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Abstract

 Background—With millisecond-level resolution, electroencephalographic (EEG) recording 

provides a sensitive tool to assay neural dynamics of human cognition. However, selection of EEG 

features used to answer experimental questions is typically determined a priori. The utility of 

machine learning was investigated as a computational framework for extracting the most relevant 

features from EEG data empirically.

 Methods—Schizophrenia (SZ; n = 40) and healthy community (HC; n = 12) subjects 

completed a Sternberg Working Memory Task (SWMT) during EEG recording. EEG was 

analyzed to extract 5 frequency components (theta1, theta2, alpha, beta, gamma) at 4 processing 
stages (baseline, encoding, retention, retrieval) and 3 scalp sites (frontal-Fz, central-Cz, occipital-

Oz) separately for correctly and incorrectly answered trials. The 1-norm support vector machine 

(SVM) method was used to build EEG classifiers of SWMT trial accuracy (correct vs. incorrect; 
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Model 1) and diagnosis (HC vs. SZ; Model 2). External validity of SVM models was examined in 

relation to neuropsychological test performance and diagnostic classification using conventional 

regression-based analyses.

 Results—SWMT performance was significantly reduced in SZ (p < .001). Model 1 correctly 

classified trial accuracy at 84 % in HC, and at 74 % when cross-validated in SZ data. Frontal 

gamma at encoding and central theta at retention provided highest weightings, accounting for 

76 % of variance in SWMT scores and 42 % variance in neuropsychological test performance 

across samples. Model 2 identified frontal theta at baseline and frontal alpha during retrieval as 

primary classifiers of diagnosis, providing 87 % classification accuracy as a discriminant function.

 Conclusions—EEG features derived by SVM are consistent with literature reports of 

gamma’s role in memory encoding, engagement of theta during memory retention, and elevated 

resting low-frequency activity in schizophrenia. Tests of model performance and cross-validation 

support the stability and generalizability of results, and utility of SVM as an analytic approach for 

EEG feature selection.
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 Background

Electroencephalographic (EEG) recording, when combined with experimental tasks, can 

provide powerful methodology for studying neural dynamics of human cognition. EEG data 

is dimensional and complex, based on a time series of events sampled with high temporal 

resolution and distributed spatially across multiple scalp locations. Given that research-grade 

EEG systems are capable of sampling at 1000 samples per second and higher, a simple 10-

min experiment could feasibly produce 600,000 discrete data points per channel of acquired 

data even before considering spatial characteristics or signal extraction methods (e.g., 

amplitude, spectral power, coherence) that further add to possible number of variables 

produced. Analysis of such data requires many decisions about the time points and signal 

extraction methods used to best characterize the psychophysiological phenomena under 

investigation. Without standardized procedures for EEG experimentation or data extraction 

across laboratories, how are these decisions to be made? It seems that in most cases, 

investigators defer to methods of prior studies for guidance on new studies. While this 

approach may provide important replication of prior results and incrementally advance 

knowledge, it may also limit EEG analyses to a relatively small portion of the data collected, 

overlook important features of data not previously discovered, and constrains science to a 

confirmatory and deductive, rather than data inductive, position.

The primary measure of EEG activity used in psychophysiological research is the event-

related potential (ERP). ERPs are defined by stereotyped patterns of voltage change time-

locked to stimulus events and are quantified by peak amplitudes measured in averaged 

waveforms. ERP analysis may therefore focus narrowly on a time window containing a 

specific peak and leave a large portion of the EEG record discarded from further analysis. 
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However, in addition to the event-related activity driven exogenously by stimulus events, 

these data contain neural activity generated endogenously that is not captured by averaged 

waveforms, as well as activity during pre-stimulus and intertrial intervals that may reveal 

important differences in how the brain prepares for and carries out task-related processes. 

The importance of pre-stimulus activity, for example, is illustrated in work relating the 

amplitude of ERPs to resting EEG recorded in a passive state prior to the experiment [1] and 

in demonstrations of how ERP amplitudes can be altered experimentally by modulating pre-

stimulus activity through non-invasive neural stimulation [2]. Accordingly, individual 

differences in task-related ERP measures, as well as group-wise differences, could be 

influenced by features of neural oscillatory activity that are inadvertently excluded from 

conventional ERP analysis. Increased use of time-frequency analysis over the past 10 years 

[3, 4], and associated measures of coherence and phase synchrony, further extend the range 

of features that can be extracted from standard ERP experiments and the number of variables 

that can potentially be submitted to statistical analysis. Given the many sources on 

information that can be gleaned through various signal processing approaches, there is 

increased need for computational frameworks capable of mining large datasets to identify 

features most relevant to questions asked of EEG data.

Machine learning encompasses a body of statistical approaches that can be used to discover 

knowledge from data through mathematical modeling, wherein pattern recognition is 

optimized by allowing the program to adjust actions accordingly to new information. 

Machine learning methods are becoming more commonly used in medical sciences, 

outperforming classical regression approaches when applied to prediction and diagnostic 

classification decisions [5, 6]. The Support Vector Machine (SVM) approach, in particular, 

has proven useful for clinical classification problems based on brain imaging data [7]. SVM 

provides individual-level classification and, therefore, can be applied to questions pertaining 

to diagnosis, prediction of treatment response, and progression to illness based on preclinical 

indicators. Furthermore, because SVM is inherently multivariate, it is an appropriate method 

for separating unique from redundant sources of variance in spatially distributed, yet 

variably dependent, patterns of brain activity.

As a method of EEG feature selection, SVM could provide a powerful tool for reducing 

large data arrays of scalp locations, frequency bands, and temporal windows to those most 

pertinent to a classification question. For clinical purposes, this approach could be used to 

build classifiers of known diagnostic categories based on latent patterns of EEG activity, to 

refine classifiers iteratively through cross-validation, and ultimately to apply validated 

classifiers to new clinical samples. In experimental research, these methods can be used to 

identify the EEG features most related to task behavior, thereby allowing the researcher to 

empirically develop neural models of human behavior without a priori knowledge of task-

related activity.

The current study aimed to demonstrate the utility of SVM as a data inductive solution for 

EEG feature selection. The sample consisted of individuals with schizophrenia and healthy 

community members who performed a Sternberg working memory task during EEG 

recording. The Sternberg task can be analyzed over stages of encoding, retaining, and 

retrieving information from short-term memory, each involving different sources and 
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components of brain activity, with all contributing to successful task performance. 

Therefore, multiple spectral-frequency, temporal, and spatial characteristics must be 

considered simultaneously in order to answer questions about patterns of optimal task-

related brain activity and differences in schizophrenia. Questions such as this seem most 

amenable to empirical approaches of feature selection as (a) the number of variables that 

could be conceivably extracted from these data far exceed the number of comparisons that 

would be advisable if tested independently, and (b) the dynamics of EEG, involving changes 

and interactions in sources of brain activity that co-vary with individual differences in task 

performance, can only be resolved in multivariate space where hierarchical relationships 

within and between features are compared over repeated observations. SVM may provide an 

appropriate, albeit novel, data reduction and classification approach for this type of analytic 

problem.

Using a supervised learning approach, given that information about task performance and 

diagnostic group membership is known, what EEG features would SVM be expected to 

identify? Working memory is a core domain of neurocognitive impairment in individuals 

with schizophrenia, found across various task versions administered in auditory and visual 

modalities [8, 9]. Working memory requires network-level activation and coordination of 

neural activity between pre-frontal cortical and cortical association areas involved in sensory 

and attentional processes [10–12]. The cortical distribution of neural activity during working 

memory performance has been studied extensively using EEG recording [13–15], 

demonstrating that optimal behavioral performance can be predicted on the basis of neural 

dynamics [16, 17]. Although these interrelations are complex, and may interact differently 

depending on memory load and individual differences in performance, task-related changes 

in theta, alpha, and gamma band spectral power have been consistently reported [18]. Theta 

band (e.g., 4–8 Hz) activity is associated with hippocampal-cortical communication during 

encoding [19] and increases with higher memory load [13]. In a model based on the 

interrelationship of theta and alpha, performance is suggested to be optimal when pre-trial 

baseline EEG contains low tonic theta power but high phasic alpha power, and when 

encoding is accompanied by event-related increases in theta band and reductions in alpha 

band power [17]. A shift to alpha (e.g., 8–12 Hz) is then associated with subsequent memory 

retention and retrieval processes [14] involving thalamo-cortical networks [20]. Gamma 

band (e.g., > 30 Hz) activity is generally associated with integrative multi-modal sensory 

processes and, in memory tasks, appears to couple in-phase with theta [21]. As with theta, 

gamma band power is normally increased with higher memory load [22, 23]. While related 

in phase, neural activity in gamma and theta bands are associated with distinct functional 

roles in memory processing, with gamma supporting short-term maintenance and theta 

supporting the organization of sequentially ordered information into memory [18]. 

Importantly, while gamma band power increases may indicate the recruitment of additional 

cognitive resources required to meet higher task demands, individuals with schizophrenia 

appear to have a limited capacity to modulate gamma activity in this way [24, 25].

In addition to features embedded in task-related EEG, it is also important to consider the 

possibility that neural activity unrelated to demands of the task, but perhaps reflecting traits 

of illness, can also affect performance in schizophrenia. For instance, resting state EEG in 

schizophrenia is commonly characterized by abnormal elevations in theta and alpha, which 
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persist during experimental conditions where suppression of this activity normally occurs 

[26]. Based on the previously described neural dynamics model of memory [17], high levels 

of tonic (i.e., task independent) theta and failure to down regulate alpha during encoding 

would predictably result in impaired memory function. Taken together, these findings 

provide basis for predicting that differences in EEG activity during Sternberg task 

performance will be characterized by elevated low-frequency activity at the pre-stimulus 

baseline period and by lower levels of event-related theta and gamma spectral power during 

encoding in schizophrenia. Alternatively, optimal performance should be predicted by higher 

levels of theta and gamma during encoding, and alpha activity at the retrieval stage. Given 

these predictions, the primary question pertaining to SVM-based analysis is whether these 

same features emerge as most critical to Sternberg performance and diagnostic differences 

when tested within a relatively large array (n = 60) of EEG features.

 Method

 Participants

Forty individuals meeting DSM-IV-TR criteria for schizophrenia (SZ) and 12 healthy 

comparison (HC) participants were enrolled in a registered clinical trial (identifier: 

NCT00923078, https://clinicaltrials.gov/) at time of this analysis. For purposes of the current 

analysis, only data collected at study intake will be presented. The study was conducted 

under oversight of VA Connecticut Healthcare System (VACHS) Human Studies 

Subcommittee (HHS protocol # 01245) and Yale University Human Investigation 

Committee (HIC protocol # 1003006388) institutional review boards. All participants 

provided written informed consent prior to initiating any study procedures and were 

compensated $75 for data collected at study intake assessment. Recruitment of HC 

participants was conducted according to match (age, gender, race) with SZ participants. 

Sample descriptive statistics are presented in Table 1.

Inclusion was limited to individuals aged 18 and 70, native English speaking, with stable 

housing for minimum of 30 days. In addition, SZ sample members had minimum of 30 days 

since discharge from last hospitalization, 30 days since last change in psychiatric 

medications, and were receiving mental health services through VACHS or Yale affiliated 

outpatient facilities. Individuals were excluded based on current (past 30 days) diagnosis of 

alcohol or substance abuse disorders, history of brain trauma or neurological disease, mental 

retardation or premorbid intelligence ≤ 70, and auditory or visual impairment that would 

interfere with study procedures. In addition, any current or past DSM-IV Axis I diagnosis 

was exclusionary for HC sample enrollment.

 Clinical assessment measures

All participants underwent a clinical interview to obtain treatment, substance use, medical, 

legal, employment, and psychosocial background information. Diagnosis of SZ sample 

participants was confirmed using the Structured Clinical Interview for DSM-IVTR (SCID-

I/P; [27]), administered by a licensed clinical psychologist. The Mini International 

Neuropsychiatric Interview (M.I.N.I; [28]) was administered to healthy volunteers to screen 

for psychiatric conditions that would be exclusionary. The Wechsler Test of Adult Reading 
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(WTAR; [29]) was administered to all participants to obtain an estimate of premorbid 

intellectual endowment and the MATRICS Consensus Cognitive Battery (MCCB; [30]) was 

used to test current cognitive ability across multiple domains. Age- and gender-corrected t-

scores for MCCB Working Memory Composite and Continuous Performance Test–Identical 

pairs (CPT-IP) subtest were used in the current analysis to cross-validate SVM-derived 

models of EEG activity related to working memory.

 EEG data collection procedures

Participants were seated in front of a 24” LCD monitor (1920×1200 pixels, 75 Hz refresh 

rate) at a viewing distance of 100 cm in a dimly lit room. EEG was recorded using a 64-

channel BioSemi ActiveTwo (BioSemi B.V., Amsterdam, Netherlands) bio-amplifier and 

electrode system with sensors located according to the 10–20 system. Additional electrodes 

were placed bilaterally at mastoids (reference), the outer canthi of both eyes (horizontal 

electrooculogram; HEOG), and above and below the right orbit (vertical electrooculogram; 

VEOG). Continuous EEG was monitored online in ActiView V6.05 and acquired at a 1024 

Hz sampling rate with a bandpass filter setting of 0.16–100 Hz. The Sternberg task was 

administered using NBS Presentation software (Neurobehavioral Systems, Inc., Albany, 

CA), with behavioral responses captured using two buttons of a Cedrus RB-834 response 

pad (Cedrus Corporation, San Pedro, CA). Total EEG set up time was approximately 30 

min, and the Sternberg task was administered in three blocks of interspersed between blocks 

of two additional auditory ERP tasks (not included in current report).

 Sternberg working memory task

A version of the Sternberg working memory task (SWMT), modified from Raghavachari et 

al. [31], was used in the present study. Stimuli consisted of sequentially presented letters 

(200 ms duration, 1200 ms ISI), spanning sets of 4–8 letters each, randomly generated from 

an array of 12 letters. For each trial the stimulus set was followed by a 3200 ms retention 

period that terminated with a response probe letter. Participants were instructed to press one 

of two response pad buttons, using right or left index finger, to indicate whether the probe 

letter was or was not presented in the preceding set. The response probe remained present 

for the duration of the response window, up to 3500 ms, and terminated at time of button 

press. Auditory feedback was given to indicate correct, incorrect, or time-out (after 2000 ms) 

on each trial. Feedback was followed by 1000 ms of black screen and a fixation “+” cross 

for another 1000 ms preceding the first stimuli of the next set. A total of 90 trials was 

administered over three blocks of 30 trials, each block lasting approximately 8 mins.

 EEG signal processing

Data analysis was conducted using BrainVision Analyzer software v2.0 (Brain Products, 

Munich, Germany). SWMT EEG data was re-referenced offline to the average mastoid, 

broadband filtered from 1–70 Hz (12 dB/oct) with a notch filter at 60 Hz, and segmented 

according to four stages of processing (Fig. 1); pre-stimulus baseline (500 – 1200 ms 

relative to fixation), encoding (−200 – 8000 ms relative to fixation), retention (−3400 – 800 

ms relative to probe), and retrieval (−200 – 800 ms relative to probe). The analysis window 

selected for the encoding stage spanned the first 5 letters (or all 4 when span = 4) of each 
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trial. This window was selected to optimize the amount of information that could be 

consistently extracted across trials varying in length based on span.

Following segmentation, ocular artifact correction was applied [32] and segments containing 

activity ±75 μV at electrodes Fz, Cz, and Oz were excluded. Time-frequency extraction was 

applied to single trial data using Morlet continuous wavelet transform (parameter c = 3.8) 

over 20 frequency steps from 4–50 Hz. Data at encoding and retrieval stages was averaged to 

extract event-related spectral perturbations (ERSP), elicited in response letter memory and 

probe stimuli, respectively. Encoding stage frequency extraction was baseline normalized to 

a window of −200 to −50 ms relative to fixation cross, while retrieval was normalized to a 

window of −200 to −50 ms relative to response probe onset. The same wavelet transform 

was applied to EEG data at pre-stimulus baseline and retention stages without normalization. 

Time-frequency data was output in the form of squared wavelet coefficients (μV2) binned 

and averaged according to response accuracy (correct vs. incorrect), and exported in five 

frequency bands at each of the four stages of processing: Theta 1 (θ1), centered at 4.00 Hz 

(range: 3.12 – 4.88); Theta 2 (θ2), centered at 6.42 Hz (range: 5.01 – 7.83); Alpha (α), 

centered at 11.26 Hz (range: 8.79 – 13.73); Beta (β), centered at 18.53 Hz (range: 14.46 – 

22.59); Gamma (γ), centered at 40.32 Hz (range: 31.48 – 49.16). Time-frequency values 

were exported for statistical analysis based in the following windows: pre-stimulus baseline 

(500 – 1200 ms relative to fixation); encoding (1000 – 7000 ms relative to fixation); 

retention (−3000 − 0 ms relative to probe); and retrieval (0 – 600 ms relative to probe). All 

statistical analyses were conducted on spectral power measured at three midline electrode 

locations: Frontal (Fz), Central (Cz), and Occipital (Oz).

 Machine learning feature selection

From a machine learning point of view, our analysis is a variable selection problem that 

aimed to identify the EEG features most relevant to SWMT performance and diagnostic 

group differences. Variable selection methods are often divided along two lines: filter and 

wrapper methods [33]. The filter approach of selecting variables serves as a preprocessing 

step to the model construction. The main disadvantage of the filter approach is that it ignores 

the effects of the selected variable subset on the performance of the classification algorithm. 

The wrapper method searches the optimal variable subsets using the estimated classification 

accuracy, as the measure of goodness, when the subset of variables is used in classification. 

Thus, the variable selection is being “wrapped around” a particular classification algorithm. 

Wrapper methods typically outperform filter methods [34].

For the current analysis variable selection was conducted using a wrapper method that is 

wrapped around the so-called 1-norm SVM [35]. SVM is a supervised learning method 

which has the ability to weigh input features according to their relevance to the classification 

target, as determined through the learning process. Most SVMs, including the one 

implemented in this study, construct a linear classifier that predicts, by thresholding the 

classifier real-valued output, whether new cases of data will fall into one of two categories. 

The classifier used in the current analysis was based on a linear function of the form of wTx 
+ b, where w is the weight vector to be determined, x is the input vector representing EEG 
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features and wTx represents the dot product between the two vectors. It obtains the best 

model coefficients in w by minimizing the following regularized risk function:

where d represents the number of variables (i.e., EEG features) in total, n represents the 

number of records collected in the training set, and εi = max{0, 1 − yi(wTxi + b)} denotes the 

so-called hinge loss to measure the training error [36], where yi represents the class label, 

such as “correct response” versus “incorrect response” of the record i that is numerically 

characterized by an input vector xi (i.e., the vector of features extracted from that record).

A record consisting of 60 features of EEG data was extracted for each participant, including 

five frequency bands (theta 1, theta 2, alpha, beta, and gamma), three scalp locations 

(frontal, Fz; central, Cz; occipital, Oz), and four information processing stages (pre-stimulus 

baseline, encoding, retention, and retrieval). Features were binned separately based on trial 

accuracy and assigned a binary label indicating whether trials received correct (+1) or 

incorrect (−1) responses. Accordingly, EEG features receiving positive valence weightings 

can be interpreted as more highly predictive of correct trial performance, with those 

receiving negative valence predictive of incorrect performance. The SVM algorithm was 

applied in two models: (1) to classify correct vs. incorrect trial performance within each 

sample, referred to hereafter as Model 1, and (2) to classify between SZ and HC groups 

across correct and incorrect trials, referred to as Model 2.

Although the current analysis was based on a small study (12 HC and 40 SZ), a large 

number of EEG features (60) were used to represent each case. This circumstance poses risk 

for over-fitting, meaning that the resultant classifier could achieve good accuracy during 

training but poor validation accuracy. According to statistical learning theory [36], 

regularization is the most effective way to control over-fitting. SVM methods optimize a 

regularized loss function for the best classifier where either the two-norm regularizer 

 or one-norm regularizer  is used. In the current implementation, 

the 1-norm regularizer was chosen because this regularizer enforces sparsity of the weight 

vector w, meaning many entries of w will be zeros. More precisely, although 60 features 

were used in the SVM classifier training, when the classifier is built by SVM, only 3 ~ 10 

features were actually used by the classifier because other features received zero weights in 

the model.

The parameter C in the 1-norm SVM was tuned in a 3-fold cross validation process where 

the respective data set was evenly split into 3 disjoint subsets. At each fold, we tested on a 

subset of the data the classifier obtained by SVM from the remaining data. Receiver 

operating characteristics (ROC) curves were used to examine the performance of the 

classifiers. Specifically, the area under the curve (AUC) was reported. We average the AUC 

values over the three folds for each choice of C in a range from 0.1 to 10 with a step size of 

0.1. The value of C that produced the best cross validation performance was used to train the 
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final classifier from all records. The cross validation performance for SVM with the chosen 

C value was also reported. In addition to AUC values, precision, recall, and F1 score were 

computed.

The analysis of Model 2 presented an unbalance classification problem due to far fewer HCs 

(n = 12) than SZs (n = 40). Therefore, a commonly used procedure in SVM was adopted to 

balance the sample size. Specifically, the analysis penalized errors that occurred in the HC 

samples 3 times more than the errors in the SZ samples. This created the similar effect as up-

sampling HC three times. Mathematically, this procedure corresponded to revising the 

regularized loss function as follows:

 Results

 Demographics

Groups did not differ in basic demographic composition (Table 1). Three (15 %) participants 

in the HC sample were over age 55 (aged 63, 59, 56), while 8 (20 %) in the SZ sample were 

over 55 (aged 70, 66, 63, 62, 60, 59, 58, 58). Statistical analysis were unaffected by entering 

age as a covariate and reported results were not significantly changed by restricting the 

sample to those aged 55 or younger (N = 41).

 Behavioral data

Group comparison on SWMT behavioral data revealed overall lower accuracy in SZ than 

HC (Table 1). As a group, working memory performance was impaired in SZ participants 

based on MCCB WM composite score, but visual attention was within normal range based 

on the CPT-IP. SZ participants were estimated to have average range of IQ but, overall, 

scored lower than HC.

 Model 1: Classification of SWMT performance accuracy

 Healthy normal sample—SVM Model 1 identified frontal (Fz) gamma activity during 

encoding and occipital (Oz) theta 2 during retrieval as the primary EEG features associated 

with SWMT accuracy in the HC sample (Table 2). Additional features retained in the model 

had weightings of .10 or less and were not regarded as meaningful for further analysis. The 

negative valence of feature weights indicated that higher values for each preceded incorrect 

behavioral responses. Model classification accuracy was 84 % and all additional 

performance statistics (F1 score = 0.96, precision = 0.92, recall = 1.0, estimated AUC of 

ROC = 0.98), suggested excellent model fit and stability. Cross-validation of this model 

applied to SZ data yielded lower, yet acceptable model, classification accuracy (74 %) and 

performance statistics (F1 score = 0.77, precision = 0.68, recall = 0.9, estimated AUC of 

ROC = 0.84). Accordingly, primary features determining SWMT performance in HC also 

applied to SZ; however, an overall decrease in model performance suggested that other or 

additional features were explanatory for SZ.
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To further assess the stability of SVM Model 1 based on HC data, the analysis was repeated 

with features entered separately by stage of WM processing (i.e., baseline, encoding, 

retention, retrieval). This analysis was conducted to determine whether experimenter 

decisions regarding method of feature entry (i.e., 60 features entered simultaneously vs. 15 

features entered into 4 separate models) would substantially influence the outcome of 

feature selection. Overall, the two approaches converged on the same primary features 

(Table 3). As observed with simultaneous entry of 60 EEG features, frontal gamma during 

encoding was the feature most highly weighted in predicting SWMT accuracy. Notably, the 

only two features identified at the encoding stage with non-zero weightings both involved 

gamma activity, the second feature being centrally distributed gamma, and together 

predicted SWMT trial performance with 96 % accuracy. Retrieval stage features also 

predicted SWMT with high accuracy (88 %) based primarily on occipital activity in gamma 

and theta 2 ranges (Table 3). In this case, the ordering of features differed slightly from the 

model constructed by simultaneous entry in that theta 2, rather than gamma, was most 

highly weighted. Furthermore, modeling data independently according to WM stage 

identified features that were evidently suppressed by the primary features of the original 

model. No feature representing the pre-trial baseline stage entered the original model when 

applied to HC data; however, a contribution of baseline activity accounted for almost 

entirely by central theta (feature weight = −1.13), in association with inaccurate 

performance, was identified when modeled independently. Finally, the contribution of 

retention stage activity to performance was best characterized by central theta 1, both when 

features were modeled simultaneously (Table 2, 3rd ranked feature) and independently by 

WM stage.

 Schizophrenia sample—Many more features entered the model when constructed 

using SZ sample data (Table 4), with central and frontal gamma during encoding identified 

as the primary classifiers of SWMT accuracy. As observed in the HC sample data, the 

valence of coefficients indicated that higher values for these features preceded incorrect 

behavioral responses. Interestingly, beta activity during retrieval was also identified as a 

predictor of trial accuracy but with a positive coefficient, indicating that higher activity 

preceded correct behavioral responses. Theta 1 during retention and theta 1 and gamma 

activity during retrieval entered as negative predictors of trial accuracy with weightings 

above .5. Overall classification accuracy was 80 % and model performance statistics (F1 

score = 0.80, precision = 0.78, recall = 0.83, estimated AUC of ROC = 0.88) suggested good 

fit and stability. Importantly, although SVM modeled directly on SZ data performed slightly 

better than when parameters extracted from HC Model 1 were applied to SZ data (i.e., F1 

scores of 0.80 and 0.77, respectively), gamma activity at encoding received the highest 

weightings in both cases.

 Model 2: Classification of diagnostic status

Features selected by SVM models used to classify diagnostic status (SZ labeled +1 and HC 

labeled −1) based on correct and incorrect behavioral responses are presented in Tables 5 

and 6, respectively. Overall classification accuracy of 79 % was achieved by EEG features 

selected from correct response trials, with higher values of frontal and central theta at 

baseline associated with SZ group membership (Table 5). Gamma band activity during 
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retrieval and encoding stages also entered the model but with relatively low weightings. 

Performance statistics of this diagnostic classification model were acceptable (F1 score = 

0.87, precision = 0.77, recall = 1, estimated AUC of ROC = 0.77). SVM modeled on 

incorrect trials (Table 6) identified frontal alpha at retrieval as the highest weighted feature, 

with a near-zero contribution of central gamma during encoding. The valence of coefficients 

indicated that higher values were associated with HC group membership. Performance 

statistics of this diagnostic classification model using incorrect trial data were exactly 

identical to those of the other model using correct trial data. Taken together, these findings 

are interpreted to suggest that SZ is generally distinguished from HC by higher levels of 

low-frequency (theta 1) spectral power at pre-trial baseline, and lower levels of alpha band 

power during retrieval than HC, particularly when WM load exceeds capacity (i.e., incorrect 

responses).

 Concurrent and external validity

 SVM Model 1—As a test of concurrent validity based on classification method, EEG 

features selected by SVM Model 1 in HC data (Table 2) were submitted to stepwise linear 

regression as predictors of SWMT total score in the full sample of HC and SZ participants 

(N = 52). The model was highly statistically significant (F(4, 47) = 37.67, p < 0.0005, R = 

0.87) and explained 76 % of the variance in SWMT score (Fig. 2). Central theta 1 during 

retention in correct trials entered as the first step, frontal gamma during encoding in correct 

trials as the second step, frontal gamma during encoding in incorrect trials as the third step, 

and central theta 1 during retention in incorrect trials as the fourth and final step (Table 7). 

Beta and partial correlation coefficients suggested that when participants answered 

incorrectly, presumably challenged by higher WM load, performance was associated with 

higher levels of frontal gamma during encoding and central theta 1 power during retention 

(beta = 0.38 and 0.39, partial r = 0.51 and 0.48, respectively), while lower levels were 

associated with correct responses (beta = −0.44 and −0.55, partial r = −0.62 and −0.61, 

respectively). The same EEG features were retained, with exactly the same model 

coefficients, when the regression analysis was repeated by replacing the predictors with the 

1st ranked feature of each WM stage (Table 3).

To examine external validity of the EEG features derived by SVM, the same regression 

model was repeated to predict MCCB WM Composite (Fig. 3) and CPT-IP (Fig. 4) scores in 

separate analysis. MCCB WM Composite score was predicted (F(2, 49) = 17.39, p < 0.0005, 

R = 0.64) with 42 % of variance explained by two features, i.e., frontal gamma during 

encoding in correct trials (R2 = 0.31, F change(1, 50) = 23.92, significant F change < 0.0005) 

and central theta 1 during retention in correct trials (R2 = 0.42, R2 change = 0.09, F 

change(1, 49) = 7.67, significant F change = 0.008). The direction of association was 

consistent with previous models, with frontal gamma at encoding (beta = −0.59, partial r = 

−0.61) and central theta 1 at retention (beta = −0.30, partial r = −0.37) associated negatively 

with working memory test performance. The CPT-IP was selected as an additional cross-

validation measure due to dependence of this task on visual encoding and retrieval processes 

similar to the SWMT. CPT-IP performance was predicted with 39 % of variance explained 

(F(3, 48) = 10.15, p < 0.0005, R = 0.62) based on three features: frontal gamma activity at 

encoding in correct trials as the first step (R2= 0.19, F change(1, 50) = 11.54, significant F 
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change = 0.001), central theta 1 activity at retention in correct trials as the second step (R2 = 

30, R2 change = 0.11, F change(1, 49) = 7.90, significant F change = 0.007), and occipital 

gamma activity at retrieval in incorrect trials as the third step (R2= 39, R2 change = 0.09, F 

change(1, 48) = 6.89, significant F change = 0.012). Consistent with prior models, beta and 

partial correlations for frontal gamma during encoding and central delta during retention in 

correct trials were negatively associated with CPT-IP AGT (beta = −0.45 and −0.32, partial r 
= −0.50 and −0.37, respectively) while occipital gamma during retrieval in incorrect trials 

entered with positive coefficients (beta = 0.30, partial correlation = 0.35). These results 

confirmed that EEG features modeled on SWMT performance are generalizable with respect 

to neuropsychological measures of working memory and visual attention.

 SVM Model 2—To cross-validate the diagnostic classification accuracy of SVM Model 

2, derived features (Tables 5 and 6), were submitted to discriminant function analyses of 

diagnostic membership (i.e., HC vs. SZ) using stepwise entry. The overall Wilk's lambda, Λ 

= 0.59, χ2(df = 4) = 25.67, p < 0.0001, indicated that there was a significant group-wise 

difference by diagnosis across four retained EEG features, with group centroids of 1.43 and 

−.48 for HC and SZ, respectively. The correlation structure of the discriminant function 

(Table 8) indicates that HC was classified with higher frontal alpha at retrieval and central 

gamma at encoding on incorrect trials, while SZ was associated with higher frontal theta 1 at 

baseline and central gamma at retrieval on correct trials. Overall diagnostic classification 

accuracy in the full sample was 87 % (sensitivity 90 %, specificity 77 %) with positive 

predicative power (SZ diagnosis) of 92 % and negative predictive power of 71 % probability. 

Leave-one-out cross-validation of this model replicated classifications with 83 % accuracy.

 Discussion

The primary aim of the current study was to evaluate the utility of machine learning 

methodology, specifically SVM, as a novel approach of EEG feature selection. EEG data 

involves many more variables than can be feasibility evaluated using conventional between-

groups statistical contrasts, a problem that requires experimenter decisions guiding a priori 
selection of features submitted to hypothesis testing. In doing so, questions remain as to 

whether the selected features, among an extensive range of possibilities, are indeed those 

most critical to the questions asked of the data. Machine learning approaches, in contrast, 

offer the benefit of considering all data and empirically determining the most relevant 

features from all possible solutions. In this way, machine learning solutions represent a 

paradigm shift from rationally deductive to data inductive methodology.

The current study employed machine learning classification to identify (1) EEG features 

predictive of SWMT accuracy in healthy adults, (2) EEG features predictive of SWMT 

accuracy in schizophrenia, and (3) controlling for SWMT accuracy, EEG features that 

distinguished healthy from schizophrenia group status. Using 1-norm SVM classification 

and 60 features based on SWMT stage (4; baseline, encode, retain, retrieve), EEG frequency 

band (5; theta 1, theta 2, alpha, beta, gamma), and electrode site (3; Fz, Cz, Oz), frontal 

gamma-band activity at encoding was identified as the primary classifier of trial accuracy 

(Tables 2 and 3), while frontal-central gamma also contributed substantially to classifiers 

constructed by diagnostic status (Table 8). In addition, the level of low-frequency activity 
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during the pre-stimulus baseline and activation of alpha during memory retrieval were 

identified as important diagnostic differences (Tables 5 and 8). In each case model 

performance was assessed by cross-validation and determined to adequately fit the data 

based on several metrics (i.e., F1-score, precision, recall, and estimated area under the ROC 

curve). Importantly, the EEG features identified by SVM seem both plausible and 

generalizable given prior literature reports regarding the role of gamma and alpha activity in 

working memory function and commonly higher levels of low frequency activity in resting 

EEG of individuals with schizophrenia.

Published reports describe an upward modulation of gamma band activity in response to 

higher working memory load in healthy participants, and an overall attenuation of gamma 

with a failure to modulate at higher memory loads in schizophrenia [24]. Our data partially 

support this finding but with an important difference in interpretation. As shown in Fig. 5, 

significant upward modulation of frontal gamma power in incorrect relative to correct trials 

is evident in schizophrenia and healthy samples alike. When tested statistically, encoding 

gamma was found to be significantly increased in incorrect relative to correct trials for both 

groups (paired-samples t tests; HC, t(11) = 5.37, p < 0.0005; SZ, t(39) = 7.01, p < 0.0005); 

however, the strength of this upward modulation was significantly greater in healthy 

participants (Correct-Incorrect×Group interaction effect, Wilk's Λ = 0.86, F(1, 50) = 8.46, p = 

0.005). However, of note, gamma modulation with accuracy appears to be evident by the 

time the first stimulus of the memory set is presented (i.e., by 1200 ms). Therefore, current 

results are not interpreted purely in context of a memory load effect. Rather, given that 

differences in gamma preceding correct and incorrect trials are already present and persist in 

the early stage of encoding, elevations of gamma band power may reflect changes in 

cognitive preparedness that occur from trial to trial. This interpretation is not entirely 

inconsistent with prior findings associating upward modulation of gamma at increased 

memory load with better working memory function. We suggest that the early presence of 

increased gamma preceding incorrect trials could indicate that gamma has already elevated 

to peak level, limiting the ability to further increase gamma with encoding of new 

information and, thereby, reducing trial accuracy. Further examination of reasons for 

elevated gamma preceding incorrect trials is beyond the scope of the current analysis, but 

possible explanations could include the extended maintenance of information, or perhaps 

cognitive response to error feedback, from the preceding trial. Pertinent to the current 

analysis, it would appear that individual differences in the overall magnitude of encoding 

gamma, found to be greater in healthy than schizophrenia groups, is better represented in 

incorrect than correct trials and, for this reason, activity preceding incorrect trials was found 

most predictive of SWMT performance in both groups. Consistent with prior findings [24, 

25], it does appear that working memory impairment in schizophrenia relates, in part, to a 

restriction of range in the ability to upregulate gamma in response to cognitive challenge.

Furthermore, SVM also identified central gamma activity during encoding as the most 

highly weighted feature predicting SWMT performance in schizophrenia, suggesting gamma 

activity extended over greater cortical areas than in healthy participants. Studies of 

postmortem brain tissue have provided strong evidence that the GABAergic system of left 

DLPFC is impaired in schizophrenia [37–39]. GABAergic interneurons appear to be crucial 

elements in the generation of synchronous neuronal activity in the gamma band [40–44]. 
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Results of phase locking and coherence analyses in schizophrenia patients further suggest 

that neuronal network functioning is impaired due to a failure of neuronal synchrony at 

gamma band frequency [45]. Based on present and previous studies, we speculate that 

extension of gamma activity from frontal to central cortical areas in patients may be 

compensatory in response to inefficiency of frontal activity generated in the DLPFC [38, 

46].

Data-driven approaches for EEG feature selection would seem particularly useful, if not 

essential, when working with complex cognitive experiments that entail several stages of 

information processing, as well as for common experiments that can nonetheless be 

analyzed by spectral decomposition of EEG in multi-channel recordings. Although 1-norm 

SVM classification was selected for the current study, this is by no means the only approach 

to consider and research in this area could be expanded by comparing and optimizing other 

machine learning approaches for use with EEG data. Graphical models, which take into 

account some network correlations, or Gaussian Process regression, which can identify 

nonlinear relationships in the data, may be other promising approaches. A future direction 

for analysis based on SVM is to develop new machine learning methods that can optimize 

simultaneous modeling of the spatial and temporal distribution of the EEG features, to better 

account for change in EEG frequency amplitude at different scalp locations over time. 

Feature selection using such spatial-temporal modeling could also become more precise by 

accommodating single-trial data and larger electrode arrays.

The current study was limited in terms of sample size, particularly of healthy community 

participants and, therefore, models derived may not be optimized for the broad range of 

abilities represented in the population at large. Our objective in analyzing the current data set 

was primarily to demonstrate how SVM could be applied to data analytic questions that 

involve many potential dependent measures. As an analytic solution for big data problems, 

the performance of SVM improves with larger and, presumably, more stable datasets 

inclusive of the full range of possible values on the parameters involved. Nevertheless, cross-

validation of the features selected by SVM with regard to external measures of working 

memory performance and diagnostic classification by discriminant function suggested that 

the derived models performed well within the constraints of the current sample. EEG data 

modeled on SWMT performance in healthy participants explained 76 % of variance in task 

performance across samples and demonstrated a linear relationship that appeared a good fit 

for schizophrenia data over the full range of performance (Fig. 2). Of note, healthy 

participants generally responded to at least 70 of 90 trials correctly, representing 78 % 

accuracy. Individuals with schizophrenia who performed in this range also exhibited neural 

activity in the average to above-average range (i.e., standard score values of 0 and above) 

relative to the sample distribution, while EEG values were generally within 1 standard 

deviation below average for those performing below 78 % accuracy. With larger samples, 

contributing to better overall normative estimates, it would be conceivable to construct 

neurophysiological test batteries comparable to standard neuropsychological tests that 

provide individual measures of performance on multiple domains based on precise measures 

of neural activity. This information could inform treatment selection and outcome 

measurement of interventions targeting cognitive impairment through cognitive remediation 

training using task-related neurofeedback methods [47, 48].
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 Conclusions

In summary, we conclude that SVM successfully identified EEG features associated with 

working memory performance that are consistent with, and rationally predicted, based on 

prior literature. Selected features highlight the roles of gamma activity during encoding and 

theta during memory retention as EEG components contributing similarly to Sternberg 

performance in both healthy and schizophrenia study samples. Importantly, these same 

features explained substantial portions of variance in working memory and visual attention 

ability when assessed by standardized neuropsychological tests, lending support to the 

external validity of these findings. Furthermore, SVM produced a diagnostic classifier 

achieving 87 % accuracy in distinguishing individuals with schizophrenia. Gamma activity 

during encoding remained to be a primary feature distinguishing groups, with lower alpha 

during retrieval and increased theta during pre-stimulus baseline as additional features 

characterizing schizophrenia. These results, based only on data collected using the Sternberg 

task, compare favorably with another recent example of SVM applied to P300 and mismatch 

negativity task data, where nearly 85 % classification accuracy was achieved [49], as well as 

to prior efforts to enhance diagnostic classification using multiple EEG experiments and 

traditional regression approaches [50]. Taken together, machine learning approaches, such as 

SVM, show considerable potential as an analytic strategy for data reduction and feature 

selection of complex EEG datasets.
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Fig. 1. 
Example of Sternberg Working Memory Task (SWMT) trial depicting span of 4 items and 

time spans of pre-stimulus baseline, encoding, retention, and retrieval stages. Span ranged 

from 4–8 items, with span width and items selected randomly on a trial by trial basis
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Fig. 2. 
Scatterplot of Sternberg Working Memory Task (SWMT) performance (out of 90 trials 

possible) as predicted by SVM Model 1 across the full study sample (N = 52). Multiple 

regression explained 76 % of the variance in SWMT performance based on frontal gamma 

activity during encoding and central theta 1 activity during retention. Both correct and 

incorrect trials entered the model for each feature. SVM Model 1 score (x-axis) represents 

the residual difference between predicted (trend line) and observed value for SWMT 

performance
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Fig. 3. 
Scatterplot of MCCB Working Memory (WM) Composite score (standardized; t-score) as 

predicted by SVM Model 1 across the full study sample (N = 52). Multiple regression 

explained 42 % of the variance in MCCB WM score based on frontal gamma activity during 

encoding and central theta 1 activity during retention, with only data from correct trials 

entered entering the model for each feature. SVM Model 1 score (x-axis) represents the 

residual difference between predicted (trend line) and observed value for MCCB WM score
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Fig. 4. 
Scatterplot of Continuous Performance Test-Identical Pairs version (CPT-IP) score 

(standardized; t-score) as predicted by SVM Model 1 across the full study sample (N = 52). 

Multiple regression explained 39 % of the variance in CPT-IP score based on frontal gamma 

activity during encoding and central theta 1 activity during retention for correct trials and 

occipital gamma activity at retrieval for incorrect trials. SVM Model 1 score (x-axis) 

represents the residual difference between predicted (trend line) and observed value for CPT-

IP score
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Fig. 5. 
Overlay of group average data for correct and incorrect trials extracted in gamma band 

(31.48 – 49.16 Hz) during encoding stage. Gamma increased significantly preceding 

incorrect relative to correct trials for both groups (paired-samples t tests; HC, t(11) = 5.37, p 
< 0.0005; SZ, t(39) = 7.01, p < 0.0005) and interacted by group (Wilk's Λ = 0.86, F(1, 50) = 

8.46, p = 0.005), with HC evidencing significantly greater range of modulation by accuracy 

level. Data submitted to statistical analysis was extracted from 1000–7000 ms, essentially 

containing the period of 200 ms prior to onset of first stimuli in set to 200 ms following 

onset of the 5th stimuli of the memory set (or 1400 ms following offset of the 4th stimuli). 

Importantly, as depicted in the figure, differences in gamma activity by accuracy were 

present before onset of first stimuli of each trial (0–1200 ms) and, therefore, are not 

interpreted to represent a memory load effect in these data
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Table 2

EEG Features Predicting Trial Accuracy in HC

Location WM stage Frequency Feature Weight

Frontal Encode gamma −1.500

Occipital Retrieve theta 2 −0.861

Central Retain theta 1 −0.097

Central Retrieve gamma −0.096

Occipital Baseline theta 1 −0.035

Features extracted by 1-norm SVM to classify correct vs. incorrect trials in HN. Model based on simultaneous entry of 60 EEG features with 
correct trials labeled 1 and incorrect labeled −1. All other features weighted at 0
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Table 3

SVM Model 1 Coefficients Extracted by Stage of Working Memory

WM Stage Frequency Feature Weight

Baseline Accuracy = .77

  Central theta 2 −1.127

  Occipital beta −0.183

  Frontal theta 1 −0.158

  Occipital theta 2 −0.143

intercept 0.480

Encode Accuracy = .96

  Frontal gamma −1.693

  Central gamma −0.748

intercept 0.607

Retain Accuracy = .77

  Central theta 1 −1.192

  Occipital theta 2 −0.307

intercept 0.500

Retrieve Accuracy = .88

  Occipital gamma −1.380

  Occipital theta 2 −0.646

  Central gamma −0.261

intercept 0.597

Four separate SVM Models were constructed in HN with entry of 60 EEG Features by WM Stage. Features extracted by 1-norm SVM to classify 
correct vs. incorrect trials with correct trials labeled 1 and incorrect labeled −1. Intercepts of four models were equivalent. All other features 
weighted at 0
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Table 4

EEG Features Predicting Trial Accuracy in SZ

Location WM stage Frequency Feature Weight

Central Encode gamma −1.169

Frontal Encode gamma −0.916

Central Retrieve beta 0.704

Central Retain theta 1 −0.611

Central Retrieve theta 1 −0.601

Frontal Retrieve gamma −0.600

Central Encode alpha 0.409

Occipital Retrieve theta 1 −0.371

Occipital Retain beta −0.350

Central Baseline theta 1 −0.204

Frontal Retain theta 1 −0.168

Frontal Encode theta 1 −0.032

Frontal Encode theta 2 −0.029

Occipital Retain gamma −0.001

Features extracted by 1-norm SVM to classify correct vs. incorrect trials in SZ. Model based on simultaneous entry of 60 EEG features with correct 
trials labeled 1 and incorrect labeled −1. All other features weighted at 0

Neuropsychiatr Electrophysiol. Author manuscript; available in PMC 2016 June 30.



V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript

Johannesen et al. Page 28

Table 5

EEG Features Predicting Diagnostic Group Based on Correct Trials

Feature Name WM stage Frequency Feature Weight

Frontal Baseline theta 1 0.529

Central Baseline theta 2 0.302

Central Retrieve gamma 0.254

Frontal Encode gamma 0.108

Frontal Baseline theta 2 0.037

Features extracted by 1-norm SVM to classify HN vs. SZ status in correct trial data. SZ is labeled 1 and HN labeled −1. All other features weighted 
at 0
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Table 6

EEG Features Predicting Diagnostic Group Based on Incorrect Trials

Location WM Stage Frequency Feature Weight

Frontal Retrieve alpha −0.541

Central Encode gamma −0.027

Features extracted by 1-norm SVM to classify HN vs. SZ status in incorrect trial data. SZ is labeled 1 and HN labeled −1. All other features 
weighted at 0
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Table 8

Discriminant Function Structure Matrix

Location WM Stage Accuracy Frequency Function

Frontal Retrieve incorrect alpha 0.571

Central Encode incorrect gamma 0.536

Frontal Baseline correct theta 1 −0.473

Central Retrieve correct gamma −0.340

Centrala Baseline correct theta 2 −0.325

Frontala Baseline correct theta 2 −0.219

Frontala Encode correct gamma −0.003

Pooled within-group correlations between SVM Model 2 features and standardized canonical discriminant functions classifying SZ vs. HC.

a
Feature excluded from analysis by stepwise entry
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