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Abstract

The aim was to undertake an initial study of the relationship between texture features in computed tomography (CT)
images of non-small cell lung cancer (NSCLC) and tumour glucose metabolism and stage. This retrospective pilot
study comprised 17 patients with 18 pathologically confirmed NSCLC. Non-contrast-enhanced CT images of the
primary pulmonary lesions underwent texture analysis in 2 stages as follows: (a) image filtration using Laplacian
of Gaussian filter to differentially highlight fine to coarse textures, followed by (b) texture quantification using mean
grey intensity (MGI), entropy (E) and uniformity (U) parameters. Texture parameters were compared with tumour
fluorodeoxyglucose (FDG) uptake (standardised uptake value (SUV)) and stage as determined by the clinical report
of the CT and FDG-positron emission tomography imaging. Tumour SUVs ranged between 2.8 and 10.4. The number
of NSCLC with tumour stages I, II, III and IV were 4, 4, 4 and 6, respectively. Coarse texture features correlated with
tumour SUV (E: r¼ 0.51, p¼ 0.03; U: r¼�0.52, p¼ 0.03), whereas fine texture features correlated with tumour stage
(MGI: rs¼ 0.71, p¼ 0.001; E: rs¼ 0.55, p¼ 0.02; U: rs¼�0.49, p¼ 0.04). Fine texture predicted tumour stage with a
kappa of 0.7, demonstrating 100% sensitivity and 87.5% specificity for detecting tumours above stage II ( p¼ 0.0001).
This study provides initial evidence for a relationship between texture features in NSCLC on non-contrast-enhanced
CT and tumour metabolism and stage. Texture analysis warrants further investigation as a potential method for
obtaining prognostic information for patients with NSCLC undergoing CT.
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Introduction

Lung cancer is the most common cause of death related
to cancer worldwide[1], accounting for more than 1.2
million deaths annually[2]. Non-small cell lung carcinoma
(NSCLC) is the most common form of lung cancer
prevalent in 80% of all cases[3]. Computed tomography
(CT) is widely used for the initial diagnosis and staging
of patients with NSCLC and computer-based image
analysis has been proposed as a means to improve the
diagnostic performance of CT in lung cancer through

improved lesion detection and classification of lesions
as benign or malignant[4�10]. There has been interest in
using these image analysis methods as part of CT-based
lung cancer screening programs and commercial analysis
systems are now available[5,11,12].

Although these diagnostic uses of image analysis are
well recognised, the application of similar analysis tech-
niques to identify adverse features of lung tumours fol-
lowing diagnosis is largely unexplored. Intratumoural
necrosis, haemorrhage and myxoid change are known
to cause areas of low attenuation in CT images of lung
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and other tumours[13,14]. It is feasible that tumours con-
taining such areas of low attenuation could be recognised
by texture analysis methods that quantify local variations
in image brightness within a pulmonary lesion. These
pathological features are also acknowledged to be asso-
ciated with increased tumour aggression and it is there-
fore possible that texture analysis could identify lung
tumours with adverse biological characteristics[13,15].
Such information might potentially contribute to the pro-
cess of tumour staging through additional risk stratifica-
tion of individual patients. This study aims to undertake
a preliminary evaluation of the relationship between
CT of NSCLC and tumour glucose metabolism and
stage, which are both recognised prognostic factors in
lung cancer[16,17].

Materials and methods

This study was performed on archival patient image data
that had been acquired as part of an imaging research
program to evaluate tumour angiogenesis with a diagnos-
tic contrast-enhanced (CE) CT examination and glucose
metabolism using fluorodeoxyglucose (FDG)-positron
emission tomography (PET) examination. The Institu-
tional Review Board had approved this research study
along with further retrospective image analysis of the
data and written consent had been obtained from all
patients for the imaging studies.

Patients

This archival retrospective imaging study comprised
17 consecutive patients (11 men and 6 women; mean
age 64 years; age range 56�72 years; mean weight
71.5 kg; weight range 45�89 kg), who were recruited by
their referring physician, underwent CE CT and FDG-
PET as part of their clinical investigation for a lung
lesion. FDG-PET and CT were performed within 48 h.
Histological examination of biopsy material confirmed 18
NSCLC in 17 patients. Patients were grouped as stage I,
II, III or IV using conventional CT criteria for tumour
size and local invasion and PET assessments of nodal
and distant metastases.

CT image acquisition

The non-CE images obtained before contrast material
injection were used for texture analysis. Images had
been localized at the level of the largest transverse dimen-
sion of the lung lesion (CT Twin: Elscint, Haifa, Israel)
for 1 s duration (300 mA, 120 kVp, 10-mm section thick-
ness). The in-plane resolution for the non-CE CT images
used in this study was 0.84 mm.

FDG-PET acquisition and analysis

All patients had undergone a FDG-PET study after a fast
of at least 6 h. Patients� weight and blood glucose level

had been recorded; 150 to 250 MBq of FDG had been
injected with imaging performed at 60 min after injection
with a dedicated sodium iodide PET scanner (Quest; GE
Medical Systems, Milwaukee, USA). Emission data had
been collected for 4 min for each 12.5-cm field of view
with 6.4-cm overlap. Transmission scanning had been
performed either before or during acquisition of emission
data using a caesium-137 rod source. Attenuation cor-
rected images (128� 128 pixels, slice thickness of
4 mm) had been produced by iterative reconstruction.
The x�y resolution of the system using this reconstruc-
tion algorithm was approximately 6 mm full-width at half-
maximum. The standardised uptake value (SUV) for
FDG had been determined (after decay corrected activity
concentration) for the largest transverse cross-section for
each lung lesion similar to the location at which CT
acquisition was performed. The SUV for a region of inter-
est (ROI) constructed over this lung lesion was defined
as follows:

SUV ¼
Activity concentration in the tissue ½Bq=g�

Administered activity ½Bq�=body weight ½g�
ð1Þ

Only the mean SUV (SUVmean) was available in
this archived retrospective study rather than maximum
SUV (SUVmax) that is more commonly used in current
practice.

Lung lesion densitometry and
texture analysis

For each lung lesion, x-ray attenuation and texture were
assessed within the reconstructed 10-mm non-CE CT
image transferred to a personal computer. Texture analysis
comprised 2 stages: (a) image filtration using Laplacian of
Gaussian (LoG) spatial band-pass filter, followed by (b)
quantification of texture. This analysis methodology pre-
viously used for hepatic texture analysis[18], processed
each conventional CT image to produce a series of derived
filtered images displaying fine, medium and coarse texture
features, respectively (Fig. 1). This algorithm was devel-
oped and implemented in-house initially as a research pro-
totype written in MATLAB (technical computing
language, Mathworks Inc, Natick, USA) and currently
developed as a standalone clinical prototype.

Within the ROI drawn around the lung lesion on
conventional CT imaging, a thresholding procedure was
carried out to exclude air by removing from analysis any
pixels with attenuation values below �50 Hounsfield
units (HU). The ROIs were drawn in a semi-automated
manner whereby the operator initially draws a ROI
roughly enclosing the lesion while excluding the bones.
In an automated approach the ROI updates itself based
on the above threshold (�50 HU), segmenting out the
exact lesion removing any residual air that may have been
included within the initial ROI.

In brief, the texture in each derived filtered image as
well as the conventional CT image (i.e. without filtration)
was quantified by calculating the mean grey-level
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intensity (MGI, i.e. brightness; without image filtration
this parameter is the same as CT lung lesion density in
HU also known as CT number), entropy (reflects inten-
sity and inhomogeneity) and uniformity (reflects how
close the image is to a uniform distribution of the grey
levels) within the ROI. These parameters are defined
below where R is the ROI within the image a(x,y), N is
the total number of pixels in R, l is the number of grey
levels (e.g. l¼ 1 to k indicates grey level from 1 to k) in
and p(l) is the probability of the occurrence of the grey
level l based on the image histogram technique:

Mean grey � level intensity ðMGIÞ ¼
1

N

X

ðx,yÞ2R

a x,yð Þ½ � ð2Þ

Entropy ðEÞ ¼ �
Xk

l¼1

pðlÞ½ � log2 pðlÞ½ � ð3Þ

Uniformity ðU Þ ¼
Xk

l¼1

pðlÞ½ �
2

ð4Þ

Entropy and uniformity are additional statistical image
parameters that give further insight into the distribution
of tissue attenuation information lost when averaging

intensity over a large area. These features are perceived
visually as image texture. A summary of all the texture
parameters calculated is given in Table 1. A single oper-
ator under supervision from a researcher with 4 years
experience in texture analysis of radiographic images per-
formed the analyses. Both were blinded to the results of
FDG-PET analysis.

Statistical analysis

Linear regression analysis was used to assess the statisti-
cal correlations between CT tumour texture and SUV on

Figure 1 (A) Conventional non-CE CT image with the lung lesion and corresponding images selectively displaying
(B) fine, (C) medium and (D) coarse lung lesion texture, respectively. Fine, medium and coarse textures correspond
to lung lesion features of different sizes and intensity variations extracted by the image filter thereby showing varying
degrees of coarseness.

Table 1 Image filter, corresponding size of the texture
features extracted and parameters quantified

Image filter (�) Size of features
highlighted
(pixels/mm)

Texture quantifiers

None Not applicable MGI, entropy, uniformity
Fine (�¼ 0.5) 2/1.68 MGI, entropy, uniformity
Medium (�¼ 1.5) 6/5.04 MGI, entropy, uniformity
Coarse (�¼ 2.5) 12/10.08 MGI, entropy, uniformity
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FDG-PET. To rule out the possibility of an isolated asso-
ciation being obtained by chance when multiple indepen-
dent tests are implemented, correlation trends between
texture and SUV were observed. Bonferroni correction
was not used because the texture parameters in this
study were not completely independent, a prerequisite
for its implementation. The relationship between texture
and SUV with stage was assessed using the non-para-
metric Spearman�s rank correlation test. Furthermore
Kappa statistics along with an accuracy estimate pro-
vided the degree of agreement for the parameter (tex-
ture/SUV) demonstrating most significant association
with staging in NSCLC. For the most significant predic-
tor of tumour stage, sensitivity and specificity for the
diagnostic threshold from the area under the receiver-
operating characteristic (ROC) analysis were calculated
along with the 95% confidence interval (CI). For all sta-
tistical tests, a p-value less than 0.05 was considered to be
significant.

Results

Mean (range) tumour SUV for all the patients was 6.6
(2.8�10.4). Based on CT and FDG-PET imaging, the
number of patients with tumour stages I, II, III and IV
were 4, 4, 4 and 6 respectively.

Tumour attenuation and texture without filtration on
CT did not show any significant association with SUV
(Table 2). Medium to coarse textures demonstrated an
increasing association with SUV for all texture quantifiers
(MGI, entropy and uniformity; Table 2), however, reach-
ing statistical significance only for coarse texture features
(Fig. 2A: uniformity, r¼�0.521, p¼ 0.027; entropy,
r¼ 0.512, p¼ 0.030).

Of all tumour texture and densitometry analyses, only
fine texture features correlated significantly with tumour
stage (Table 3; Fig. 2B: MGI, rs¼ 0.71, p¼ 0.001;
entropy, rs¼ 0.5, p¼ 0.02, uniformity, rs¼�0.49,
p¼ 0.04). Furthermore SUV also correlated significantly
with tumour stage (rs¼ 0.56, p¼ 0.02).

Fine MGI demonstrated a substantial degree of
concordance with PET tumour staging (stage I,
MGI 53.2591; stage II, 3.2591�MGI�4.2632; stage
III, 4.26325MGI�4.9345; stage IV: MGI44.9345,
kappa¼ 0.7, 95% CI¼ 0.44�0.96, accuracy¼ 77.8%,
95% CI¼ 54.8�91.0). Furthermore a fine MGI above
4.2632 predicted tumours above stage II with an area
under the ROC curve of 0.925 (p¼ 0.0001), sensitivity
of 100% (95% CI¼ 69�100) and specificity of 87.5%
(95% CI¼ 47.4�97.9).

Table 2 Linear regression (r) values and p values for lung
tumour density and texture on CT computed as MGI,
entropy and uniformity against glucose uptake (SUV) on
FDG-PET for all patients

Tumour densitometry/
texture (filter width)

MGI Entropy Uniformity

Density and texture
without filtration

r 0.234 �0.046 0.100
p 0.350 0.856 0.694

Fine texture r 0.141 0.310 �0.287
p 0.577 0.211 0.248

Medium texture r 0.131 0.285 �0.310
p 0.603 0.252 0.211

Coarse texture r 0.428 0.512 �0.521
p 0.077 0.030 0.027

Bold values indicate a statistically significant correlation.

Figure 2 Graph showing association between (A) coarse
(uniformity) tumour texture and SUV and (B) fine (MGI)
tumour texture and stage.

Table 3 Spearman rank order correlation coefficient (rs)
values and p values for lung tumour density and texture on
CT computed as MGI, entropy and uniformity against
PET tumour stage for all patients

Tumour Densitometry/
texture (filter width)

MGI Entropy Uniformity

Density and texture
without filtration

rs �0.028 0.412 �0.408
p 0.914 0.089 0.092

Fine texture rs 0.707 0.549 �0.487
p 0.001 0.018 0.04

Medium texture rs 0.096 0.280 �0.306
p 0.702 0.259 0.219

Coarse texture rs 0.408 0.391 �0.402
p 0.092 0.108 0.098

Bold values indicate a statistically significant correlation.
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Discussion

Computer analysis of the lungs on CT has been used for
segmentation of pulmonary structures, image registration
and disease detection, classification and quantifica-
tion[19]. In the case of lung cancer, lesion classification
has entailed estimation of the probability of malignancy
for which purpose some authors have used texture ana-
lysis[20�22]. Our pilot study has demonstrated the poten-
tial for the application of texture analysis to be extended
beyond simple distinctions of benign and malignant
lesions to a more detailed characterisation of lung can-
cers with identification of adverse tumour characteristics
such as increased glucose metabolism and advanced
stage.

To address the more complex issues of developing
imaging markers assessing lung tumour aggression, we
used selective-scale based image filtration prior to texture
quantification. Image filtration separately evaluated tex-
tures at different scales from fine to coarse. This is sim-
ilar to a non-orthogonal Wavelet approach having the
flexibility of fine-tuning the filter to extract visually imper-
ceptible image features at particular scales that may
correspond to specific tumour biology. This specific fil-
tration proved to be necessary as indicated by the fact
that no significant correlations were found between den-
sity/textural parameters without image filtration and
tumour SUV/stage. By using image filtration, we were
able to adopt first order statistical texture quantification.
These parameters benefit from being directionally inde-
pendent and have the advantage of being less computa-
tionally expensive. In addition this selective-scale texture
quantification approach also benefits from lack of a
priori nature of the mathematical model and shape
description of local structure boundaries.

The finding of increased glucose metabolism in
tumours with altered medium-coarse texture may relate
to metabolic change associated with the areas of low CT
attenuation in the presence of necrosis, haemorrhage and
myxoid[13,15]. Areas of tumour necrosis in particular are
known to be associated with increased glucose metabo-
lism in adjacent tumour tissue[14,23]. The biological ratio-
nale for the association between mean fine texture
intensity and tumour stage is not very apparent, but
potentially may reflect multiple small areas of diffuse
necrosis in higher clinical stage tumours. Nevertheless,
these potential associations between texture and pathol-
ogy need to be confirmed in further studies.

The use of imaging in cancer risk stratification is cur-
rently limited to TNM staging. The widespread use of
cardiac CT for calcium scoring for obtaining information
about the presence, location, extent of calcified plaque in
coronary artery disease suggests the potential increase in
the utility of imaging as a risk stratification tool. When
previously applied to CT images of the liver, the texture
analysis methodology used in our study has been shown
to correlate with liver physiology, specifically a

combination of blood flow and glucose metabolism that
reflects hepatic glucose phosphorylation, and to be a
potential marker of survival and provide risk stratification
information for patients following resection of colorectal
cancer[24,25].

The correlation between texture and FDG uptake in
this study suggest a potential for texture analysis to pro-
vide prognostic information analogous to that provided
by FDG-PET for which a high SUV has been shown to
indicate an adverse outcome for patients with
NSCLC[16]. Similarly, texture analysis could potentially
be used to predict response of NSCLC to therapy as has
recently been shown for FDG uptake and response to
gefitinib[17]. The texture parameter correlating most
closely with SUV was coarse texture quantified as unifor-
mity. A previous phantom study has shown that this
parameter has low variability with change in CT acquisi-
tion parameters, providing further support for the clinical
applicability of texture analysis[24]. Further research will
be needed to confirm an association between texture and
survival in a larger series of patients and to determine
whether any prognostic or risk stratification information
from texture analysis of CT images would be complemen-
tary to, or supersede that obtained from FDG-PET mea-
surements of SUV.

Although the patients in this preliminary study had
undergone both CT and FDG-PET, our results suggest
a potential for texture analysis to improve the accuracy of
CT staging for patients with NSCLC undergoing assess-
ment by CT alone. Currently, nodal staging based on size
criteria alone has low accuracy because nodes with a
maximum transverse diameter of less than 10 mm may
contain metastatic tumour; nodes greater than 10 mm
can be reactive. For this reason, FDG-PET is increasingly
recommended for staging patients with NSCLC. Our
study suggests a high concordance between texture and
tumour stage as assessed by FDG-PET (kappa 0.7) with
high accuracy for identifying patients with tumours above
stage II in particular, for whom surgery is unlikely to be
of benefit. Criteria that combine nodal size with texture
measurements in the primary tumour could potentially
improve this staging accuracy further. Although CT
with texture analysis is unlikely to replace FDG-PET,
conventional CT is frequently used to select patients
for PET imaging. The incorporation of texture analysis
into these CT examinations has the potential to improve
this selection process.

One limitation to our study has been the use of FDG-
PET rather than histological analysis of surgical speci-
mens to ascertain tumour stage. However, surgical stag-
ing is only feasible for patients with early stage tumours
because those with more advanced tumours are not con-
sidered surgical candidates. PET is considered the most
accurate staging technique that can be applied to all
patients with NSCLC[26]. It would also be useful to ascer-
tain if the use of CE CT improves the prognostic power
of our technique and whether the results of our study
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apply to other types of lung tumour such as small cell
lung cancer. The texture analysis methodology extracts
CT lung lesion features based on size (minimum 2 pixels
or 1.68 mm and maximum 12 pixels or 10.08 mm in
width) and intensity variation. For a statistically sensible
analysis and to extract texture features comparable with
fine�coarse sizes, the ROI needs to be large enough. This
could potentially be a limitation for analysis of lung
nodules, where the entire range of the filter sizes used
in this study may not be applicable. A further limitation is
the use of a single two-dimensional CT image of the lung
tumour rather than three-dimensional analysis of a CT
volume. We have implemented our texture analysis meth-
odology for lung CT in 3 dimensions with application to
other pulmonary pathologies and future work will com-
prise extending the application of three-dimensional ana-
lysis to lung cancer[27].

Conclusions

This study provides initial evidence for a relationship
between texture features in NSCLC on non-CE CT and
tumour metabolism and stage. Texture analysis warrants
further investigation as a potential method for obtaining
prognostic information for patients with NSCLC under-
going CT.
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