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Abstract: This work is a review of the experiments carried out in the Russian segment of the ISS
(inside and outside) from 2005 to 2016 on the effect of the space flight factor on the resting stages of
organisms. In outer space, ultraviolet, a wide range of high and low temperatures, cosmic radiation,
altered gravity, modified electromagnetic field, vacuum, factors of technical origin, ultrasound,
microwave radiation, etc. and their combination determine the damaging effect on living organisms.
At the same time, biological dormancy, known in a wide range of bacteria, fungi, animals and plants,
allows them to maintain the viability of their dormant stages in extreme conditions for a long time,
which possibly allows them to survive during space flight. From 2005 to 2016, the resting stages
(propagules) of micro- and multicellular organisms were tested on the ISS to assess their ability
to survive after prolonged exposure to the conditions of open space and space flight. Among the
more than 40 species studied, about a third were dormant stages of aquatic organisms (eggs of
cyprinodont fish, daphnia embryos, resting eggs of fairy shrimps, tadpole shrimps, copepods and
ostracods, diapausing larvae of dipterans, as well as resting cysts of algae). The experiments were
carried out within the framework of four research programs: (1) inside the ISS with a limited set of
investigated species (Akvarium program); (2) outside the station in outer space without exposure to
ultraviolet radiation (Biorisk program); (3) under modified space conditions simulating the surface of
Mars (Expose program); and (4) in an Earth-based laboratory where single-factor experiments were
carried out with neutron radiation, modified magnetic field, microwave radiation and ultrasound.
Fundamentally new data were obtained on the stability of the resting stages of aquatic organisms
exposed to the factors of the space environment, which modified the idea of the possibility of bringing
Earth life forms to other planets with spacecraft and astronauts. It also can be used for creating an
extraterrestrial artificial ecosystem and searching for extraterrestrial life.

Keywords: crustacean dormant stages; open space conditions; diapause; space flight factors; ISS;
interplanetary quarantine; astrobiology; hydrobiology; microgravity; cosmic radiation; ultraviolet
light; magnetic field; temperature effects; search for extraterrestrial life forms

1. Introduction

Investigations to advance the use of animal and plant anabiosis, e.g., cryptobiosis and
some other forms of dormancy, in space exploration highlight five notable programs on
exobiology. Biomedical support of humans in the absence of the factors important to the
sustenance and development of every living thing is one of the indisputable aspects of
space exploration [1].
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The development of life support systems (LSS), including systems incorporating the
biological cycle, has been pursued since the initial space flights of cosmonauts [2–6].

The implementation of the central ecological life support systems (CELSS) for space
crews requires prior all-around tests and studies in order to: determine the biological
impacts of the space flight factors on the life of individual organisms as well as communities
(populations and biocenoses); develop technologies for cultivating highly productive
populations of autotrophs and heterotrophs in a zero-gravity environment; design hardware
to sustain the vital functions of autotrophs and heterotrophs as members of the space crew
CELSS; search for methods to preserve the gene pool aboard the space vehicle and on
the planetary outposts; and optimize the CELSS with consideration for microgravity and
constant radiation exposure. The phenomenon of protracted biological resting can be
viewed as the alternative to transportation of the active ecosystem [7].

Persisting forms of life may be the cause for incidental colonization of planets by
terrestrial organisms and vice versa. This illustrates the problem of biological survival
in hostile environments on and beyond Earth. The quarantine measures to be developed
should establish a barrier to any illicit penetration of dormant life into the environment of
Earth or another planet.

To discover life in extraterrestrial ecosystems utterly different than our own, search
technologies may be required based on an intimate knowledge of cryptobiosis. A compar-
ison of the survival time of dormant organisms during cryptobiosis shows that cysts of
unicellular organisms (equally animals and plants, e.g., protozoa and microalgae, respec-
tively) that were first dried and then frozen in ice displayed an amazing ability to revive
after as long as many thousand years of dormancy [8].

This long maintenance of life provides evidence of the possibility of an interplanetary
transfer of cryptic forms of life on meteorites, dust, and the ice particulates of comets.

The work is a review of experiments carried out in the Russian segment of the ISS from
2005 to 2016, including several space experiments (Akvarium, Biorisk, Expose-R, Expose-
R2, Phobos-Grunt), which involved the resting stages of a large number of organisms from
bacteria to fish (Table 1).

Table 1. List of organisms that participated in Russian experiments on the ISS and conditions of
dormancy induction.

Taxon Akvarium Biorisk Expose-R Conditions of Dormancy Induction

A
ni

m
al

ia
,A

rt
hr

op
od

a

Daphnia magna Daphnia magna Daphnia magna
Natural conditions during the end of

spring: starvation and high temperature
(up to 40 ◦C)

Daphnia pulicaria Aquarium conditions: short day length,
starvation

Streptocephalus
torvicornis Streptocephalus torvicornis Streptocephalus torvicornis Same as in D. magna

Artemia salina Artemia salina High temperature, increasing salinity
from 50 to 200‰

Eucypris ornata Eucypris ornata Same as in D. magna

Triops cancriformis Stock culture, conditions of dormancy
unknown

Chirocephalus sp. Natural conditions: drying up during
summer time

Polypedilum vanderplanki Polypedilum vanderplanki Aquarium conditions: drying up in
summertime
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Table 1. Cont.

Taxon Akvarium Biorisk Expose-R Conditions of Dormancy Induction

A
ni

m
al

ia
,C

ho
rd

at
a

Nothobranchius guentheri Aquarium conditions: photoperiod 14:10,
permanent temperature 25 ◦C

Ba
ct

er
ia

,F
ir

m
ic

ut
es

Bacillus subtilis, B.
licheniformis

Bacillus subtilis, B.
licheniformis, B. pumilus Drying up at room temperature

Fu
ng

i,
A

sc
om

yc
ot

a

Penicillium expansum, P.
aurantiogresium,

Aspergillus versicolor, A.
sedowii

Penicillium expansum, P.
aurantiogresium,

Aspergillus versicolor, A.
sedowii

Drying up at room temperature

Pl
an

ta
e,

Tr
ac

he
op

hy
ta

Brassica rapa, B. juncea,
Arabidopsis thaliana,
Nicandra physalodes,

Lycopersicum esculentum,
Raphanus sativus,

Hordeum vulgare, Oryza
sativa

Arabidopsis thaliana,
Lycopersicum esculentum Drying up at room temperature

The combination of the various conditions in these experiments, from the conditions
on board a spacecraft to the conditions in open space, made it possible to assess the impact
of various elements of the so-called factor of space flight (SFF) (Table 2).

Table 2. Environmental conditions of experiments with dormant stages on the ISS.

On Board ISS Outside ISS

Program Akvarium Biorisk Expose-R (RusPart)

Exposure duration, days 30, 240 405–935 682

Temperature, ◦C +17 . . . +28 [9] −100 . . . +100 [9,10] −24 . . . +49 [11]

Gravity ~1 µg (microgravity)

Magnetic field, µT ~40 [12]

Exposure to UV-B and UV-C
radiation

absent, sample holder is
lightproof

absent, sample holder is
lightproof

present, 2687 h (100%
transmission λ > 170 nm)

[11,13]

Average dose of cosmic
radiation per day, µGy/day 180–360 [14] 320–408 [15,16] 323–381 [17,18]

This article, which is a review of the publication of a large number of participants in
these experiments, examines the comparative effects of the elements, studied both in space
and in terrestrial conditions.
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To unify the assessment of the impact of the factors, the cladoceran species Daphnia magna,
a very common water test organism in terrestrial experiments, was used.

The results obtained at resting stages of other aquatic organisms, such as brine shrimp,
streptocephalus and ostracods, generally did not contradict the results established for
Daphnia magna and, in many cases, supported them [19–21].

A general program for the study of biological dormancy was outlined in the beginning
of the century [1,22]; it included several directions:

- The study of the possibility of uncontrolled transfer of living organisms to other
planets (interplanetary quarantine);

- The maintenance of microbiological safety on space ships;
- The study of the possibility of searching for extraterrestrial life on other planets,

primarily on Mars;
- The creation and transportation of biological systems for recycling oxygen, water and

food in artificial extraterrestrial conditions.

To solve most of these issues, it turned out to be necessary to assess the impact of
space flight.

The important elements of the SFF on an open space that negatively affect living
organisms are:

Solar radiation, a large temperature difference from +100 to −100 ◦C, corpuscular
cosmic radiation and vacuum; on board: micro gravitation, modified magnetic field,
neutron radiation as a result of the passage of high-energy cosmic particles through the
ship, technical noise, ultrasound and microwave radiation. Acting separately as well as
together (synergistic effect), these elements of the SFF should have an impact, not only on
active organisms, but also on the viability of their dormant stages that are well prepared
for survival in the harsh conditions of the Earth.

In this review, the authors give an outline of each program and quantitatively evaluate
the role of each of the elements of the space flight factor in order to expand the understand-
ing of the stability of life in the adverse conditions of space and to use this data for the
exploration of other planets and the search for extraterrestrial life.

It should be said that the highly protective properties in the dormant stages of or-
ganisms against the effects of negative elements of the SFF are fundamentally different
from the mechanisms and possibilities for overcoming these negative effects in the active
stages of organisms, both aquatic and terrestrial. The increased viability of the diapausing
stages of invertebrates and fish is based on a reduced level of the general metabolism of
the organism and its related functions such as respiration, feeding, movement, etc., which
are reduced to zero in the stages most deeply immersed in biological dormancy. This
determined the possibility of long-term (up to 2 years in the conducted experiments) main-
tenance of the viability of these stages in the atmosphere-deprived Biorisk and Expose-R
modules on the outside of the ISS. The second important adaptation of these stages, which
determined their increased resistance to significant temperature fluctuations outside the
ISS as well as to the damaging effects of neutron radiation and the high-energy part of the
solar radiation spectrum, is their almost complete dehydration and replacement of water in
cells with protective antifreeze substances (trehalose, etc.). Finally, most of the organisms
used in these experiments were embryos that stopped developing at the early stages of
development (usually gastrula); these non-specialized cells have an increased resistance
to negative influences in comparison with tissue cells, and the embryos themselves are
enclosed in multilayer membranes that increase their protection from external mechanical,
chemical and energy (ultraviolet) influences. Previous studies of the effects of the space
flight factor were carried out on organisms of a wide evolutionary range from bacteria
to humans but always in an active state (e.g., [23–26]). The level of adaptive capabilities
of active organisms is not comparable with the resting stages, and the mechanisms of
adaptation to the SFF are radically different for them. This determined the necessity of their
separate study and consideration in the form of independent scientific directions [1,27].
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2. Experiments Inside the Spacecraft in ISS Orbit

The experiments of the Akvarium program (Figure 1) involved dry resting stages of
two crustacean species. They were uniformly glued on special plates in one layer and
placed in hermetically sealed plastic bags. On Earth, the control samples were stored
in stable temperature conditions of two types: (1) in the dark at +4 ◦C and at room
temperature (from +20 to +22 ◦C) and (2) in permanent light at room temperature (from +20
to +22 ◦C). The first option is considered optimal for storage, while the second repeated the
temperature and light conditions on the ISS. After exposure on the ISS for 1 and 8 months,
the experimental samples and control were delivered to the laboratory of the Max Planck
Institute of Limnology, Ploen, Germany, where, under strictly controlled conditions, the
following parameters were determined: percentage of reactivation, resistance to fungal
diseases, dry weight of newborns, life cycle parameters (duration; maturation; number
of eggs in the first, second and third clutches; as well as length and dry weight of the
female after laying the first clutch of eggs). In the second generation, the sex ratio and the
size and number of newborns in the offspring exposed on the ISS, as well as the control
samples, were assessed [28,29]. A comparison of the experimental and control organisms
that emerged from the resting eggs revealed a decrease in a number of indicators in the
individuals exposed in space. Differences in the percentage of reactivation, the timing of
reaching maturity, and the number of eggs in the first clutch were statistically significant.
In the second generation, the individuals exposed on the ISS reacted to this with a sharp
increase in the number of males (30–78% of offspring in third clutch), which was not
observed in the control. The most informative indicator of viability, the reproducibility
of which did not depend on food conditions, was the percentage of reactivation, which
was used in all further experiments. Long-term exposure (2–4 months) showed a gradual
decrease in viability (the percentage of resting stage reactivation) (Figure 2). It is significant
that a similar decrease was recorded in other species of aquatic invertebrates used in space
experiments, in particular Streptocephalus torvicornis [29].

A difference was also noted in the reactivation character and the value of the average
weight of the individuals emerging from the resting eggs (Figures 2 and 3). During
reactivation after exposure in space, two rises were noted: the first one in the beginning
was more significant, and the second one was on the 9th day, after some decline. At the
same time, in both control series, only one maximum was noted, falling at the beginning
of reactivation, after which there was a gradual decrease. The reactivation of the exposed
individuals ended much earlier. In the control individuals, the reactivation began earlier
due to the appearance of individuals smaller in dry weight. Among those exposed on
the ISS, the first ascent was provided by larger embryos. During the period of reduced
reactivation, the smallest individuals appeared, and the second slight rise was also provided
by the individuals with the highest dry weight (see Figure 3).



Life 2022, 12, 47 6 of 19

Life 2022, 12, x FOR PEER REVIEW 5 of 18 
 

 

conditions, the following parameters were determined: percentage of reactivation, re-
sistance to fungal diseases, dry weight of newborns, life cycle parameters (duration; 
maturation; number of eggs in the first, second and third clutches; as well as length and 
dry weight of the female after laying the first clutch of eggs). In the second generation, 
the sex ratio and the size and number of newborns in the offspring exposed on the ISS, as 
well as the control samples, were assessed [28,29]. A comparison of the experimental and 
control organisms that emerged from the resting eggs revealed a decrease in a number of 
indicators in the individuals exposed in space. Differences in the percentage of reactiva-
tion, the timing of reaching maturity, and the number of eggs in the first clutch were sta-
tistically significant. In the second generation, the individuals exposed on the ISS reacted 
to this with a sharp increase in the number of males (30–78% of offspring in third clutch), 
which was not observed in the control. The most informative indicator of viability, the 
reproducibility of which did not depend on food conditions, was the percentage of reac-
tivation, which was used in all further experiments. Long-term exposure (2–4 months) 
showed a gradual decrease in viability (the percentage of resting stage reactivation) 
(Figure 2). It is significant that a similar decrease was recorded in other species of aquatic 
invertebrates used in space experiments, in particular Streptocephalus torvicornis [29]. 

 
Figure 1. Akvarium program. Shows: experimental organisms; the artificial pond for growing 
daphnia, where the material was taken from; cardboard blocks with resting embryos, placed in 

Figure 1. Akvarium program. Shows: experimental organisms; the artificial pond for growing
daphnia, where the material was taken from; cardboard blocks with resting embryos, placed in sealed
plastic bags; the sample holder is located next to the “Plants” block; cultivation of daphnia at the Max
Planck Institute of Limnology (Ploen, Germany).
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In general, the number of the reactivated individuals in the experiment was signifi-
cantly lower than in the control after a month’s exposure on the ISS: 39.6% in the ISS and
51.8% in the control, t-test, p = 0.035 [27]. As the duration of exposure in space increased,
this difference also increased. Apparently, D. magna embryos on the ISS were exposed to a
negative factor or a set of factors related to space flight, which suppressed their viability
(a kind of stress caused by space flight); therefore, the weakest embryos with the lowest
weight could not hatch first, and their place in the ISS group was taken by the large new-
borns, who may have also had a suppressed, but still sufficient, vital ability to hatch from
their shells. This is confirmed by the experiments assessing the resistance of the control and
experimental embryos to the parasitic fungus Pythium daphnidarum conducted by Petersen
in 1910. The control individuals showed a noticeably greater resistance (in 1.43 times) to in-
fection by the parasitic fungus than the individuals exposed to the ISS [27]. The significance
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of individual negative elements of the space flight factor that were encountered inside the
spacecraft was investigated in the one-factor ground experiments discussed below.

The international program Phobos-Grunt, being predominantly geological (she had
to bring a 1 m core from the surface of Phobos) [30], included a biological program to
test for the survival of dormant stages of aquatic and terrestrial organisms, including
Daphnia magna, for a long (about 2 years) exposure inside a spacecraft in open space
conditions, unsoftened by the presence of Earth’s magnetic field. The returned part of
Phobos-Grunt was supposed to deliver to Earth two sealed titanium containers that traveled
to Mars’ orbit and back [31]. The container contained dry dormant stages of 50 species of
organisms, including cyanobacteria, primitive fungi, diapausing eggs of daphnia, copepods,
fairy shrimps, tadpole shrimps, ostracods, dipteran larvae, cysts of unicellular green
algae and seeds of vascular plants. Unfortunately, for technical reasons, this interesting
project was not implemented, and the Phobos-Grunt station, without breaking away from
Earth’s orbit, ultimately sank in the Pacific Ocean. However, the orbital control of this
interplanetary expedition became the Biorisk program [31,32], and all organisms that were
part of the main expedition were exhibited on the outer surface of the ISS for 31 months. The
results of this experiment confirmed the possibility of the long-term survival of dormant
stages in open space [27]. The Russian space agency does not exclude the possibility of
repeating the Phobos-Grunt program in the near future, including a biological sub-program
on dormant stages.

3. Experiments Outside of the Spacecraft in Space

The Biorisk and Expose programs became, in fact, the predecessor of the Phobos-
Grunt program for the survival of dormant stages of organisms in outer space. The Biorisk
program was carried out in order to implement interplanetary quarantine to prevent the
introduction of terrestrial life forms to other planets and back by unmanned and manned
spacecraft [10,22]. The research kit is shown in Figure 4. Organisms, from bacteria to
Cyprinodontiformes fish eggs, were placed in plastic containers with ventilation openings
closed with bacterial membrane filters with pore sizes of 0.5 µm. Spores of bacteria and
molds were applied to metal plates made of materials similar to those used to construct
the shells of spacecraft. Plant seeds as well as the dormant stage of lower crustaceans and
insects, were placed into cotton bags and then into plastic Petri dishes.

On 16 February 2007, the test objects were placed in three containers of Biorisk equip-
ment, and the number and composition of the species in all containers were the same.
The Biorisk device was attached to the outside of the Russian segment of the ISS by cos-
monauts on 6 June 2007. The containers were to be returned to Earth at intervals of 6
months; however, due to a change in the plan for extravehicular activities, the first con-
tainer was removed on 15 July 2008, i.e., in 13 months, not six as planned. It was returned
to Earth on 24 October 2008 and was soon taken for research in laboratories in Moscow
and St. Petersburg [33]. The second container was removed after 18 months of exposure,
on 23 December 2008 and arrived at the ground laboratory on 9 April 2009. The third
container was removed after 31 months on 14 January 2010.

The resting stages of brine shrimp showed the greatest survival in open space; however,
the resting embryos of Daphnia magna were also able to survive the 13-month exposure
under the conditions of multiple temperature changes from +100 to −100 ◦C in a vacuum
and were exposed to the direct effect of electromagnetic and cosmic radiation as well as
magnetic solar storms [10,22].

The Daphnia embryos that survived in such extreme conditions showed three types of
damage, and only about 25% of the individuals were able to reproduce offspring capable of
reproduction under Earth’s conditions.



Life 2022, 12, 47 9 of 19

Life 2022, 12, x FOR PEER REVIEW 8 of 18 
 

 

to Earth on 24 October 2008 and was soon taken for research in laboratories in Moscow 
and St. Petersburg [33]. The second container was removed after 18 months of exposure, 
on 23 December 2008 and arrived at the ground laboratory on 9 April 2009. The third 
container was removed after 31 months on 14 January 2010. 

 
Figure 4. Biorisk program. Shows: experimental organisms; appearance of Biorisk containers; a 
Petri dish with biological samples before placing them in the container; location of the experimental 
module on the Pirs module of the ISS Russian Segment. 

The resting stages of brine shrimp showed the greatest survival in open space; 
however, the resting embryos of Daphnia magna were also able to survive the 13-month 
exposure under the conditions of multiple temperature changes from +100 to −100 °C in a 

Figure 4. Biorisk program. Shows: experimental organisms; appearance of Biorisk containers; a
Petri dish with biological samples before placing them in the container; location of the experimental
module on the Pirs module of the ISS Russian Segment.

The rest of the reactivated embryos in approximately equal proportions showed a
violation of the life cycle (from the death of newborns to females reaching definitive sizes
with an impossibility of laying eggs). The offspring obtained from those who successfully
survived a long exposure in open space came from individuals with different dates of
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the onset of reactivation. They were studied by biochemical methods in order to identify
intrapopulation polymorphism at protein loci [34]. It turned out that the individuals
emerging from the eggs at the beginning and at the end of the reactivation period not only
differed in body weight (the former were larger), but also belonged to different clones,
obviously different in sensitivity to the stress factors of the space environment. Among
those highly sensitive to cosmic stress, another group of clones with an increased level of the
laying of resting eggs has emerged, under the same conditions as the rest, which can also be
interpreted as an increased stress response, similar to the previously found increased male
production upon the onboard exposure of eggs of this species. This result was confirmed in
ground-based experiments with the effect of weak radiation on the production of Daphnia
magna ephippia [35].

The resting stages of some species could not survive the long stay in outer space,
which, in our opinion, was due to:

1. A high water content in some of the non-surviving species. This was indicated by
the absence of reactivation in six variants of the non-dried Chirocerpalus sp. At the
same time, among the dehydrated embryos of an ecologically closely related species,
Streptocephalus torvicornis, reactivation ranged from 14 to 42% of the control;

2. Different depths of diapause. In species of the genus Daphnia, deep winter dia-
pause is caused by a combination of the following factors: high population density,
short day (12 h of light phase), poor nutritional conditions and the accumulation
of bioinformation in the chain of generations through maternal transmission [36].
The clone of Daphnia pulicaria used in our experiment had weak superficial summer
diapause induced by the only factor—deterioration of trophic conditions—and, as a
result, all embryos died in the experimental groups. The reactivation of resting eggs
in daphnia after their exposure in space was achieved only in embryos with deep
(winter) diapause;

3. The tropical origin of species. Diapause of drying up Cyprinodontiformes fish eggs
in nature lasts no more than 6–7 months to freezing. This apparently explains their
complete mortality both in the experiment and control after 13 months. In a 6-month
experiment, only fish embryos from the control group were reactivated and success-
fully developed. Since the experiment at the ISS planned for 6 months but lasted
13 months, and therefore was not delivered to Earth on time, it turned out to be im-
possible to separate the negative effects of the low temperatures and the long duration
of exposure in space on the fish eggs’ survival [22].

Soon after the Biorisk program the European Space Agency (ESA) developed a more
advanced multifunctional Expose device for testing the degradation of biological materials
(amino acids) and spores of primitive organisms (bacteria and fungi) in space (inside mete-
orites) and under conditions on the surface of Mars [37]. Unlike the equipment of the Biorisk
program, the Expose module was able to record or, in some cases, even regulate various
environmental parameters: solar radiation, cosmic radiation and temperature [37,38].

The first module this series, Expose-E, was prepared for delivery to the ISS by the US
National Aeronautics and Space Administration (NASA), launched on 7 February 2008,
and returned to Earth on 12 September 2009. By this time, thanks to the Biorisk experiment,
the high resistance of the resting stages of multicellular organisms to the conditions of open
space had already become known. The next Expose-R project was developed by ESA in
collaboration with Roscosmos and delivered to the ISS as a part of the Russian cargo in
the Proton transport complex and placed outside the ISS on the Russian Zvezda module
(Figure 5) [19].
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The main differences between the investigated space conditions in the Expose program
and Biorisk program are the softening of the temperature range and, at the same time, the
possibility of assessing the impact of ultraviolet radiation of varying intensity.

Along with a set of biological objects prepared by ESA, Expose-R contained a Russian
block with seeds of higher plants and dormant stages of several aquatic invertebrate species
that survived in the Biorisk space experiments [19,20], including Daphnia magna.

All these objects were placed into small plastic bags in display wells in three layers
separated from outer space by light filters of different permeability, which partly reduced
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the ultraviolet effect on the upper layer. In the Russian block of the experiment, the
reduction in UV radiation by a quartz window was minimal [11,20].

After more than 1.5 years in outer space, the spores of microorganisms and fungi, seeds
of two plant species (Arabidopsis thaliana and tomato Lycopersicum esculentum) and resting crus-
tacean eggs (Artemia franciscana, Eucypris ornata, Daphnia magna and Streptocephalus torvicornis)
were examined for viability and some parameters of the life cycle. Almost all of these
organisms, both the aquatic and terrestrial species), located in the first layer of the samples
in the Expose experiment, died, which was obviously due to exposure to solar radiation,
since the background radiation was similar to Biorisk, and the temperature conditions
controlled by the device were much milder. In the second layer, and especially in the third
and last one, some of the organisms retained their viability [19,39]. Among the aquatic
organisms, the greatest resistance, as in the experiments with Biorisk, was shown by the
resting stages of Artemia, which is protected by several membranes and deep cryptobiosis.

The resting eggs of two crustacean species (A. franciscana and E. ornata) showed an
increase in the percentage of surviving (reactivated) embryos with an increase in the dis-
tance from the first layer, which coincided with a weakening of ultraviolet radiation in
this direction [27]. The resting eggs of two other species of aquatic crustaceans (D. magna
and S. torvicornis) were much worse preserved even in the lower layers. A few of the
surviving D. magna showed varying degrees of damage to the embryos, from death imme-
diately after hatching to females attaining sexual maturity with an established inability to
produce offspring.

Even the bacterial and fungal spores in the surface layer that were exposed to direct
ultraviolet radiation died [37]. At the same time, in the third layer, where the exposure to
the ultraviolet radiation was significantly reduced, the fungal spores showed very high
survival rates (up to 100% compared with the control samples) [19]. Such a high survival
was never found in the Biorisk experiments, where some species of fungi completely
died, and the survival rate of the species that survived an 18-month flight did not exceed
0.5% [40]. In the Expose-R experiment, individual fungal spores were able to survive
even in the upper layer in those species whose spores were more densely located and
provided some protection from ultraviolet radiation, and, in the lower layers, survival was
comparable to the control [19].

This shows, in our opinion, the role of the temperature factor and substrate in reducing
the viability of the resting stages of these species, since in the Biorisk experiment the
temperature fluctuated in the range from +100 to −100 ◦C with fungi spores being on a
metal plate, and in Expose-R they were between +49 and −24 ◦C in polymer bags on quartz
disks [19,40]. The softening of the temperature amplitude in the Expose-R experiment
was almost threefold and did not go beyond the fluctuations of this factor observed under
terrestrial conditions.

The experiment showed that not only bacterial and fungal spores, but also the dormant
stages of multicellular organisms, such as plants and crustaceans, are able to withstand
prolonged exposure to the factors of open space, including direct solar radiation, when
provided minimal protection from UV radiation (e.g., cosmic dust or when in the shadow
of the structural elements of vehicles or the depressions of meteorites of a complex shape).

To overcome the excessive negative (often fatal) effect of solar radiation on living
organisms, the design of the Expose-R2 module was changed, with windows provided
for the creation of various lower levels of ultraviolet irradiation of the required spectrum.
The resting stages of two aquatic invertebrates (mosquito larvae Polypedilum vanderplanki
and tadpole shrimp Triops cancriformis) were involved in Expose-R2, and no experiments
were carried out with Daphnia magna ephippia. The results of these studies cannot be
discussed as they have not yet been published. The Expose program ended in 2016. Theye
are currently working on a new module called “Exobiology”, which should expand the
possibilities of data collection “on the spot” [41].
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4. Ground Experiments

The factor of space flight (SFF) inside the spacecraft, as it was accepted, consists of
a number of environmental elements that negatively affect biological objects [42]. These
include: microgravity, modified gas composition (for example, increased proportion of
ethylene), cosmic and induced neutron radiation, modified magnetic field, radio and
microwave radiation of working devices and mechanisms, mechanical noise and vibration,
including ultrasound. The strength of the impact of the described SFF elements is quite
different. Hereafter, we discuss the most significant of them, studied mainly using the
example of the resting stages of Daphnia magna.

4.1. Microgravity

An important difference between the conditions of experiments in space, which is
difficult to reproduce in terrestrial conditions, is the effect of microgravity, which always
imposes a restriction on the study of the individual elements of the SFF in terrestrial
laboratories. Nevertheless, aquatic organisms live on Earth also practically in zero gravity
due to the high density of water. This also applies to the development of embryos of
crustaceans and other organisms, which takes place in the fluid inside the egg. Even so,
experiments with altered gravity did not reveal any noticeable deviations in the life cycle
of the studied organisms [43]. These results, as well as an analysis of the living conditions
of organisms in the aquatic environment, allowed us to conduct laboratory studies of other
elements of the SFF in Earth’s conditions and to take into account the minimal effect of
microgravity on the resting stages of aquatic organisms in space flight. This conclusion
should not be opposed to the results obtained for terrestrial organisms, in which the absence
of weight turns out to be one of the most important elements of the factor of space flight,
causing a weakening of the musculoskeletal system in animals, redistribution of moisture
in the tissues of living organisms and changing the formation of the root system in higher
plants [44].

4.2. Gas Composition Inside of Vehicle

The gas composition inside the ship can also be excluded as insignificant due to the
impermeability of the sample package and the almost complete absence of metabolism in
most dormant stages, including Daphnia magna [45].

4.3. Cosmic Radiation

It is rather difficult to recreate cosmic (corpuscular) radiation in ground-based ex-
periments. This requires the acceleration of elementary particles in synchrophasotrons to
speeds close to the speed of light. Nonetheless, the density of such particles in space is
relatively low, and, while passing through the spaceship, they collide with the molecules of
gases and objects located there, causing the appearance of a certain amount of neutrons
(secondary radiation), which mainly affects biological objects [46].

To recreate a radiation environment similar to that on board the ISS in ground-based
experiments, a neutron radiation source of equivalent power (about 200 µGy) was used,
which is approximately twice the maximum value of the natural background radiation on
the Earth’s surface. The resting stages of Daphnia magna were exposed under these condi-
tions for two weeks [1,28]. The embryo reactivation lasted for a month and was divided into
two stages (Figure 6). During the first stage, the reactivation of the neutron-treated ephippia
was close to that of the ISS group (the first two weeks), but it was significantly lower than
in the control. After 2 weeks, the reactivation of the second group of ephippia began, which
had postponed hatching. The summarizing of the results of the first and second groups, in
terms of the total number of reactivated individuals, did not differ statistically from the
control. In the experiments on the ISS, two periods of the release of Daphnia magna from the
embryos were also noted: at the beginning of reactivation and some time after it. These
were separated by a period of noticeable decline, but this period of decline was significantly
shorter than the interval between the first and second peaks in the ground experiments.
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The control samples did not show such a decrease either in the space experiment or in the
ground one.
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It seems that exposure to radiation as a stress signal caused a noticeable delay in
the reactivation in one part of the Daphnia population. Subsequent studies of these two
parts of the Daphnia population showed that they belong to different clones, as mentioned
above [34].

Despite a clear delay in the reactivation of ephippia D. magna by the second clone,
the total number of survivors after this exposure did not differ from the control, and the
negative effect on the reactivation/viability should be assessed as low. Based on these
results, the negative impact of cosmic radiation of such intensity has been exaggerated,
and damage to biological objects during a long flight, for example to Mars and back, may
not be critical for their health. Nevertheless, the cumulative and, possibly, synergistic
(with other weak elements of SFF) impacts of space radiation on biological objects require
further study.

4.4. Modified Magnetic Field

To assess the impact of a modified Earth’s magnetic field during space flight, in the
experimental setup of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and
Radiowave Propagation of the Russian Academy of Sciences (IZMIRAN), the resting stages
of D. magna were exposed for 15 days in three experimental variants and in control: 1—no
magnetic field; 2—a doubled Earth’s magnetic field; 3—a modified electromagnetic field
simulating the operation of electrical devices of the ISS. The resting stages of D. magna
in the natural magnetic field ofEarth served as a control. The experiments were carried
out in June 2008, at an exposure temperature of 20–22 ◦C with the natural light conditions
of a given latitude of the area (58 N) at this time (14–28 June, maximum day length) [27].
Each of the variants was performed in triplicate, including at least 70 D. magna embryos in
each, selected from the same sample that was used in the experiments on the ISS. After the
end of the exposure, the resting D. magna eggs were reactivated and compared with the
control. A statistical analysis did not reveal differences in the rate of reactivation and the
proportion of genetically modified individuals among of all these variants and the control.
A more detailed analysis of the effect of the magnetic field on other elements of the life



Life 2022, 12, 47 15 of 19

cycle on another clone of D. magna was carried out by Krylov [47]. He investigated the
most important parameters of the life cycle of D. magna concerning daphnia growth and
reproduction in a modified magnetic field of Earth or electromagnetic fields of variated
frequency and power, namely: attainable definitive sizes of females, number of eggs
produced (clutch size), size of newborn juveniles and age of the female at the time of
formation of the first clutch. There were also no statistically significant differences in any of
these parameters in all of the magnetic field variants studied.

In experiments with other organisms (roach), where, along with a modified magnetic
field, the light conditions also changed, some significant differences were found: an increase
in the length of the larva after hatching and some teratogenic changes during mitosis. These
changes occurred primarily when the light conditions were modulated; however, when
the factor of the modified magnetic field was added to them, the effect increased. At
the same time, a modified magnetic field alone did not have a noticeable effect on these
parameters [48].

This makes it possible to classify the modified magnetic field as a very weak ef-
fect, which, nevertheless, can lead to synergistic influence and modify the effect of other
stronger factors.

4.5. Ultrasound and Microwave

The noise (vibration), radio waves and high-frequency radiation associated with the
operation of the mechanisms and electrical devices of the ISS should also be attributed to
the possible factors, the perception of which is not impeded onboard the spacecraft by the
isolation of the resting stages of organisms in plastic bags.

From the above list, the effect on D. magna reactivation was studied in two of the
most significant elements of the SFF: microwave and ultrasound. Within the limits of the
parameters for these indicators, allowable by most federal safety standards (1–5 mW/cm2),
no significant effect from both of the parameters acting separately or together on the
reactivation of D. magna was found [27].

Other researchers evaluating the effect of non-ionizing radiation exposure with a low
intensity found some contradictory results associated with fluctuations in the daphnia’s
fecundity (an increase and then decrease) and change in sensitivity to toxicants (it could
increase or decrease depending on the active toxic agent) [49,50].

In general, even a prolonged (up to 45 min) exposure to weak microwave fields that
do not go beyond the values permissible, in terms of sanitary and hygienic conditions,
should be attributed to the absent or weak effects with an assumed ability for synergy in
the formation of the general factor of space flight. However, it is difficult to quantify the
impact or even its direction at the moment. Nevertheless, going beyond the permissible
values can be harmful to the biological objects inside the ship.

5. Conclusions

Studies of the individual elements of the space flight factor that manifested themselves
during intra-cabin transportation of the resting stages did not reveal a significant effect of
each of the elements, considered separately, on the reactivation of embryos.

The most significant was the effect of neutron radiation, which during the experiments
did not affect the survival of the embryos, but undoubtedly was accepted by them, which
led to a strong extension of the total reactivation period and a difference in the rate of
hatching comparing with the control group. It should be noted that the ground-based
experiment with exposure to neutron radiation lasted 14 days only, while the shortest
experiment in orbit, which revealed significant differences between the exposed and control
groups (14% ± 3.2), lasted a month. After 8 months of exposure in space, the difference
between the experimental and control groups increased, and the decrease in the percentage
of reactivation in different species was from 30 to 70% (on average 50% ± 13.8) compared
with control group.
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Considering that low doses of radiation on biological objects has a cumulative effect,
it can be assumed that a monthly stay in orbit (twice as long as the ground experiment)
already led to a significant difference in the degree of survival of the resting embryos and
became the basis for the further decrease in the survival rate of organisms.

Another possible explanation for the growing difference in the survival of the dormant
stages with prolonged exposure on the ISS may be the synergistic effect of the action of
the other weak elements of the SFF, which, when acting together, increases the effect of
the most powerful one. This possibility was established when studying the combined
effect of the changed magnetic field and light conditions on the viability of roach larvae
(Rutilus rutilus) [48]. In general, the synergistic effect of the weak elements of the SFF
undoubtedly requires further study.

An important consequence of the experiments inside the ISS was the proven possibility
of delivering the dormant stages of an artificial ecosystem to other planets in a viable
state, which will take up to 8 months or even longer. Despite a noticeable increase in the
mortality percentage, the organisms obtained from the surviving embryos had the ability
to successfully reproduce and increase the population size.

The experiments on the outer surface of the ISS revealed that the most powerful factor
in reducing the survival of the resting stages of various organisms was solar radiation,
which was capable of destroying up to 100% of the spores of bacteria and fungi, as well
as the most resistant multicellular organisms. However, with minimal protection from
direct exposure to ultraviolet radiation, the chance for survival of these organisms in open
space increases significantly even in the conditions of a vacuum and a two-hundred-degree
temperature range. This increases the need to follow interplanetary quarantine when
visiting other planets, both in inhabited and unmanned vehicles.

Alternatively, these results allow us to make some predictions about the search for
possible extraterrestrial life on other planets and asteroids.

The highest chances of survival on celestial bodies (Mars, Mercury and asteroids)
actively irradiated by the Sun will be in places protected from direct exposure to ultravi-
olet radiation—areas with permanent shade, caves, depressions in the surface layer and
subsurface ecosystems. A necessary condition for such specific ecosystems is also at least
a periodic possibility of the existence of water in the liquid phase to maintain the active
period of the development of such organisms.
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