Contents lists available at ScienceDirect

Genomics Data

journal homepage: http://www.journals.elsevier.com/genomics-data/

Association of aging with gene expression profiling in mouse submandibular glands

Yoshiro Saito ^{a,b}, Atsushi Yamada ^{a,*}, Dai Suzuki ^a, Junichi Tanaka ^c, Ryo Nagahama ^{a,d}, Tamaki Kurosawa ^a, Koutaro Maki ^d, Kenji Mishima ^c, Tatsuo Shirota ^a, Ryutaro Kamijo ^a

^a Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan

^b Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ohta, Tokyo 145-8515, Japan

^c Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan

^d Department of Orthodontics, School of Dentistry, Showa University, Ohta, Tokyo 145-8515, Japan

ARTICLE INFO

Article history: Received 12 May 2015 Accepted 21 May 2015 Available online 30 May 2015

Keywords: Submandibular gland Aging Microarray

ABSTRACT

Aging, also called senescence, is thought to be a physiological phenomenon that commonly occurs in various organs and tissues (Enoki et al., 2007 [1]). Many older adults experience dysfunction in their salivary glands, for example xerostomia, which is defined as dry mouth resulting from reduced or absent saliva flow (Nagler et al., 2004 [2]). In the present study, we investigated gene expression in submandibular glands of young (8 weeks old) and adult (50 weeks old) mice to analyze association of aging with gene expression profiling in mouse submandibular glands. Whole-genome gene expression profiles were analyzed using an Illumina Sentrix system with Mouse-WG-6 v.2 Expression BeadChips (Illumina). Of the genes screened, 284 showed detection values at a significance level of P < 0.01. Among those, the expression of 94 genes (33%) showed a greater decrease in adult mice as compared to young mice. On the other hand, that of 190 genes (77%) was increased in the adults more than in young mice. The data obtained in this study are publicly available in the Gene Expression Omnibus (GEO) database (accession number GSE66857).

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Specifications	
Organism/cell line/tissue	Mus musculus/submandibular glands of young
	(8 weeks old) and adult (50 weeks old) mice
Sex	Male
Sequencer or array type	Illumina Mouse-WG-6 v.2 expression bead chip
Data format	Raw and analyzed
Experimental factors	Expression patterns in submandibular glands of
	young (8 weeks old) and adult (50 weeks old)
	mice were analyzed to determine aging-dependent
	gene expression.
Experimental features	Microarray analysis of gene expression associated
	with aging in mouse submandibular glands.
Consent	N/A
Sample source location	1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan

* Corresponding author at: Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan. Tel.: +81 3 3784 8163; fax: +81 3 3784 5555.

E-mail address: yamadaa@dent.showa-u.ac.jp (A. Yamada).

1. Direct link to deposited data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66857.

2. Experimental design, materials, and methods

2.1. Introduction

The submandibular glands (SMGs) participate as major salivary secreting organs to secrete fluids rich in proteins that are critical for maintenance of oral health [1-3]. The SMGs have been reported to increase in proportional volume of fat and connective tissues with a reduction in that of acini with aging, though without any remarkable change in the volume of the duct system [4]. For investigation of age-dependent changes in the expression of genes in SMGs, a gene expression array can provide a comprehensive view of the expression pattern. The Illumina Sentrix system using Mouse-WG-6 v.2 Expression BeadChips (Illumina) reflects the latest advancements in mouse genomics and provides biologically relevant information for gene expression studies, while GenomeStudio Data Analysis Software is useful for visualizing and analyzing data obtained with the

2213-5960/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Data in Brief

CrossMark

1. Julio el ul. / Genomics Dulu J (2013/11J-11.

Table 1

Sequences of primers used for quantitative PCR.

Gene	Primer	Sequence
Pdcd4	Forward	5'-GGATGAGACCGCATTTGAGAA-3'
	Reverse	5'-AGGCTAAGGACACTGCCAACAC-3'
Ttr	Forward	5'-GGTCAAAGTCCTGGATGCTGTC-3'
	Reverse	5'-CCAGTACGATTTGGTGTCCAGTTC-3'
Pdk4	Forward	5'-CAGGTTATGGGACAGACGCTATCA-3'
	Reverse	5'-TGCTTGGGATACACCAGTCATCA-3'
Ly6d	Forward	5'-CCAGCAGGGCCATGTCA-3'
	Reverse	5'-AGGTCAGTCTGGCAGCATTGT-3'
Kik1	Forward	5'-TGACAGATGACATGTTGTGTGCAG-3'
	Reverse	5'-GATACCCGGCACATTGGGTTTA-3'
Creld2	Forward	5'-GCGATGGCCAGTACTGTGAGAA-3'
	Reverse	5'-CTGTACAGCCCACGCAGGTAGA-3'
Igfbp2	Forward	5'-GGCCGGTACAACCTTAAGCA-3'
	Reverse	5'-GGGTTCACACCAGCACTC-3'
Sdf2l1	Forward	5'-GCTGCACTCACACGACATCAA-3'
	Reverse	5'-CGCGAATCCGCCAGTAACTA-3'
Tgm2	Forward	5'-CAACCTGACCCTGGATCCCTA-3'
	Reverse	5'-TCAGGCACCCGCTGTACTTC-3'

Illumina array platform. In the present study, we used cDNA microarray analysis to detect age-associated changes in gene expression of mouse SMGs.

2.2. Animal treatment

All animal experiments were conducted in accordance with the guidelines of Showa University. C57BL/6J mice were obtained from Sankyo Laboratory and housed in the Animal Facility at Showa University. We used 8- and 50-week-old mice as the young and adult, respectively, groups.

2.3. Tissue preparation

For general histopathological examinations, all samples were fixed in 4% paraformaldehyde and processed into frozen sections using routine procedures, then stained with hematoxylin–eosin (H–E).

2.4. Whole-genome expression assay and microarray data analysis

Whole-genome gene expression profiles in the SMGs of each mouse were analyzed using an Illumina Sentrix system with Mouse-WG-6 v.2 Expression BeadChips (Illumina), which includes 45,281 Illumina probes to detect transcriptants covering 30,854 genes, using a previously reported method [5]. First, total RNA was extracted with TRIzol reagent (Life Technologies) from whole SMGs, then 500 ng was subjected to RNA amplification, which was performed with an Illumina TotalPrep RNA Amplification Kit (Ambion), according to the manufacturer's instructions. Biotinylated cRNA was then hybridized to Mouse-WG-6 v.2 Expression BeadChips and reacted with streptavidin-cy3 (GE Healthcare). Finally, the expression intensity of the transcripts on the BeadChips was detected using an Illumina iScan reader. Raw BeadChip image data were subjected to expression analyses using the manufacturer's software (GenomeStudio v.2011.1, Gene Expression Module v.1.9.0). A heat map was generated by hierarchical clustering of the selected transcripts based on the gene expression profiles (expression ratio: AVG_signal of adult mice/AVG_signal of young mice).

2.5. Quantitative real-time PCR

Total RNA was extracted using TRIzol reagent (Life Technologies), then reverse transcribed using ReverTra Ace® qPCR RT Master Mix (TOYOBO). Quantitative real-time PCR was performed using a SYBR green Fast PCR system (GE Healthcare), with the following primer sequences shown in Table 1.

Fig. 1. Representative sections from submandibular glands of young and adult mice (H & E, scale bars: 100 µm). Black arrows, acinar cell; red arrows, duct.

Fig. 2. Genome wide gene expression profiling of submandibular glands from C57BL/6J mice at 8 (young) and 50 (adult) weeks old. Biotinylated cRNA was synthesized from total RNA and hybridized to Illumina MouseWG-6 v.2 Expression BeadChips. Raw expression intensity data were analyzed using GenomeStudio Software. (A) Scatterplots of the AVE_Signal for young and adult mice were generated. (B) Heat map illustration of gene expression profiles in young and adult mice. Hierarchical clustering was based on relative gene expression levels (AVG_Signal/AVG_Signal of C57BL/6J mouse). (C) Selected 284 transcript expression changes among young and adult mice based on whole-genome expression analysis.

3. Results and discussion

SMGs in both the young and adult mice consisted of acini, a duct system, and interstitial connective tissues. The nuclei of the acinar cells were restricted to the basal side, where cytoplasm filled clear granules in both phenotypes. In the young mice, duct cells as well as intercalated, granular, striated, and excretory cells were clearly identified in the duct system of the SMGs (Fig. 1A). On the other hand, histological findings of those from adult mice showed mainly periductal inflammation of lymphocytes in the SMGs and inflammatory cell infiltration leading to destruction of acini (Fig. 1B).

To elucidate the molecular mechanisms of changes associated with age in the mice, we performed whole-genome expression assays using the Illumina Sentrix platform with Mouse WG-6 v.2 Expression BeadChips. Obtained raw signal intensity data were analyzed using GenomeStudio Software. Following baseline subtraction and normalization, among the 45,281 transcripts of all detected genes, 284 showed an expression detection significance of P < 0.01. The expression levels of those 284 transcripts differed between the young and adult mice. Scatterplots for both groups displayed a symmetrical AVG_Signal distribution around linear identity lines to form a 45° angle. The expression levels of 3 genes in the adult mice showed a greater than two-fold reduction, while those of 12 genes showed a greater than two-fold increase (Fig. 2A). Of the 284 transcripts, 94 exhibited lower and 190 exhibited higher expression in adults as compared to the young mice (Fig. 2B). The categories of the altered genes are shown in Fig. 2C. Of the 284 genes, 50 (17.6%)

Table 2

Highly differentially expressed gene profiles in submandibular glands from young and adult mice. Genes noted by *red font* were subjected to quantitative real-time PCR analysis.

		Signal intensity			
Probe ID	Symbol	Young mice	Adult mice	Fold change	
Probe ID ILMN_2898878 ILMN_2443330 ILMN_243330 ILMN_1243212 ILMN_1259322 ILMN_1258629 ILMN_2600466 ILMN_2747923 ILMN_2747923 ILMN_2747921 ILMN_2760199 ILMN_2810882 ILMN_216561 ILMN_2691996 ILMN_2499264 ILMN_2499264 ILMN_257299 ILMN_257299 ILMN_2637094 ILMN_2637094 ILMN_2637094 ILMN_2637094 ILMN_2637094 ILMN_2637094 ILMN_271436 ILMN_2739449 ILMN_2737848 ILMN_2437848	Symbol Pdccd4 Ttr Ly6d Sparc Pdk4 Col3a1 EG433229 Slc40a1 Aadacl1 Sparc Klk1 Ppic Tsc22d3 Ascl3 5730469M10Rik 4933428A15Rik Col1a1 G0s2 Atp6v1c2 Adamts2 Pcsk6 Aldh1a3 Abpg Col4a5 Adamts2	Young mice 1078 1143 441.2 693.5 395.3 482.5 679.9 396.1 569.1 924 31322 345.7 763.7 763.7 763.7 661.9 973.3 414.6 430.5 1418 474.9 1030 232.9 261.4 855.9 237.6 609.2	Adult mice 413.4 523.7 213.8 361.2 209.9 268.6 379.4 229.8 331.3 537.9 18240 208.5 468 408.4 408.4 408.4 400.5 256.7 268.4 885 303.2 658.5 149 169.1 556.5 155.2 398.3	Fold change 0.38 0.46 0.48 0.52 0.53 0.56 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58	
ILMN_2670398 ILMN_1245043 ILMN_2795698 ILMN_3052781 ILMN_1240264	Eif4ebp1 LOC226017 Paox SIc25a34 Usp2	1928 324.5 546 268.5 429.3	1271 215.5 370.8 186 297.8	0.66 0.66 0.68 0.69 0.69	
ILMN.2704562 ILMN.2744600 ILMN.2744600 ILMN.2635272 ILMN.1245146 ILMN.245146 ILMN.245146 ILMN.2440642 ILMN.2340642 ILMN.239102 ILMN.2707675 ILMN.2707675 ILMN.2776334 ILMN.2757368 ILMN.275768 ILMN.22565 ILMN.1242466 ILMN.2259665 ILMN.1242466 ILMN.22990657 ILMN.22930897 ILMN.22930897 ILMN.22930897 ILMN.22930897 ILMN.229364 ILMN.2159564	LOC100047628 Igk-C Igh-6 Igh-V558 Igl-V1 Igh-VJ558 Ptgds St6galnac2 H2-Eb1 LOC641240 Gal H2-Ab1 Igfbp5 Creld2 LOC31239 Lgals3bp Cd209f Psmb9 Tmem176a Igfbp2 Creld2 Sdf211 ligp2 Actg2	$\begin{array}{c} 255.1\\ 298.1\\ 184.6\\ 182.9\\ 178.9\\ 130\\ 128.9\\ 641.8\\ 651.6\\ 958.9\\ 293.6\\ 495.2\\ 668.2\\ 595.8\\ 877\\ 327.6\\ 140.3\\ 196.1\\ 769.5\\ 191\\ 828\\ 290.6\\ 215.3\\ 337.6\end{array}$	$\begin{array}{c} 14370\\ 15863\\ 8241\\ 4595\\ 4108\\ 2044\\ 445.3\\ 1844\\ 1703\\ 2458\\ 698.9\\ 1135\\ 1284\\ 1146\\ 1688\\ 611.1\\ 262\\ 366\\ 1438\\ 352.5\\ 1525\\ 524.9\\ 387.3\\ 597.5\\ \end{array}$	56.34 53.21 44.63 25.12 22.96 15.73 3.45 2.87 2.61 2.56 2.38 2.29 1.92 1.92 1.92 1.92 1.87 1.87 1.87 1.87 1.87 1.84 1.81 1.8 1.77	
ILMN_2692615 ILMN_2725927 ILMN_2954868 ILMN_2658501 ILMN_1224855 ILMN_2728134 ILMN_2682613 ILMN_2682613	Tgm2 Serpina3g Oasl2 Ifitm3 Samd9l 5430433G21Rik Igfbp5 Broja2a	520.5 142.8 370.9 1207 308.7 422.8 699.5 8200 2	922.9 245.5 625 2016 509.6 692.6 1147	1.77 1.72 1.69 1.67 1.65 1.64 1.64	

encode transcription regulation, 47 (16.5%) encode signal transduction, 36 (12.7%) encode enzymes, and 17 (6%) encode immunity. Table 2 shows the 30 genes with lower (<0.69) and 32 genes with higher (>1.63) fold changes in expression level in the adults as compared to the young mice. To verify the microarray data, 9 genes (*red* in Table 2) were randomly selected and quantitative PCR was performed (Fig. 3), with the results consistent with the microarray findings.

Among the 9 picked-up genes, Pdcd4 (Programmed cell death 4) is characterized as a potent tumor suppressor and known to inhibit the function of transcription factors, such as AP-1 transactivation [6–8]. Furthermore, Hayashi et al. demonstrated that miR-21, whose target gene is Pdcd4 and regulates branching morphogenesis in the submandibular glands [8]. In the present study, Pdcd4 was decreased in the SMGs of adult mice. Additional experiments are required to fully elucidate the mechanism involved in that decrease.

Conflict of interest

The authors declare that there are no potential conflicts of interest with respect to the authorship and/or publication of this article.

Fig. 3. Quantitative PCR analysis. Results are shown as the mean \pm SEM of 6 samples. *P < 0.05, **P < 0.0; Student's *t* test.

Acknowledgments

This work was supported in part by the Grants-in-Aid for scientific research from the Japan Society for the Promotion of Science (24592813 to AY).

References

- [1] N. Enoki, T. Kiyoshima, T. Sakai, I. Kobayashi, K. Takahashi, Y. Terada, H. Sakai, Agedependent changes in cell proliferation and cell death in the periodontal tissue and the submandibular gland in mice: a comparison with other tissues and organs. J. Mol. Histol. 38 (2007) 321–332.
- [2] R.M. Nagler, Salivary glands and the aging process: mechanistic aspects, health-status and medicinal-efficacy monitoring. Biogerontology 5 (2004) 223–233.
- [3] C.Q. Nguyen, A. Sharma, B.H. Lee, J.X. She, R.A. McIndoe, A.B. Peck, Differential gene expression in the salivary gland during development and onset of xerostomia in Sjogren's syndrome-like disease of the C57BL/6.NOD-Aec1Aec2 mouse. Arthritis Res. Ther. 11 (2009) R56.

- [4] H. Suzuki, N. Amizuka, M. Noda, O. Amano, T. Maeda, Histological and immunohistochemical changes in the submandibular gland in klotho-deficient mice. Arch. Histol. Cytol. 69 (2006) 119–128.
- Cytol. 69 (2006) 119–128.
 [5] S. Kasai, K. Ikeda, Reduced supraspinal nociceptive responses and distinct gene expression profile in CXBH recombinant inbred mice. J. Pain 14 (2013) 648–661.
- [6] A.K.Krichevsky, G. Gabriely, miR-21: a small multi-faceted RNA. J. Cell. Mol. Med. 13 (2009) 39–53.
- [7] H.S. Yang, A.P. Jansen, R. Nair, K. Shibahara, A.K. Verma, J.L. Cmarik, N.H. Colburn, A novel transformation suppressor, Pdcd4, inhibits AP-1 transactivation but not NFkappaB or ODC transactivation. Oncogene 20 (2001) 669–676.
- [8] T. Hayashi, N. Koyama, Y. Azuma, M. Kashimata, Mesenchymal miR-21 regulates branching morphogenesis in murine submandibular gland in vitro. Dev. Biol. 352 (2011) 299–307.