories and 31,000+  images27. Therefore, it is necessary to establish a large-scale public dataset to promote the 
development of herb image classification. Another key problem is how to give annotations to all images when 
the dataset is ready. Different from the general object classification task wherein objects are easily classified, 
annotating herb categories needs professionals with expert knowledge and costs lots of time and efforts. Thus, 
it is also necessary to develop automatic annotation algorithms to reduce human efforts. Actually, we have been 
working on solving these two problems over the past several months, and we will release a large-scale dataset 
with automatic annotation in the near future.

Transfer learning and domain collaboration. In general image classification, pre-training on ImageNet 
has been successfully transferred to many down-stream tasks such as object  detection53, image  segmentation52 
and image retrieval. Similarly, once the large-scale herb image dataset is ready, pre-training on it can largely 
boost its down-stream tasks such as herb detection and herb segmentation, and some similar tasks such as plant 
image  classification25,28 and flower image classification will also benefit a lot. We believe various transfer learning 
methods will be proposed in the near future to extend the influence of herb image classification in the research 
community. Another related problem is how to jointly use the herb image data from different domains, namely, 
domain collaboration. For example, some herb images are taken in the laboratory with clean background and 
high-resolution, while other images are downloaded from Internet with cluttered background and low resolu-
tion. Due to the domain difference, directly combining them in training will affect the classification accuracy in 
each domain. Therefore, it is of significance to work out an effective domain collaboration method in order to 
maximize the data utilization of herb images.

Conclusion
In this paper, we present a deep learning-driven smartphone application for efficient and robust herb recognition. 
The App first takes and pre-processes an image of testing herbs with some data augmentation, then it runs the 
DNN computation based on the compressed DNN generated by the network compression algorithm, and finally 
it gives candidate herb categories. The whole procedure is performed entirely on a single common smartphone, 
which can serve perfectly for resource-limited situations.

The proposed network compression method shows promising performance. Firstly, with only half the param-
eter size of the original small DNN, the compressed small DNN has achieved the comparable accuracy, which 
is therefore considered satisfactory for usage in resource-limited settings. Secondly, we tested the efficiency on 
three common smartphones, and two of them can perform at the near-realtime speed, which demonstrates the 
efficacy of the network compression algorithm and indicates that the App can provide a great user experience 
with fast response and low power consumption.

To obtain a small DNN with high accuracy and efficiency, we have proposed a network compression algo-
rithm, which contains three main steps. Firstly, we pre-train the small DNN on a large-scale dataset to learn 
general representation and give stable initialization, which can achieve better generality and speed up the training. 
Then, to satisfy the accuracy requirement, the network transfer was applied to achieve the recognition ability 
transformation from the large DNN to the small one. Finally, we use the network cut to achieve the best trade-
off between efficiency and accuracy.

This study aims to encourage the implementation of herb recognition in resource-limited dispensaries, hospi-
tals and laboratories where expensive computation hardware cannot be supported. Firstly, instead of competing 
with large DNNs with powerful hardware, the App place more stress on high degree of automation, with low cost 
and high efficiency. Secondly, rather than compete with the manual herb recognition, through reducing require-
ments in chemical devices and expert resources, the App is designed to provide confident candidate decisions 
to assist the manual recognition. Finally, with the integration of herb recognition and a single smartphone, we 
hope this study can fill the digital gap between the public and herbal medicine so as to increase the accessibility 
of herbal medicine worldwide.

Data availability
The herb image dataset used in this paper is available on google drive with the shared link https:// drive. google. 
com/ drive/ folde rs/ 10BGJ YMcrS sboni lPVwk C8eBO Nss- TCw9? usp= shari ng.

Code availability
The network compression algorithm described in this paper is distributed as an open-source project at https:// 
github. com/ bucms unxin/ herb_ image_ compr ess. Meanwhile, we also release the mobile application on an open-
source repository at https:// github. com/ bucms unxin/ herb_ image_ recog nition_ app.
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