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It is well-known that human gut microbiota form an ecosystem where
microbes interact with each other. Due to complex underlying interactions,
some microbes may correlate nonlinearly. There are no measures in the

microbiome literature we know of that quantify these nonlinear relationships.
Here, we develop a methodology called Sparse Estimation of Correlations
among Microbiomes (SECOM) for estimating linear and nonlinear relation-
ships among microbes while maintaining the sparsity. SECOM accounts for
both sample and taxon-specific biases in its model. Its statistical properties are
evaluated analytically and by comprehensive simulation studies. We test
SECOM in two real data sets, namely, forehead and palm microbiome data
from college-age adults, and Norwegian infant gut microbiome data. Given

that forehead and palm are related to skin, as desired, SECOM discovers each
genus to be highly correlated between the two sites, but that is not the case
with any of the competing methods. It is well-known that infant gut evolves as
the child grows. Using SECOM, for the first time in the literature, we char-
acterize temporal changes in correlations among bacterial families during a

baby’s first year after birth.

In any given ecosystem, such as microbial ecology in the gut, members
maintain complex interactions among themselves for the growth and
stability of the ecological community. Some bacteria display mutual-
ism where they help or benefit from each other, commensalism where
one benefits while the others are not affected, parasitism or mutual
exclusion where one may benefit at the expense of another’. One needs
to understand perturbations or changes in the interactions among
microbiota within and between ecosystem(s) because they can
potentially impact various health outcomes, such as obesity?, inflam-
matory bowel diseases®, HIV*, and so on. To make such assessments,
there is an urgent need for statistical and computational methods to
characterize interactions among microbiota.

Although there exists considerable literature on methods for
performing differential abundance analysis and analysis of diversity>®,
methods for describing interactions among microbiota are not as well
developed. As the first step to characterize interactions, one typically is

interested in describing the correlation coefficient between a pair of
microbes.

16S ribosomal RNA (rRNA) and other high-throughput sequencing
techniques enable the profiling of microbial communities, revealing
the abundances and phylogeny of microbial populations across
diverse ecosystems. The observed counts of taxa are constrained by an
arbitrary sequencing depth (library size), which is due to a fixed upper
bound on the number of reads per sequencing instrument. Thus, the
observed counts are an unknown fraction of the underlying true
abundance of taxa in a unit volume of the ecosystem®’ such as 1g
biomass of the gut. Consequently, they are relative quantities and
hence compositional data’ ™, It is well-recognized in the literature that
due to the compositionality of the observed microbiome data, stan-
dard methods such as Pearson or Spearman correlation coefficient for
these data are theoretically invalid and result in misinterpretation of
the data®*". The effect of compositionality on these methods is
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particularly pronounced when the number of taxa is small, such as
microbiome data evaluated at the phylum level, and when the micro-
bial diversity is small**. Additionally, sequencing efficiencies are not
necessarily the same for each taxon, which leads to a taxon-specific
bias when some taxa are preferentially measured over others during
the sequencing experimental workflow'. A concrete example of this
bias can be seen by the differential sequencing efficiencies between
gram-negative and gram-positive bacteria. Gram-positive bacteria
have strong cell walls, which makes them harder to extract than gram-

negative bacteria in the data preparation step. Thus, gram-positive
bacteria may be underrepresented in the observed abundances. We
illustrate the problems of using standard concepts of correlation
coefficients with the help of a toy example shown in Fig. 1. A total of
100 taxa were generated from a log-normal distribution. For simplicity
of visualization, scatter plots of log abundances corresponding to 5
taxa are shown in the figure. Data were generated so that the under-
lying true log abundances for taxa T1 and T3 are perfectly linearly
correlated, whereas taxa T2 and T4 are parabolic in their relationship,
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Fig. 1| A toy example showing the differences between correlation methods. All
scatter plots and correlations provided in the figure are based on log abundances.
a A total of 100 taxa were generated, where the true abundances in the ecosystem
were generated using log-normal distributions. Taxa T1and T3 are perfectly linearly
correlated on a log scale, and taxa T2 and T4 are quadratically related. The
remaining taxa are uncorrelated. Only the first 5 taxa (T1 to T5) are provided for the
simplicity of exposition. Pairwise scatter plots of log abundances are provided in
the lower triangle of the matrix. b Observed abundances were generated by
incorporating sample-specific sampling fractions and taxon-specific sequencing

efficiencies to the true abundances. Pairwise scatter plots of log abundances are
provided in the lower triangle of the matrix. c-e Pairwise correlation coefficients
using different methods. ¢ The standard Pearson correlation coefficient (two-
sided p value < 0.005, based on t-distribution, not corrected for multiple com-
parisons), d SparCC (estimate > 0.3), and e SECOM using distance correlation
measure (two-sided p value < 0.005, based on the permutation test**, not corrected
for multiple comparisons). The correlation coefficient ranges from -1 to 1, color-
coded by blue to red, correspondingly.
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and the remaining pairs are uncorrelated (Fig. 1a). These correlations
are completely distorted in the observed counts (Fig. 1b) due to dif-
ferential sampling fractions®” (across samples) and differ-
ential sequencing efficiencies (across taxa). Without properly
addressing these two sources of biases results in erroneously large
standard Pearson correlation coefficients with significant p values
(Fig. 1c). Due to variations in sampling fractions and sequencing effi-
ciencies, the distribution of p values based on standard Pearson cor-
relation coefficient is far from a uniform distribution, represented by
the diagonal line (Supplementary Fig. 1).

A second challenge is that the next-generation sequencing (NGS)
technologies yield high-dimensional data, where the number of
microbiota d often far exceeds the sample size n. Consequently, the
estimated correlation matrix of the microbiota is singular (positive
semi-definite matrix)'’ unless a condition of sparsity is imposed on the
population correlation matrix. In simple terms, sparsity means that
many pairwise correlations are zero. Thus, compositionality aside, due
to the high dimensionality, the sample Pearson correlation matrix
results in a biased and inconsistent estimator of the correlation
matrix?. A host of approaches are available to estimate the covariance
matrices in high dimensions”*. However, since the observed high-
dimensional microbiome data contain a large number of zeros and are
compositional, the problem of estimating the correlation matrices in
the present setting is challenging. It is well-known that microbiome
abundance tables may contain as many as 90% zero entries®*°, there-
fore it is reasonable to assume that most taxa are not correlated or
weakly correlated with each other. Thus, the sparsity assumption is
reasonable in the present context.

Thirdly, since microbiota have complex inter-dependencies,
some relationships may be nonlinear. Consider, for example, the
relationship between Ruminococcaceae and Enterobacteriaceae of 4-
month-old infants (Supplementary Fig. 2). The data were obtained
from the Norwegian Microbiome study (NoMIC)*"*2, While the linear
fit seems reasonable (adjusted R? = 0.53), a fourth-degree polynomial
appears to fit the data better (adjusted R*=0.84). In more complex
settings, nonlinear relationships among taxa are ubiquitous®. The
Pearson correlation coefficient is designed for quantifying linear
relationships and not for quantifying nonlinear relationships. Recent
methods such as Sparse Correlations for Compositional data
(SparCC)*, proportionality”, and Sparse Inverse Covariance Esti-
mation for Ecological Association Inference (SPIEC-EASI)* were also
developed for quantifying linear relationships and may not be sui-
table for nonlinear relationships. For instance, the SparCC correla-
tion between T2 and T4 in Fig. 1a is zero (Fig. 1d), suggesting no
linear relationship. Researchers often misconstrue that two taxa are
independent if the Pearson correlation coefficient between them is
zero, which is not correct.

To quantify nonlinear correlations between a pair of variables,
Szekely et al.** introduced the concept of distance correlation for the
Euclidean space data. The difference between distance correlation and
Pearson correlation coefficient is illustrated in Supplementary Fig. 3.
Both measures provided a value of 1 when x and y are perfectly linearly
correlated. However, when y = (x=5)%, the Pearson correlation coeffi-
cient is 0, whereas the distance correlation coefficient is ~0.5. It is
important to note that a value of zero distance correlation implies
statistical independence between two variables, whereas a zero Pear-
son or SparCC correlation coefficient only implies a lack of linear
relationship.

In this work, we introduce a methodology called Sparse Estima-
tion of Correlations among Microbiomes (SECOM), which provides
two measures of correlations between a pair of taxa, one for linear
relationships and the other for nonlinear relationships using the con-
cept of distance correlations. As can be seen in Fig. 1e, SECOM is useful
for quantifying linear as well as nonlinear relationships. In the Methods
section of this paper, we provide guidance on how to use these

measures when describing dependencies between a pair of taxa. The
proposed methodology is statistically rigorous and accounts for
compositionality and differential sequencing efficiencies by correcting
for the library-specific sampling fraction®” and taxon-specific sequen-
cing efficiency®*. The resulting observed counts are called “bias-
corrected” counts, which refines the ANCOM-BC model®’. Further-
more, as can be seen from the p value distribution provided in Sup-
plementary Fig. 1, unlike the standard Pearson correlation coefficient,
SECOM does not suffer from inflated false correlations between taxa.
Lastly, as demonstrated in the Results section of the paper, except
SECOM, none of the existing methods, such as SparCC are suitable for
correlating data from multiple ecosystems. The performance of
SECOM is evaluated using a variety of simulation studies. In addition to
results based on synthetic data, SECOM is illustrated using “forehead”
and “palm” microbiome data obtained in Flores et al. ¥ and the infant
gut microbiome data from the Norwegian Microbiome study
(NoMIC)**%, The statistical details are provided in the Methods section,
and theoretical proofs are deferred to the Supplementary Methods.

Results

Performance of SECOM using simulated data

Using simulated data, in this section we compare the performance of
SECOM with some existing methods, namely, proportionality®,
SparCC", SPIEC-EASI* using either the neighborhood selection (the
MB method) or covariance selection (the glasso method), and stan-
dard Pearson correlation coefficient. For estimating linear correla-
tions, SECOM uses the Pearson correlation coefficient after correcting
for sample and taxon-specific biases. The thresholding approach
for dealing with sparsity is denoted as “SECOM (Pearsonl)”, and the
p value filtering approach, i.e., correlations with p values exceeding a
pre-specified cutoff a will be set to Os, is denoted as “SECOM (Pear-
son2)”. For estimating nonlinear correlations (which includes linear
correlation as a special case), SECOM uses the distance correlation
measure with p value filtering approach to deal with sparsity (denote it
as “SECOM (Distance)”). Discussions on how to choose a correlation
measure and an approach for sparsity are provided in the Methods
section. All details regarding the simulation study design are provided
in the Supplementary Methods.

We begin by comparing CPU run times of various methods for
computing correlation matrices using a simulated data set consisting
of 200 taxa and 100 samples. All comparisons are made using RStudio
with 1 CPU, x86_64-apple-darwinl7.0 (64-bit), and macOS Big Sur/
Monterey 10.16. Results are summarized in Supplementary Table 1. On
average, SPIEC-EASI methods took nearly a hundred times more CPU
time than other approaches, while SECOM (using the Pearson corre-
lation measure in this benchmark) was competitive with other com-
positional methods, such as SparCC and Proportionality.

Next, we compare the performance of SECOM with other meth-
ods for estimating the correlation matrix. As a measure of accuracy, we
use the following average relative norm loss as the criterion for eval-
uating the performance of a method:

D 0
Il R™ I+

We use the two commonlgl used matrix norms ||||-, namely, Fro-
benius norm (|| A||F:(Z,~L,a§-)1/ ) and spectral norm (|| Al|, =Apmax(A),
which is the largest singular value of A). The smaller the average rela-
tive norm loss, the more accurate the method is for estimating the
correlation matrix. Additionally, we also evaluated the performance of
various methods in their ability to discover true nonzero correlations,
defined as the true positive rate (TPR), and falsely declaring nonzero
correlations when the correlations are truly zero, defined as the false
positive rate (FPR). Thus, the estimated TPR and FPR are as defined

Nature Communications | (2022)13:4946



Article

https://doi.org/10.1038/s41467-022-32243-x

a Relative Norm Loss

b FPR/TPR

Frobenius

;i —JJ:_]

FPR

L

Spectral

154 4

10+

5- —:| . m
04

(1=50,d=100,.=05)  (1=50,d=100,.=2)  (n=100,d=200,..=05) (n=100,d=200,..=2)

SECOM (Pearsont) SECOM (Distance) SparCC
SECOM (Pearson2) Proportionality SPIEC-EASI (MB)

Fig. 2 | Comparisons of estimation accuracy and false/true positive rate (FPR/
TPR) for identifying linear relationships within an ecosystem. The average

relative norm loss (Frobenius/Spectral) and FPR/TPR of various correlation meth-
ods are shown in a, b, respectively. Synthetic data were generated from negative-
binomial (NB) distributions. The X-axis denotes the simulation settings, which are a
combination of sample size n, number of taxa d, and the dispersion parameter a.
Results are represented by the average of the corresponding measures (Frobenius/
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Spectral norm loss, or FPR/TPR) + standard errors (shown as error bars) across
100 simulation runs for each n/d/a setting. Data points are added to the bar charts
using dots with jittering. Color and the name of the corresponding correlation
methods are shown at the bottom of the graph. The results demonstrate that
SECOM and SPIEC-EASI outperformed all existing methods not only in terms of
estimation accuracy but also in terms of uniformly small FPR and comparable TPR.
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Simulation studies are based on three different scenarios, namely,
(1) an ecosystem where some taxa are linearly correlated and the rest
uncorrelated, (2) an ecosystem where some taxa are nonlinearly cor-
related and the rest are uncorrelated, and (3) two ecosystems where
some taxa are linearly correlated between ecosystems and the rest are
uncorrelated both within and between ecosystems. Since the standard
Pearson correlation coefficient performed uniformly much worse than
other methods, we decided to not include it in the figures provided in
the main text simply for the sake of visualization. We provided the full
comparisons, including the standard Pearson correlation coefficient in
the corresponding supplementary figures.

Linear correlations. Figure 2 summarizes the results using different
approaches to estimate the correlation matrix under different sample
size/taxon number/dispersion combinations (n/d/a). As expected,
under both norms, all compositional methods had uniformly smaller
average relative norm loss than the standard Pearson correlation
coefficient (Supplementary Fig. 4a). For example, with 100 samples,
200 taxa, and the dispersion parameter equals to 0.5, the standard
Pearson correlation coefficient had approximately nine times higher
average loss under both norms in comparison to SECOM (Frobenius: 9
vs. 1; Spectral: 45 vs. 5). SparCC had the second largest average loss
especially when there is greater variability in the underlying true

abundances (overdispersion parameter a =2, Fig. 2a). SECOM meth-
ods, regardless of correlation measures and approaches for sparsity,
together with the proportionality method and both SPIEC-EASI meth-
ods outperformed other methods in terms of average loss (Fig. 2a). In
addition to the estimation accuracy, SECOM and SPIEC-EASI also per-
formed well in identifying true nonzero correlations (Fig. 2b). They not
only outperformed other methods substantially in controlling FPR, but
they competed well in terms of TPR. However, as mentioned above,
SPIEC-EASI is substantially more computationally intensive than
SECOM. Under this simulation setting (100 iterations for each n/d/a
combination), SPIEC-EASI required a CPU time of 76.15h in compar-
ison to 1.2 CPU hours for SECOM. Both SparCC and the standard
Pearson correlation coefficient achieved high TPR in this simulation
study but were subject to very high FPR as compared to SECOM and
SPIEC-EASI. Note that the FPR of standard Pearson correlation can be
as large as 80% (Supplementary Fig. 4b), which could make most
estimates meaningless and even misleading. Although the pro-
portionality method performed well in terms of FPR, it had very small
TPR when there are larger variations in taxa abundance. For example,
when the underlying true dispersion parameter increased to 2, the TPR
of the proportionality method dramatically reduced to almost 0. It is
also worth noting that for a fixed dispersion parameter, as the sample
size n and the number of taxa d increased, there is an increase in TPR
together with a decrease in FPR for SECOM methods. This is consistent
with the concentration results described in Theorem 1. Additionally, as
seen in Fig. 2b, SECOM (Pearsonl) has generally smaller TPR as well as
smaller FPR than the p value filtering methods (SECOM (Pearson2) and
SECOM (Distance)).

Nonlinear correlations. We compared the performance of various
methods in identifying and quantifying nonlinear relationships using
simulations. The settings were similar to the simulation study
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Fig. 3 | Comparisons of false/true positive rate (FPR/TPR) for identifying non-
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errors (shown as error bars) across 100 simulation runs for each n/d/a setting. Data
points are added to the bar charts using dots with jittering. Color and the name of the
corresponding correlation methods are shown at the bottom of the graph. Results
showed that only SECOM controlled the FPR while maintaining high TPR. Other than
SECOM, none of the existing methods identify nonlinear relationships.

conducted for linear correlations, except that each taxon was quad-
ratically correlated with its adjacent taxon among the first 50 taxa.
Since, with the exception of SECOM, none of the methods are designed
to measure nonlinear relationships, we only compared these methods
in their ability to identify true nonzero correlations. For estimating
nonlinear correlations, SECOM implements the p value filtering
approach for sparsity but not the data-driven thresholding approach
because it involves splitting data into training and test sets, which
requires a much larger sample size when quantifying nonlinear rela-
tionships. The sparsity strategies for SparCC and the proportionality
method and the tuning parameters for SPIEC-EASI used in this simu-
lation set-up are the same as those used in the linear case mentioned
earlier. As expected, all competing methods, except the standard
Pearson correlation coefficient, resulted in zero correlations for non-
linear relationships (Fig. 3 and Supplementary Fig. 5) with TPR = 0.
Although the standard Pearson correlation coefficient achieved a TPR
= 50%, its FPR was sometimes even higher, leading to spurious corre-
lations (Supplementary Fig. 5). On the other hand, SECOM (Distance)
successfully achieved an almost perfect TPR (100%), and also had
substantially smaller FPR than existing methods. Note that the linear
correlation methods SECOM (Pearsonl) and SECOM (Pearson2) had
smaller FPR than all other linear correlation methods.

Concordance between SECOM (Pearson2) and SECOM (Distance)
for linear and nonlinear relationships. Since a linear relationship is a
special case of a nonlinear relationship, hence theoretically, whenever
SECOM (Pearson2) is nonzero, we would expect SECOM (Distance) to
be nonzero. Similarly, whenever SECOM (Distance) is zero, we would
expect SECOM (Pearson2) to be zero as well. We performed a simu-
lation study to evaluate the concordance between SECOM (Pearson2)
and SECOM (Distance). For brevity, we summarize the results for
n=50,d=100, and a = 0.5 when 25 pairs of taxa are linearly correlated
(or nonlinearly correlated) while the rest of 4925 pairs are

uncorrelated. Results are averaged over 100 simulation runs. As can be
seen from Supplementary Table 2, in the linear case, there is a very
high concordance between SECOM (Pearson2) and SECOM (Distance)
and very little disagreement. On average, both SECOM (Pearson2) and
SECOM (Distance) identified 28 pairs of taxa to be correlated, which
consisted of 25 true positives (TPs) and 3 false positives (FPs). On the
other hand, both methods uniquely identified four correlated pairs,
which were FPs. This suggests that when the relationships are linear,
SECOM (Distance) can be as effective as SECOM (Pearson2) in esti-
mating the correlation coefficient, although SECOM (Pearson2) can
provide the direction of a relationship. In the nonlinear case, reported
in Supplementary Table 3, we notice that around 26 pairs (23 TPs and 3
FPS) on average, were uniquely identified by SECOM (Distance) as
correlated, while only four pairs were uniquely declared correlated by
SECOM (Pearson2) but not by SECOM (Distance), and were spurious
correlations. There were only two pairs of taxa on average that were
found to be correlated by both methods. Thus, as expected, when the
data are nonlinearly related, SECOM (Distance) appears to quantify the
nonlinear relationship better than SECOM (Pearson2). These results
are consistent with the results summarized in Fig. 3. See also Remark 3.
To eliminate the effect of differences due to the sparsity approach
from this concordance analysis, we did not include SECOM (Pearsonl)
but were limited to SECOM (Pearson2) and SECOM (Distance),
although we do not expect major differences from these results.

Multiple ecosystems. Correlating taxa abundance in two or more
body sites or correlating at two different time points within a site is a
common problem of interest. Since the sampling fractions are not
expected to be the same across ecosystems, by simple algebra, it can
be shown that the correlation coefficient estimates derived from the
SparCC methodology can potentially be biased. Consequently, accu-
rate estimates of correlation coefficients may not be derived using
SparCC. This phenomenon holds true for other methods such as
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fractions and sequencing efficiencies in each simulation run. Results are repre-
sented by the average of the corresponding measure (Frobenius/Spectral norm
loss, or FPR/TPR) + standard errors (shown as error bars) across 100 simulation
runs for each n/d/a setting. Data points are added to the bar charts using dots with
jittering. Color and the name of the corresponding correlation methods are shown
at the bottom of the graph. Results demonstrate that SECOM methods are the only
methods to successfully quantify microbial correlations between ecosystems.

proportionality as well as SPIEC-EASI. However, SECOM does not suffer
from this problem because the method is applied to bias-corrected
count data. This is amplified in the simulation study described in this
section, and the “forehead” and “palm” data analyzed in the Illustration
section provided below. A simulation study was conducted by gen-
erating count tables from two ecosystems with different sampling
fractions and sequencing efficiencies in each simulation run. The first
50 taxa in the first ecosystem were linearly correlated with the corre-
sponding taxa in the second ecosystem. The rest of the taxa are
uncorrelated within and between ecosystems. Details of the study
design are provided in the Supplementary Methods. As seen in Fig. 4
and Supplementary Fig. 6, SECOM methods outperformed all com-
petitors in terms of both estimation accuracy (the smallest average
relative Frobenius/Spectral norm loss) and FPR/TPR (the smallest FPR
and the highest TPR). In general, SECOM (Pearsonl) had the most
precise correlation estimate, the smallest FPR, and TPR comparable to
SECOM (Pearson2) and SECOM (Distance). SECOM methods achieved
almost perfect TPR (-100%), with SECOM (Distance) being the best. On
the contrary, standard Pearson correlation coefficient, and the existing
compositional techniques, either suffered from loss of TPR or inflated
FPR, making them unsuitable for detecting microbial inter-
relationships across ecosystems.

In summary, SECOM performed consistently well regardless of
whether the relationships are linear or nonlinear. The thresholding
version of SECOM is entirely data-driven and is theoretically proved to
be a consistent estimator of the true correlation matrix in the Frobe-
nius norm (Theorem 3 in the Methods section). However, since the
thresholding approach requires splitting data into training and test
sets, it generally needs a larger sample size, especially when it comes to
the detection of nonlinear relationships. On the other hand, the fil-
tering version of SECOM screens the estimates of correlation coeffi-
cients if the p value exceeds a pre-specified value. The filtering

approach requires a smaller sample size than the thresholding
approach as there is no data splitting step. Note that the p value fil-
tering should be viewed as an approach to achieve sparsity rather than
formal hypothesis testing. For simplicity of exposition, we only show
the filtering approach in the following Illustration sections, while the
thresholding approach gave similar results as p value filtering when
detecting linear relationships (data not shown).

Illustration: Two ecosystems—forehead and palm micro-
biome data

Since both forehead and palm are skin based, it is intuitive to expect
the two sites to share some common microbes that are highly cor-
related. We evaluated various methods in their ability to identify
genera that are correlated using the data obtained in Flores et al. ¥ on
89 subjects. For illustration purpose, we limit our analysis to the data
obtained at the first visit (baseline), and we restricted it to those who
did not use antibiotics. The demographic information regarding the
samples is summarized in Supplementary Table 4. We selected the
top five most abundant genera that are common between forehead
and palm for illustration. As seen in Fig. 5a, according to SECOM, the
same genera from the two sites are highly correlated. Furthermore,
correlations within the site appear to be unchanged whether one
computes correlations using the concatenated data from the two
sites (Fig. 5a) or computes correlations using individual data from the
two sites (Fig. 5b, c). However, this is not the case with other methods,
as seen in Supplementary Figs. 7, 8, and 9. Firstly, to our surprise,
according to these methods, none of the genera are correlated
between the two skin sites, namely, the forehead and palm. Further-
more, the proportionality method (Supplementary Fig. 7) and SPIEC-
EASI (using the MB method, Supplementary Fig. 9) found all generato
be uncorrelated (or nearly uncorrelated in the case of SPIEC-EASI)
even within each site. The correlation coefficient estimates obtained
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Fig. 5 | Correlations between forehead and palm genera®” using SECOM.

a Correlation matrices calculated by concatenating forehead and palm data,

b Correlation matrices calculated using the forehead data alone, ¢ The correlation
matrices calculated using the palm data alone. The correlation measures (Pearson
and Distance) are represented by columns. The top five most abundant genera were

selected for visualization purposes. Genera from the forehead are colored in green
and genera from the palm are colored in brown in the x and y axes. Blue dashed
lines in a are used to separate genera between forehead and palm. The correlation
coefficient ranges from -1 to 1, color-coded by blue to red, respectively.

by SparCC within each site changed when one computes correlations
using the concatenated data from the two sites (Supplementary
Fig. 8a) compared to estimates using individual data from the two
sites (Supplementary Fig. 8b, c). Note that the correlation estimates
based on SECOM (Pearson2) and SECOM (Distance) are very similar
whenever SECOM (Pearson2) # 0, which is not surprising in view of
Remark 3 in the Methods section and the results in Supplementary
Table 2 described above.

Illustration: Norwegian infant gut microbiome data

We illustrate SECOM using the data obtained from the Norwegian
Microbiome (NoMIC)**? study, where stool samples were obtained
from infants at days 30, 120, and 365 after birth. In this illustration, we
restricted to children who were vaginally delivered with no perinatal
antibiotics exposure and exclusively breastfed during the first four
months of life. We chose to study the correlations at 30, 120, and
365 days, with 46, 44, and 34 sequenced samples, respectively, as this
represents a period where the environment changes dramatically due
to changes in diet (breastfeeding, mixed, solid foods), external con-
tacts and activities and in which much of the programming of the

immune system takes place®®*. We analyzed data at the family level
(prevalences provided in Supplementary Table 5).

Bar graphs of temporal changes in the bias-corrected counts and
relative abundances of the top ten prominent families and phyla are
provided in Fig. 6 and Supplementary Fig. 10, respectively. Consistent
with the literature on the gut microbiome of breastfed infants, during
the first 30 days, we found a greater relative abundance of the phylum
Actinobacteria, specifically the family Bifidobacteriaceae (55%), along
with families of Firmicutes, such as Clostridiaceae (10%), Lachnospir-
aceae (1%), Ruminococcaceae (9%), and opportunistic Staphylococca-
ceae (1%). Since these babies were born vaginally, we also see some
Bacteroidaceae (6%) during the first 30 days. Pro-inflammatory bac-
terial families Enterobacteriaceae (9%) and Pasteurellaceae (2%), in the
phylum Proteobacteria are also present at this age. As the baby’s
environment changes, in particular the transition from breastmilk to
other foods, we observe, as expected, that the relative abundance of
Bifidobacteriaceae, which is promoted by oligosaccharides in breast-
milk, temporally decreases towards the end of the first year (55, 35, 5%
at days 30, 120, and 365, respectively). We also notice changes in the
relative abundance of Clostridiaceae (10, 30, 3% at days 30, 120, and
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Fig. 6 | Temporal patterns of bias-corrected abundance and relative abun-
dances for Norwegian infant gut microbiome data among families. The x-axis
represents days (30, 120, and 365 days) and the y-axis denotes either the bias-
corrected (a) abundances or b relative abundances. The top ten most abundant

taxa up to 365 days were selected for the visualization purpose. Families with
prevalence across samples <10% were not shown separately and grouped into
“Others”. Different taxa were coded by different colors, as shown on the legends.

365, respectively). The relative abundance of Enterobacteriaceae was
constant throughout the first year (9, 9, 6% on days 30, 120, and 365,
respectively). As babies begin to crawl, touch various objects, and are
in contact with other people or the environment, we expect new
families to appear. In line with this, we see the arrival of Moraxellaceae
(1%) in the gut at Day 365 and numerous other families which are
grouped as “Others” (68%).

To the best of our knowledge, this is the first paper to char-
acterize correlations among different families of bacteria during the
first year of development of a baby. The SECOM (Pearson2) and
SECOM (Distance) correlations among the top ten prevalent famil-
ies are summarized in Fig. 7. During the first 30 days of birth, we see
significant negative linear correlations between Enterobacteriaceae
and Bifidobacteriaceae (SECOM (Pearson2)=-0.44, SECOM (Dis-
tance) = 0.44) and between Enterobacteriaceae and Bacteroidaceae
(SECOM (Pearson2) =-0.61, SECOM (Distance) =0.61). We hypo-
thesized that inter-relationships among the gut microbiota change
with time as new microbes arrive. In line with this, we discovered
strong negative linear relationships between the pathogenic family
Enterobacteriaceae and several important commensal families such
as Lachnospiraceae (SECOM (Pearson2)=-0.89, SECOM (Dis-
tance)=0.92) and Clostridiaceae (SECOM (Pearson2)=-0.75,
SECOM (Distance) = 0.73) at day 120. We also saw negative linear

correlation between Bifidobacteriaceae and Clostridiaceae (SECOM
(Pearson2) =-0.49, SECOM (Distance) = 0) at day 120. By Day 365, as
expected, many new families start colonizing the gut and develop-
ing complex interactions among them. On Day 365, as the (bias-
corrected) abundance of phylum Actinobacteria decreases (Sup-
plementary Fig. 10), in particular, due to the decrease in the abun-
dance of Bifidobacteriaceae, Lachnospiraceae increases (Fig. 6a) and
the two families are linearly negatively correlated with SECOM
(Pearson2) =-0.45 (SECOM (Distance) = 0.5). Lachnospiraceae con-
tinues being negatively correlated with Enterobacteriaceae (SECOM
(Pearson2)=-0.37, SECOM (Distance) =0.42), and with opportu-
nistic family Staphylococcaceae (SECOM (Pearson2)=-0.74,
SECOM (Distance) = 0.78). Lachnospiraceae is also nonlinearly cor-
related with another important gut microbiota Ruminococcaceae,
with SECOM (Distance) =0.42. Similar to Lachnospiraceae, the
Ruminococcaceae family is also negatively correlated with Enter-
obacteriaceae (SECOM (Pearson2)=-0.42, SECOM (Distance) =
0.45) and Staphylococcaceae (SECOM (Pearson2) =-0.56, SECOM
(Distance) = 0.62). Not surprisingly, Ruminococcaceae family is
positively linearly correlated with Bacteroidaceae with SECOM
(Pearson2) =0.34 (SECOM (Distance) =0.37). We see a nonlinear
relationship between Ruminococcaceae and Bifidobacteriaceae with
SECOM (Distance) =0.36. We also find a nonlinear relationship
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Fig. 7| Temporal patterns of correlations for Norwegian infant gut microbiome
data among families. The correlation measures (Pearson and Distance) are
represented by rows. Families from days 30, 120, and 365 are colored in green,
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separate families between different time points. The top ten most abundant
families up to 365 days were selected for the visualization purpose. Families with
prevalence across samples <10% were discarded. The correlation coefficient ranges
from -1 to 1, color-coded by blue to red, respectively.
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between Bifidobacteriaceae and the opportunistic family Staphylo-
coccaceae with SECOM (Distance) = 0.56. A nonlinear relationship
was seen between Bacteroidaceae and Pasteurellaceae with SECOM
(Distance) = 0.56. A positive correlation between Enterobacter-
iaceae and Clostridiaceae of 0.36 was seen (SECOM (Distance) =
0.39). Thus, in most cases, we notice that the distance and Pearson
correlation coefficients seem to track each other. However, there
are instances where the relationships appear to be nonlinear with
zero Pearson correlations. In addition to the intra-time correlations
described above, we also computed pairwise inter-time or temporal
correlations among days 30, 120, and 365. When it comes to pair-
wise temporal correlations, there are two sources of sparsity,
namely, sparsity within time points and sparsity across time points,
because samples were not available on every infant at all three time
points. Secondly, as noted in Flores et al. *’, the temporal variability
in measurements within a subject can be substantially large that it
can overwhelm correlations between pairs of taxa over time. Thus,
unlike correlations within a time point, we expect more diffused
correlations across time points. Interestingly, despite these chal-
lenges, the SECOM methodology identified several pairs of taxa to
be correlated across time points (Fig. 7). These correlations gen-
erate interesting hypotheses to investigate in the future.

In summary, we find that from 4 months of age, as the baby begins
to ingest more complex foods, Lachnospiraceae and Ruminococcaceae
interact with several families. These two families play an important role
in degrading complex polysaccharides to short-chain fatty acids such
as acetic, butyric, and propionic acid, which have numerous bio-
chemical functions®’. Thus, it is not surprising that during the growth
and development of a baby during its first year, these families interact
with many other families of bacteria to achieve a balance in the gut
ecology. Not surprisingly, during the early days of gut colonization
(Day 30 and Day 120), important families that promote infants’ health,
such as Bifidobacteriaceae, Bacteroidiceae, Lachnospiraceae, and Clos-
tridiaceae, are all negatively correlated with Enterobacteriaceae, a
family of bacteria that contains many familiar pathogens, such as
Salmonella, Shigella, and Escherichia coli.

For comparison purposes, we also implemented SparCC on the
above NoMIC data due to its popularity for computing correlations
among microbiota. The results using SparCC are summarized in
Supplementary Fig. 11. According to SparCC, none of the families
are correlated with each other on days 30 and 120. Whereas SECOM
discovered some biologically plausible correlations. On day 365,
SparCC uniquely identified a nonzero correlation coefficient
between Moraxellaceae and Bifidobacteriaceae; however, the cor-
relation coefficient of —0.3 is at the margin of its threshold value of
0.3. On the other hand, SECOM identified correlations between 8
pairs of families that were not identified by SparCC. Note that, as in
the “forehead” and “palm” example above, the correlation estimates
based on SECOM (Pearson2) and SECOM (Distance) are very similar
whenever SECOM (Pearson2) # 0. In contrast to SECOM, very few
taxa were discovered to be temporally correlated by SparCC, This
finding is consistent with the findings in forehead and palm data as
well as the simulations.

Discussion
Estimation of correlations among microbes has several statistical
challenges such as compositionality, excess of zeros, complex
dependencies, high dimensionality, and sparsity. Under suitable
assumptions, the SECOM methodology addresses these challenges.
SECOM (Pearsonl) and SECOM (Pearson2) are designed for estimating
linear correlation coefficients, whereas SECOM (Distance) is designed
for estimating nonlinear correlation coefficients.

In the case of linear relationships, we discovered that SECOM
methods outperform SparCC by having higher accuracy (smaller
relative loss), smaller FPR while being comparable in TPR. The

proportionality method had the smallest TPR in some cases and high
FPR as well. Although SPIEC-EASI methods perform as well as SECOM
in the above criteria, computationally, on average, they can be 100
times slower than SECOM. When it comes to nonlinear relationships, as
expected, none of the methods competed well with SECOM (Distance)
in terms of all criteria mentioned above.

Excess zeros in the data present a challenge for all correlation
methods described in this paper. From our simulations, we see that for
rare taxa with a large proportion of zeros (e.g., 90%), it may be better to
perform a complete case analysis (CCA) rather than imputing zeros by
adding pseudo-counts. Pseudo-counts can potentially either inflate or
deflate correlation coefficients substantially (Supplementary Fig. 12).
We see better results using CCA. If the proportion of zeros is small,
then the SECOM model framework can be used for imputing the
missing values. However, our simulation studies find the CCA method
to perform just as well as when zeros were imputed (Supplemen-
tary Fig. 13).

SECOM accounts for compositionality by eliminating sample-
specific and taxon-specific biases. This results in an easy-to-use and
familiar linear model framework. This gives SECOM a distinct advan-
tage over all other compositionally robust correlation methods, which
are based on relative proportions of taxa when estimating correlations
across multiple ecosystems. This is illustrated using simulated data as
well as forehead and palm microbiome data obtained in Flores et al*’
and infant gut microbiome data obtained from the NoMIC study*-**
For instance, as one would expect, same genera from the two skin sites,
forehead and palm, were found to be highly correlated by SECOM.
However, to our surprise, none of the other methods found any of the
genera to be correlated between the two skin sites.

Using the infant gut microbiome data obtained from the NoMIC
study, for the first time in the literature, we developed a baseline
understanding of naturally occurring correlations among various
families of bacteria during the first year after birth. We limited our
sample of babies to those who were born vaginally, breastfed for the
first 4 months, and not exposed to antibiotics during the first year.
During the first 30 days of birth, a baby’s gut consists of very few
families that are largely derived from maternal contact, including
breastfeeding. By 4 months after birth, as the baby’s contact with its
environment increases, the bacterial diversity in the gut increases
with new families of bacteria arriving. With babies’ contact with
their environment continuously changing, and as they wean from
breastmilk to other forms of food, the gut microbial composition
continuously evolves with the arrival of new families of gut bacteria.
Thus, by the end of the first year, we expect more complex inter-
actions among the families of gut bacteria. Using SECOM, we saw
interesting temporal trends in correlations among various families,
which seem to mirror temporal changes in the gut flora. For
example, Lachnospiraceae and Ruminococcaceae are known to play
an important role in the production of short-chain fatty acids which
are also evolving during the first year of birth. We found these two
families to correlate temporally with several families. Interestingly,
as the babies wean from breastmilk to more solid foods by the end
of the first year, we found Lachnospiraceae to be negatively corre-
lated with Bifidobacteriaceae, which is largely obtained from
breastmilk. We also discovered that at various time points, Enter-
obacteriaceae, a family that contains pathogens such as Salmonella,
Shigella, and Escherichia coli, is negatively correlated with Bacter-
oidiceae, Lachnospiraceae, and Clostridiaceae. In the future, we
would be interested in understanding how these relationships are
modified when there are clinical interventions such as C-section and
the use of antibiotics, which are common practices globally. Sub-
sequently, we will also be interested in investigating the effects of
these associations on various health outcomes among infants. A
limitation of the present study is a small sample size, due to which
we may have missed some important correlations.
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Methods

Description of some existing methods

Proportionality. The ¢ statistic was proposed to describe the strength
of proportionality between a pair of variables or taxa. It is closely
related but not identical to the correlation coefficient. Instead, it is a
“goodness-of-fit for proportionality” statistic to assess the extent to
which a pair of taxa are proportional®. ¢ = 0 indicates that a pair of taxa
are exactly proportional (e.g., y = ax); on the other hand, ¢ # 0 as long
as a pair of taxa are not exactly proportional to each other, even if they
are perfectly linearly correlated (e.g., y=ax+b). Additionally, unlike
the standard Pearson correlation coefficient, the magnitude of ¢ is
hard to interpret because it lacks a scale. For instance, by knowing
¢ = 0.1 we cannot assess how strongly a pair of taxa are proportionally
related to each other. Also, ¢ statistics is not symmetric (¢(x, y) # @(y,
X)), making it inappropriate to serve as a dissimilarity measure for
downstream analyses such as ordination or clustering analysis. Lastly,
there is no clear criterion to produce a sparse matrix based on ¢
statistics.

Sparse correlations for composition data (SparCC)™. It is designed
to estimate the correlation coefficients for log-transformed abun-
dances while addressing bias due to compositionality in the data. It
assumes that (1) the number of taxa is large and (2) the underlying true
correlation matrix is sparse. However, similar to the proportionality
method, it is not a statistically rigorous approach to obtain a sparse
correlation matrix for SparCC. A cutoff of r=0.3 was suggested in
Friedman et al. ' to declare if a pair of taxa are correlated or not. More
accurate estimation can be achieved by iterating the basic SparCC
inference procedure. At each iteration, the strongest correlated pair
identified in the previous iteration is excluded, which reinforces
sparsity among the remaining pairs and yields better correlation
estimates.

Sparse inverse covariance estimation for ecological association
inference (SPIEC-EASI)®. It is a measure of association that exploits
the concept of conditional independence and graphical models. Two
taxa are conditionally independent if given the abundances of all other
taxa, neither taxon provides additional information about the abun-
dance of the other. Otherwise, these taxa are not conditionally inde-
pendent and there is a linear relationship between them as the method
is essentially estimating the inverse covariance matrix (precision
matrix). While conceptually it is a useful measure, as one would expect,
SPIEC-EASI is computationally very intensive compared to the above
existing methods.

SECOM model set-up

All notations used in the following are provided in Table 1. The abso-
lute abundances Aj; in a unit volume of an ecosystem are unobser-
vable non-negative integers. Let 7 be the set of all possible
configurations of the presence or absence of a taxon in a sample, then

aLL...,1
©,1,...,1,...,141,...,0)

7=
0,0,...,1),...,(1,0,...,0)

where 0 and 1 correspond to the cases where a taxon is missing (zero)
or present in a sample, respectively. We represent each eventin 7 by T
and it is indexed by t=1, ..., 2¢- 1. For example, T; corresponds to the
case where all taxa are present in a sample, and T,._, is the case where
only the first taxon is present, and all remaining taxa are zeros.

We further assume that for each sample, the pattern of taxon
presence is generated by independent random variables (r.v.) My

Table 1 | Definitions of key notations

Term Definition

i Sample, i=1, ..., n.

j Taxon, j=1,...,d.

Ajj The absolute abundance in the ecosystem for taxon j in sample i.
Oj The observed abundance for taxon j in sample i.
S; Sample-specific sampling fraction.

G Taxon-specific sampling efficiency.

(25 Random error for taxon j in sample i.

aj log A;.

0j log O;.

S; Sample-specific sampling fraction in log scale.

G Taxon-specific sequencing efficiency in log scale.
j Random error for taxon j in sample i in log scale.

1<i<n,1<j<d such that
P(M;=T,)=6.,0<6 <1,

where M;=(My, ..., My)".
We propose that the observed abundance is generated by the
following multiplicative model:

0;=S:C/A;E;. )

For each Oy with M;=1, a log transformation of the above multi-
plicative model results in the following additive model,

0,-j=S,-+Cj+a,-j+€,-j4 (2)

Conditional on M;=1, assume that the log of absolute abundance
has finite first and second moments:

E(ay)=a;,Var(ay)=0). 3
Additionally, we assume that:

s; isasample specific parameter,
¢; is a taxon specific parameter,

€;-iia. Fewith E(e;)=0,Var(ey)=0¢, 4)

i~

aijll ej;. 5)

We define two concepts of correlation coefficients in this section.
One quantifies the strength of the linear relationship between a pair of
taxa by modifying the Pearson correlation coefficient for sparse high-
dimensional compositional data. The second quantifies the strength of
the nonlinear relationship between a pair of taxa by modifying the
distance correlation coefficient.

Remark 1. Since the distance correlation coefficient is a measure of
general dependency between a pair of taxa, it does not have a sign and
is always non-negative. On the other hand, the Pearson correlation
coefficient can take positive or negative values depending upon whe-
ther they are positively or negatively linearly correlated.

Remark 2. For clarity, in this remark, we spell out the hierarchy among
the various types of dependencies between a pair of taxa and various
concepts of correlation coefficients.

1. Hierarchy of dependencies
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* {Linear relationship} c {Monotonic relationship} c {Non-
linear relationship} c Statistical dependence
2. Hierarchy of measures of dependence

* Pearson correlation coefficient: quantifies linear
dependence

* Spearman correlation coefficient: quantifies monotonic
dependence

+ Distance correlation coefficient: quantifies statistical
dependence

The simplest of dependencies between two taxa is linear, and
the Pearson correlation coefficient is designed to quantify this
relationship. The Spearman correlation coefficient is designed to
quantify monotonic relationships. Since the linear relationship is a
special case of monotonic relationships, the Spearman correlation
coefficient may also be used to quantify the linear relationship.
Statistical dependence between two taxa includes nonlinear, non-
monotonic relationships, monotonic, as well as simple linear rela-
tionships. Therefore the distance correlation coefficient, which is
designed to quantify statistical dependence between two taxa, can
be used to quantify any dependence, whether linear, monotonic,
non-monotonic, or nonlinear relationships. Furthermore, in theory,
if the distance correlation coefficient is zero, then we conclude
statistical independence between two taxa. This implies a lack of
any of the above relationships. If the Spearman correlation coeffi-
cient is zero, then it implies a lack of monotonic relationship, which
also implies a lack of linear relationship. If the Pearson correlation
coefficient is zero, then one can only infer a lack of linear depen-
dence, but other forms of relationships cannot be ruled out.

Remark 3. In the simulation studies and real data applications pre-
sented in the main text, SECOM methodology outputs results either
based on the Pearson correlation measure (namely, SECOM (Pear-
sonl) and SECOM (Pearson2)) or distance correlation measure
(SECOM (Distance)). If the relationship between a pair is nonlinear,
then we expect SECOM (Distance) # 0, whereas SECOM Pearson
methods could be zero. On the other hand, if the relationship is
linear, then the SECOM Pearson methods are expected to be non-
zero, and the sign of the coefficient is positive or negative
depending upon whether the two taxa are positively or negatively
associated. When SECOM Pearson methods are nonzero, then we
expect SECOM (Distance) # 0 as well. This is because a linear rela-
tionship is a special case of dependency. In such cases, we recom-
mend the user use the value provided by the SECOM Pearson
correlation coefficients. However, there may be some rare instances
where SECOM Pearson correlation coefficients are nonzero, but the
distance correlation is zero. This can happen due to a couple of
reasons, (a) small sample size and the sparsity constraints or (b) the
nonzero SECOM Pearson correlation coefficients are spurious. In
such cases, we recommend the researcher use the SECOM Pearson
correlation coefficient with caution.

Remark 4. If one’s research interest is identifying linear relationships,
and the sample size is generally large (>50 based on our simulation
benchmarks), then the thresholding method (SECOM (Pearsonl)) is
recommended for the sparsity of the estimated correlation matrix as it
is theoretically proved to be a consistent estimator. On the contrary, if
identifying general dependencies (linear and nonlinear relationships)
between taxa is the primary purpose, or the sample size is limited, then
the p value filtering method (SECOM (Pearson2) or SECOM (Distance))
is recommended for sparsity.

Remark 5. A common problem with microbiome data is the pre-
sence of excess zeros which present challenges when computing

correlation coefficients. This is an issue for all methods in the
literature. SECOM implements the strategy of a complete case
analysis (CCA) to handle zeros, i.e., uses only pairs of nonzero
data. However, as an alternative strategy to CCA, one may want to
add a pseudo-count, e.g., 1 (Add One), before computing corre-
lation coefficients. We conducted a simulation study (Supple-
mentary Fig. 12) to evaluate these two strategies. We simulated a
complete pair of true abundances using a negative-binomial dis-
tribution. Using these complete data, we created sparsity by
either forcing some of the true abundances to be zeros (structural
zeros*, Supplementary Fig. 12a, b) or by multiplying small sam-
pling fractions to the true abundances and rounding decimals to
zeros (sampling zeros*, Supplementary Fig. 12¢, d). We applied
CCA and Add One strategies to the resulting data and found that
when there were structural zeros between a pair of taxa, then
adding pseudo-counts could either inflate or deflate a true cor-
relation coefficient. On the other hand, the correlation coefficient
based on the CCA was closer to the estimate based on the full non-
missing data (Supplementary Fig. 12a, b). If zeros were caused by
small sampling fractions, either using complete cases or adding a
pseudo-count yielded similar results (Supplementary Fig. 12c, d).

SECOM, analogous to ANCOM-BC’, is a de-biasing model.
Hence, after correcting for the sample-specific and taxon-specific
biases, the model reduces to a traditional linear model. Conse-
quently, it enables the user to impute missing values to calculate
correlation coefficients. We conducted an exhaustive simulation
study where the percent of missing values ranged from 0 to 70%
for two taxa generated from log-normal distributions. We com-
pared CCA with two different imputing strategies, namely, Gra-
dient Boosting Machine (GBM)*>** and Multivariate Imputation by
Chained Equations (MICE)** by calculating standard Pearson cor-
relation coefficients on complete data and imputed data,
respectively. We found that there was not much difference
between the three estimates (Supplementary Fig. 13), and CCA-
based estimates compete well with those obtained from GBM or
MICE imputed data.

Remark 6. Researchers may be interested in computing correlation
coefficients within and between two or more ecosystems using
samples obtained on the same subject. For example, one may be
interested in correlating microbial abundances in two body sites,
say “forehead” and “palm”. In such cases, one concatenates data
matrices from two ecosystems to estimate correlations between
body sites and within body sites. Methodologies that honor com-
positionality structure in the data, would convert all observed
abundances into relative abundances in the concatenated data and
then compute correlation coefficients. While this approach appears
to be reasonable, the correlation estimates within a body site, say
palm, obtained from the concatenated data may be substantially
different from the estimates one would have gotten if they esti-
mated correlations within each site separately. This lack of coher-
ence between the two estimation procedures for the same statistical
parameter is unsatisfactory. It is a direct consequence of deriving
relative abundances from the combined data and then calculating
correlations. SECOM does not suffer from this problem because it
first corrects the sample and taxon-specific biases and then applies
the methodology described in this paper. In doing so, it provides
coherent site-specific correlations.

Remark 7. As with any statistical procedure, SECOM methodology
makes some assumptions regarding the data and the problem as
follows:
* There are two major sources of bias in the observed count data,
namely, sample-specific sampling fraction and taxon-specific
sequencing efficiency. These sources of bias are now well
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accepted in the microbiome literature'®, SECOM methodology
corrects these biases.

* The correlation matrix is a sparse matrix. This is a very
common assumption that is necessary when estimating
correlation and covariance matrices in high dimensions.
Basically, any method for estimating a pxp correlation
matrix using a small sample size n, where n < p, results in an
estimator that is mathematically a singular matrix, although
the underlying true correlation matrix is a positive definite
matrix. Consequently, the correlation matrix cannot be
unbiasedly or consistently estimated by any method unless
some sparsity conditions are imposed on the correlation
matrix, i.e., some of the true correlation coefficients need to
be constrained by zero.

» Large signal-to-noise ratio. This is a very common assumption in
classical linear regression analysis. If the variance of the
regression model is substantially large compared to the
regression coefficient, then statistical inferences on the regres-
sion parameter will be underpowered unless the sample sizes are
very large. Thus, in all regression analyses, to have high power,
one implicitly requires large effect sizes (signal-to-noise ratio). A
similar phenomenon holds in the present situation. Although,
for some types of data, this ratio may be empirically estimated
from the data, it has to be taken as a regularity condition like any
other condition in classical asymptotic theory.

» Empirical joint probability of observing a pair of taxa is nonzero.
In other words, we avoid situations where a pair of taxa are
missing in all samples because, in that case, it is not possible to
compute the correlation coefficient between them.

Estimation of linear correlation coefficients
In this section, we develop a methodology for estimating the linear
correlation coefficient between the abundances of pairs of taxa [/ and
m, 1<[, m<d, while noting that for each subject i, the abundances a;
and a;, are not observable. The only observable values are the
observed counts, e.g., OTUs or ASVs, o0; and 0;,. According to our
hypothesized model, the actual abundance a;; of the jth taxon in a unit
volume of the specimen from the ith subject, in expectation, is a
function of observed counts 0, and unknown nuisance parameters s;
and ¢;. Therefore, to obtain an approximate unbiased estimator of a;;
using the observable o;, we need to estimate nuisance parameters s;
and ¢;and eliminate the bias introduced by them. Once that is done, we
can define Pearson or Spearman correlations using the modified
observed counts o to derive bias-corrected estimates of the true
correlation coefficient between the abundance of a pair of taxa. In the
following, we now describe the methodology to eliminate the nuisance
parameters s; and ;.

Denote the covariance matrix of a; as 30 =[02n]lm:1 @ and the
Pearson correlation coefficient matrix as R° :[p?m]l‘m':1 'd. We make

the following sparsity assumption regarding the covariance matrix.

Assumption 1. Approximately sparse covariance matrices
1
UK)=q2:0;<K,— > 01p=00) ¢
d* tm

Two examples of matrices that satisfy this condition are (1) a
d-diagonal matrix and (2) the AR(1) covariance matrix.

From (2), (3), (4), and (5), by centering the data across samples, we
eliminate the effect of taxon-specific sampling efficiency ¢; as follows:

0,/—17,:(.v,—f)#»(a,/—[l,)A((/,]—E,):®+@+®.

where, for the jth taxon and i=1, 2, ., n,§ = 13305, a;= 130, ay,

e; =137 e;. Note that:
(1) We call®the “sampling fraction difference”, which is a sample-
specific bias term,
(2) Fore@:E(a;—a;)=0\Var(a; —a;=1- ,l,)(;,‘.j).,
(3) For@: E(e; —e;)=0,Var(e; —e;)=(1—})o?.
Define the set of nonzero taxa in sample i by d(i)={ :M;=1,
1<j<d}. Then by on Assumption 1, we have

1 _ 1 1
i & {00 -0l L O

jed(i) jed(i)

Y B, 0asldi) == (6)

jed(i)

Therefore, a quick and simple estimator of the sampling fraction
difference is the arithmetic mean of the difference between observed
abunda'nces, ie., @.: §;—S= @ngd(q(oy -0,). Taking into account
the variance of residuals o; — 0, a weighted average is proposed as
follows:

(D=5=75= ¥ wiloy—0a,). %)

jedli)

— 1 1
where wj ~ Var(o;—0;) /Zled(i) Var(o;,—0,)
Denote the’ centered absolute abundance by
a;, 1<i<n,1<j<d. Then

xij=a,~j —

1 1
Cov(xyXim) = <1 - E) Oy Var(xy) = (1 - E) 03, COrr(Xyy Xim) =Py
Similarly, define the centered absolute abundance with noise by

Y= (a; —a;)t(e; —e;)=x;+(e; —€;)=(0; —0;) — (5; — 5.),

R=[0im]; m-1,._q- Then the off diagonal and diagonal elements of X are,
respectively,

1 1
O = <1 - E) o, oy= <1 - E) (09 +02).

We make the following assumption that noise-to-signal ratio is
very small.

Assumption 2. Small noise-to-signal ratio

0% < o).
Then we have:
0 0
Pim = Om  _ Oim e %m P
'm m’
0,0, 0 4 72\(50 2 0,0
N \/(0[[+0e)(0mm+0e) 000m

which means the Pearson correlation coefficient among y's provides a
good approximation to the Pearson correlation coefficient among x’s as
well as among a’s. Since y; =(0;; — 0;) — (s; — S.). From (7), we estimate

Yybyy;=(0; —0,)) — s; — 5. Thus, from (6),

j;y.—>p(0,-j —0,) — (5; —5) =Yy, as |d(i)] — co. (8)

In the sequel, for all1</, m<d, denote n(l)={i:M;=1,1<i<n} and
n(l, m)={i:My=M,,,=1, 1<i<n}, where n(l) is the number of sam-
ples where [th taxon is observed, and n(l, m) represents the number
of samples where both /th and mth are observed. For each 1</,
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m<d, let

N 1
- os
Hi= @) i

Oim

= mien%m)(yu =)0 — Bm)»

2= [Oimlym-1.av

Ry=Pimlym=1..a= {i} .
VOuOmm] (m-=1..4
To prove the consistency of the proposed correlation estimator,
we make the following mild Assumption 3 that each taxon (Assump-
tion 3(i)) or each pair of taxa (Assumption 3(ii)) is present with a
nonzero probability (6min).

Assumption 3. Minimal probability of presence. Define:

C,(l)={t : taxonlis presentin T,in M, 1<t<2¢ — 1},
Ci(,m)={t : taxaland mare presentin 7, in M;, 1< t<29 1.

There exists a constant 6, > 0 such that for any 1</, m<d,

A1 i I ;
([)_.Z > 62261>6minr(”)_z > 6;:6[’," > 6 min-
Ni=1tec,1) Ni=1¢tec,(l,m)

Theorem 1. Suppose X° satisfies Assumption 1 and Assumption 3 is
valid, then

logd
.- l.-0,(°59).

Thus, the empirical correlation matrix R,, based on j's consistently
estimates the correlation matrix R of y; in the Sup norm. Under the
Assumption 2, R is a reasonable approximation to the true correlation
matrix R°. The details of the proof are provided in the Supplementary
Methods.

Instead of Pearson correlation coefficient, if the Spearman cor-
relation coefficient is of interest, then we convert x;;,y;;,J;; into ranks
rg,r,-j,fij. Clearly, for rf},ry-,fy e{l,2,...,n},

Fi—s I

=, iy @S |d(i)| — oo, 9)

ry= rf-j’- as long as Assumption 2 holds. 10)
With a slight abuse of notations, denote Corr(ry, ri,) =Sy
Corr(Fyy, Fim) =Sinr S=[Sumlym=1...d»Sn =Btmlym-1..q- Then we have the
following result.

Theorem 2. Suppose 2° satisfies Assumption 1 and Assumption 3 is

true, then:
logd
15, .-, &),

The proof of this result relies on the observation that standar-
dized rank ;= f"’;f((f”) is naturally bounded, which allows the applic-

ar(ry)
ability of the Hoeffding’s inequality. The details of the proof are
deferred to the Supplementary Methods.

When computing correlations of high-throughput sequencing
data, it is reasonable to assume that only a small fraction of features
(genes/proteins/taxa, etc.) are correlated with each other, i.e., the

correlation matrix is sparse. Inspired by the Sparse Estimation of the
Correlation matrix (SEC) approach®, we estimate the sparse correla-
tion matrix by solving

- .1 .
R=arg min | R—R,IIF+ARl, stR=€l, R;=1,j=1,...d. (1)
where
(@) ||+l is the Frobenius norm,

(2) R>=elmeans that R - el is semipositive definite,
(3) Ais the regularization parameter for the 4 norm.

Denote the non-diagonal support of R by Ao= {Lm:l#m, py,# 0}
and its cardinality by g. The convergence of R to R in the Frobenius
norm is established in the following theorem.

Theorem 3. Suppose X° satisfies Assumption 1 and Assumption 3 is

valid, and 1=M, /'8¢ for some constant M, we have the estimator
defined in (11) such that

o logd
I RfRu%=0,,<q%>

A sketch of the proof'is provided in the Supplementary Methods.
From the computational point of view, the penalized likelihood
problem stated in (11) can be replaced with the soft thresholding
operator
R=sign(R,)(IR,| - 1), 12)
where the tuning parameter A is selected by cross-validation
A=min | R—R, |2
ince the solution R may not be symmetric in general, the final
estimate of R is obtained by Aforcing py=1 and choosing
ﬁlm =ﬁlml(ﬁlm Sﬁml) +ﬁn}ll(ﬁ1m >ﬁm1)~ R
The sparse matrix R can also be obtained by thresholding on the
basis of p values. Let p;, be the corresponding p value for p,,, then R
can be defined as

a3

where a is a pre-specified threshold, e.g., &= 0.005. R

Estimation of a nonlinear correlation coefficient

In addition to linear correlation, we are also interested in describing
nonlinear correlations among taxa within an ecosystem (e.g., gut or
oral cavity) or across ecosystems. Therefore, the concept of distance
correlation®* was adopted to quantify general dependence between a
pair of taxa.

Definition 1. Distance correlation coefficient (ref. 34). Let X and Y
denote two random variables. Then the distance covariance and cor-
relation coefficient between X and Y are defined as follows
1) dCovi(X,Y)=1 rgf’ Vx,y(r,s)—zfxmfy(s)uz dtds
, = g
@) dvar(X)=% ffdicxiz"y));{ﬁgﬂ”"z deds,
— OV(X,
(3) dCor(X,¥)= JdVar(X)dvar(Y)’
where || - || denotes Euclidean norm, and
(1) 0<dCor(X, V<1,
(2) dCor(X, Y)=0if and only if X and Y are independent,
(3) dCor(X, Y)=1implies that dimensions of the linear subspaces
spanned by X and Y samples, respectively are almost
surely equal.
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Estimator of the distance correlation coefficient based on random
samples X =(X{,X,,....X,) and Y=(Y, Y,,...Y,) is derived as fol-
lows. Define pairwise distances as d;;= |x; - xj, €;=y; — Y|, and doubly
centered distancesas D =d; —d; —d;+d , E;=e; — & —¢;+e , i#,
the empirical estimates of distance covariance and correlation can be
obtained by

() dCovi(X,Y)= 557, 57, DyE
() dvary(X,y)= 5> 5 Dy

Note that the rank-transformed data also preserve the general
dependence on the original data. We illustrate this using both linear
and quadratic examples, as shown in Supplementary Fig. 14a, b,
respectively. In Supplementary Fig. 14a, y =2x +e, x ~ U[-2, 2], e ~ N(O,
1); whereas in Supplementary Fig.14b, y =x>+e,x ~ U[-2, 2], e ~ N(0, 1).
It is easy to see from the figure that even though the shape of (X, V) is
not perfectly recovered using ranks (denoted as (r(X), r(Y))), distance
correlations computed using the original data and the rank-
transformed data (denoted as dCor(X, Y) and dCor(r(X), r(Y)), respec-
tively) are close to each other. This indicates that the distance corre-
lation computed from the rank-transformed data provides a
reasonably good approximation for the distance correlation com-
puted from the original data. Therefore, researchers can use either
original abundances or rank-transformed abundances to calculate
distance correlations.

Similar to the procedure shown in the estimation of linear corre-
lation coefficients, define

y'l

Ay :=dCOrYy, Yim) (01 dCor(ry, rip)),

dyy,:=dCor(Vy, Vi) (or dCor(7y, im)),
D=[di) -1, ar

Dn = [&lm]l,m =1..d’

the sparse distance correlation matrix estimation can be obtained by
thresholding or p values:

D=sign(D,)(ID,| — ), ,or (14)

as)

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Simulation data can be found on the corresponding GitHub
repository*®. The forehead and palm data can be found in Qiita: fore-
head https://qiita.ucsd.edu/study/description/2150 and palm https://
giita.ucsd.edu/study/description/2149. The NoMIC data used in this
study are not publicly available but may be obtained by contacting Dr.
Merete Eggesbg (Merete.Eggesbo@fhi.no).

Code availability

SECOM has been implemented in the R package ANCOM-BC, which is
available on Bioconductor at https://www.bioconductor.org/
packages/release/bioc/html/ANCOMBC.html. All analyses shown in
the paper can be found on the corresponding GitHub repository*¢.
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