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Animals navigate by making a series of decisions
using external stimuli and any internal model (or
map) of the world they may have formed. Many ani-
mals, including ants, dogs, and rodents, spontane-
ously track scent trails, which are chemical cues that
form navigational guides that allow animals to locate
food, mates, and landmarks like their homes (1–6).
Tracking odor trails is a nontrivial problem since
cues are detected intermittently due to potential
complexity of the trail as well as the nature of the
sensory apparatus. Importantly, future locations of
the trail are “invisible” and must be predicted based
on current and past information (unlike in vision,
where one can simply see the future locations). In
PNAS, Reddy et al. (7) present a general algorithmic
framework to understand odor trail tracking.

Previous work in a variety of organisms ranging
from insects to humans points to a characteristic zig-
zag movement over a scent trail (1, 2, 5). Such zig-
zag movements, or casting, have been described
extensively in flying insects (8) and are thought to be
part of their search strategies to discover the source
of an odor. Casting movements are complemented
by upwind surges upon odor detection (8). While
purely odor-guided navigation has been discussed
extensively, other sensory modalities may also play
fundamental roles—for example, optomotor anemo-
taxis (8). Walking insects also exhibit odor-guided
anemotaxis toward attractive odors, and there is an
exciting surge in research on this behavior (9, 10).

Trail tracking occurs under different constraints
compared to windborne odor tracking, where turbu-
lence leads to highly dynamic odor landscapes,
unlike the more stable odor distribution in trails—
some exceptions include so-called plume tracking,
where the plume can be thought of as a trail (11–14).
Dogs and wolves can track trails with remarkable
accuracy over long distances, perhaps even for miles
(6, 15). Intuitively, tracking is composed of an initial
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Fig. 1. Schematic of the sector search algorithm described in Reddy
et al. (7). (A) The polar coordinate system which describes trail tracking
in episodes of searching for the trail using an estimate of the heading
(here based on two recent contacts with the trail). The angular width of a
search is given by σ. The rate of angular searching in the space is a func-
tion of the sensor size a and the distance r. (B) A schematic of how an
agent, in this case a mouse, searches for a ground-based trail using head-
ings estimated from the two recent points of contact with the trail or two-
point memory. The angular sectors are shown for successive pairs of con-
tacts. (C) Tracking as a function of sampling frequency and memory. In the
regime estimating heading with two points, an agent who samples fre-
quently (moving at lower forward velocity) has a better estimate than one
with higher velocity and samples sparsely. In the latter regime, an agent
estimating using more memory (for example, a three-point estimate)
would estimate better. The figure was created using BioRender.
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foraging phase to locate the trail, followed by an estimation of
the trail heading and subsequent tracking. Trail tracking has
been documented in the laboratory in rodents and ants, which
display oscillatory casting, whose amplitude increases upon
encountering breaks or loss of the trail (2, 3, 5). The studies
highlighted above, however, have not been able to describe an
underlying algorithmic framework for understanding trail-guided
navigation. Previous models to explain casting assume oscillations
to be intrinsically generated and control the exposure of the sen-
sor to the stimulus (16) or are thought to arise from bilateral or
temporal gradient estimation for chemotaxis (2, 17, 18). These
models generally rely on cue detection for tracking and do not
take trail geometry into account, which can carry important
information. Importantly, previous models do not have robust
predictions about what the animal should do when it loses the
chemosensory cue and do not prescribe potential strategies to
reacquire lost trails.

Reddy et al. (7) present a normative theory of odor trail track-
ing that goes beyond conventional chemotaxis. The authors
propose a search strategy where an agent estimates local head-
ing based on previous contacts with the trail to define an angu-
lar sector extending from the most recent contact with the trail
(Fig. 1). The angular sector defines a mean heading direction
and the associated uncertainty at any given moment in time,
so that search for the trail can proceed within that angular sec-
tor. They use this framework to provide a quantitative descrip-
tion of trail tracking, while providing experimentally testable
predictions.

Reddy et al. (7) begin by elegantly framing the challenges
that are faced by an agent that tracks odor trails. During track-
ing, an animal or agent decides when and where to sample the
odor and also builds an internal representation of the trail based
on the ensemble of odor detections to guide future decisions.
The authors ask what an ideal agent should do to follow a
ground-based trail. Using their theoretical formulation and
through simulations the authors show that a reinforcement
learning agent can learn to track efficiently without losing trails
while recapitulating naturally observed casting behaviors. They
proceed to provide an intuition on how the oscillations previ-
ously reported arise as a function of probability distribution of
the heading and the interdetection interval. The authors also
provide insights into balancing tracking speed while not losing
the trail and derive bounds for speed–accuracy trade-off based
on trail geometry and interdetection interval.

Another open question in understanding navigational strate-
gies is the role of active memory in retaining past contacts of
the trail. The authors explain that an agent that tracks should
maintain an internal model retaining some amount of the past
contacts with the trail, allowing it to navigate across the inter-
mittency naturally imposed on trails by sampling strategies
(such as antennal movement in insects or sniffing in rodents) as
well as various factors in the environment. Reliance on memory
or internal model for tracking works because natural trails are
expected to have nonrandom structures. An analogy in vision is
the realization that visual experience is not simply a succession
of white-noise frames but smoothly changing images, which
allows the brain to make predictions about the future. Reddy
et al. (7) use tools from statistical and polymer physics to make
explicit analytical predictions of how the agent should integrate
information from past contacts with the trail to make the best
guess about the trail heading. The statistics of casting arises
naturally in the model as a solution to minimizing the probability

of losing the trail altogether and maximizing the speed of
tracking—this result contrasts with earlier models (2) where cast-
ing is simply baked into models in an ad hoc manner.

In PNAS, Reddy et al. present a general
algorithmic framework to understand odor
trail tracking.

The work of Reddy et al. (7) is exemplary in its conceptual
framing of the problem, which allows both analytical and
numerical analysis. A good theory not only offers a normative
explanation for interesting phenomena but also suggests
crisp and feasible experimental predictions. The authors go
on to describe explicitly some testable predictions for experi-
mentalists. One prediction is the dependence of the ampli-
tude of casting on the correlation length of the meandering
trail encountered. If the agent or animal encounters a long
stretch of rather straight trail, followed by a break, casting
amplitude will be small and grow slowly. On the other hand,
if the animal has tracked highly curved trails just before a
break, casting amplitudes should rapidly grow larger. Another
interesting question is the relation between trail structure and
the limit of when an agent would stop attempting to track. A
key question that could be answered by experiments is about the
length of the memory of past trail encounters: Do animals store
any of the prior contacts and, if so, how many contacts? Careful
experiments with curved or forked trails and breaks can be used
to test these ideas. Visual neuroscience has benefitted from a
deeper understanding of the natural statistics, which allows vision
to be modeled as extracting invariances in the visual world (19).
Knowledge of the natural statistics of odor trails may lead to a
similar understanding of the olfactory invariances extracted by
animals.

Developing theoretical frameworks to understand behavior
is a vital complement to the growing efforts in data-driven auto-
mated analysis of behaviors using computer vision and deep
networks (20–22). The latter research direction is exciting and is
often presented as hypothesis-free discovery of behavioral
modules, but generative models of behavioral strategies prom-
ise deeper understanding. This paper is also likely to inspire
further work on agent-based models for other continuous
behaviors in animals, in particular partially observable Markov
decision processes (23). For example, a natural extension of the
current work might involve realistic situations where there are
distracting odors in the background (either as airborne cues or
as competing cues on the ground). It will be of interest to deter-
mine how the sector search strategy, especially an implementa-
tion using reinforcement learning, should be adapted for noisy
and conflicting backgrounds.

A final point is about the neural implementation of the sector
search strategy. The algorithm requires a sensorimotor loop
with some sort of short-term memory. If we consider rodents,
which are amenable to neuroscientific experiments, a first step
might be the detection of the odor (or a lack thereof) during a
sniff. This detection must then be compared with previous
detections to obtain a vector direction for heading. Reorienting
to the estimated heading direction may first occur for the head,
since inertial forces are smaller for head movements than for
full-body movements. These considerations point to interac-
tions among olfactory sensory regions, navigational circuits such
as the entorhinal cortex and hippocampus, working memory
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areas such as prefrontal cortex, and the cortical and subcortical
motor regions. The work of Reddy et al. (7) offers strong

impetus and direction for a study of neural mechanisms in
odor-guided navigation.
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