
MINI REVIEW ARTICLE
published: 26 December 2011
doi: 10.3389/fphys.2011.00105

Proteomic profiling of fast-to-slow muscle transitions
during aging
Kay Ohlendieck*

Department of Biology, Muscle Biology Laboratory, National University of Ireland, Maynooth, County Kildare, Ireland

Edited by:

Ali Mobasheri, The University of
Nottingham, UK

Reviewed by:

Pablo Martin-Vasallo, Universidad de
La Laguna, Spain
Sue Bodine, University of California
Davis, USA

*Correspondence:

Kay Ohlendieck, Department of
Biology, Muscle Biology Laboratory,
National University of Ireland, Callan
Building, Room 2.33, Maynooth,
County Kildare, Ireland.
e-mail: kay.ohlendieck@nuim.ie

Old age is associated with a large spectrum of physical ailments, including muscle wast-
ing. Skeletal muscle degeneration drastically increases the risk of poor balance, frequent
falling and impaired mobility in the elderly. In order to identify new therapeutic targets
to halt or even reverse age-dependent muscle weakness and improve diagnostic meth-
ods to properly evaluate sarcopenia as a common geriatric syndrome, there is an urgent
need to establish a reliable biomarker signature of muscle aging. In this respect, mass
spectrometry-based proteomics has been successfully applied for studying crude extracts
and subcellular fractions from aged animal and human muscle tissues to identify novel
aging marker proteins. This review focuses on key physiological and metabolic aspects of
sarcopenia, i.e., age-related muscle fiber transitions and metabolic shifts in aging muscle
as revealed by proteomics. Over the last decade, proteomic profiling studies have clearly
confirmed the idea that sarcopenia is based on a multi-factorial pathophysiology and that
a glycolytic-to-oxidative shift occurs in slower-twitching senescent muscles. Both, newly
identified protein factors and confirmed alterations in crucial metabolic and contractile
elements can now be employed to establish a sarcopenia-specific biomarker signature.
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SARCOPENIA OF OLD AGE
Although inter-individual differences exist in the onset and sever-
ity of the natural aging process of the neuromuscular system,
most humans experience an age-dependent loss in skeletal muscle
mass accompanied by a considerable decline in contractile strength
(Faulkner et al., 2007). In addition to a sedentary lifestyle and an
unbalanced diet, other factors can complicate the pathophysiol-
ogy of progressive muscle wasting in the senescent organism, such
as unrelated co-morbidities. Obesity, diabetes, cardiovascular dis-
ease, or poor recovery from traumatic injury may affect muscle
performance and/or be influenced by changes in the musculature.
Epidemiological studies of sarcopenia suggest that nearly half the
population over 75 years of age is suffering from muscular weak-
ness leading in severe cases to loss of independence (Berger and
Doherty, 2010). The findings from a large number of detailed his-
tological, biochemical, and physiological studies of muscle aging
strongly suggest that sarcopenia is due to a multi-factorial pathol-
ogy. The loss of spinal motor neurons due to apoptosis probably
presents one of the most crucial events that eventually leads to a
drastic reduction in muscle fiber numbers and size during skele-
tal muscle aging (Aagaard et al., 2010). The decline in neural
organization and an impaired capacity for axonal reinnervation
of deinnervated muscle fibers was shown for both aged animals
(Edstrom et al., 2007) and senescent humans (Vandervoort, 2002).

In addition to cycles of denervation and faulty reinnerva-
tion, age-dependent muscle wasting is associated with the patho-
physiological uncoupling between excitation and muscle con-
traction, impaired muscle protein synthesis, abnormal levels of
growth factors and hormones, impaired metabolic pathways, an
increased susceptibility to apoptosis, disturbed ion homeostasis,

a blunted cellular stress response, and a reduced regenerative
capacity (Edstrom et al., 2007). In order to determine a poten-
tial hierarchy within these different pathological factors, global
genomic, and proteomic investigations have been carried out over
the last few years. Molecular genetic studies of sarcopenia have
revealed a large number of differentially expressed genes in aged
muscle tissue (Tan et al., 2011). It will now be crucial to deter-
mine how these age-related gene expression changes translate into
an altered abundance and/or post-translational modifications in
skeletal muscle proteins. This review outlines the main findings of
recent proteomic studies that have focused on physiological and
metabolic aspects of sarcopenia, i.e., fast-to-slow transitions and
glycolytic-to-oxidative shifts in aging muscle.

PROTEOMICS IN SKELETAL MUSCLE PHYSIOLOGY
Investigations into the molecular basis of physiological and patho-
physiological changes in skeletal muscle tissues have traditionally
focused on single or small groups of genes, proteins, or metabo-
lites. With the advance of high-throughput approaches such as
genomics, proteomics, and metabolomics, it is now possible to
carry out large-scale studies that determine global changes in
biomolecules. Mass spectrometry-based proteomics presents an
unbiased analytical tool for studying cell biological and physio-
logical phenomena. Proteomics combines standardized biochem-
ical methods in a streamlined approach for tissue extraction,
protein separation, protein characterization, and protein identi-
fication (Walther and Mann, 2010). In the case of skeletal mus-
cle proteomics, the mass spectrometric identification of altered
protein expression patterns has established a large cohort of
novel biomarkers associated with myogenesis, physical exercise,
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denervation, stimulation-induced muscle transformation, dis-
use atrophy, and mechanical unloading, as well as a variety of
neuromuscular pathologies (Ohlendieck, 2011).

In addition, an abnormal abundance and/or altered post-
translational modifications were shown to exist in a large number
of proteins in senescent skeletal muscle, including components
involved in the regulation and maintenance of the excitation–
contraction–relaxation cycle, ion homeostasis, and the cellular
stress response, as well as both anaerobic and oxidative bioener-
getic processes. Since an extensive review of the impact of muscle
proteomics on the field of biogerontology has previously been
published (Doran et al., 2009), this article will instead focus on
a specific aspect of senescent fibers that is highly relevant for
skeletal muscle physiology, i.e., the proteomics of muscle plas-
ticity during aging. Relevant proteomic studies on age-related
muscle plasticity are listed in Table 1. Since proteomic surveys
documenting small abundance changes in individual subspecies
of muscle proteins may be at variance between different reports
on muscle aging, the listed findings in marker proteins do not
represent results from specific studies but present a summary of
major trends in proteome-wide alterations. This includes mostly
regulatory proteins, contractile proteins, metabolic enzymes, and
metabolite transporters. Since fiber type shifting and metabolic
adaptations represent most likely secondary events during muscle
aging, the combination of these novel protein markers can now
possibly be used to differentiate early and late stages of sarcopenia
for improved diagnostic procedures.

FAST-TO-SLOW TRANSITIONS IN AGED SKELETAL MUSCLE
Individual skeletal muscles consist of three main types of fibers,
slow-oxidative type I fibers, fast oxidative–glycolytic type IIa fibers
and fast glycolytic type IIb/x fibers, as well as a variety of hybrid
fibers (Schiaffino, 2010). Considerable changes in the fiber type
ratio occur as a result of physiological adaptations, in association

with many muscular disorders and during the natural aging
process. Molecular and cellular modifications in skeletal muscle
tissues are reflected by major alterations in protein expression pat-
terns (Gelfi et al., 2011). Slow-to-fast muscle transitions can be
typically observed in disuse atrophy, microgravity and extended
periods of bed rest. In contrast, endurance exercise, chronic low-
frequency stimulation, hyper-excitability, and aging usually trigger
fast-to-slow muscle transformation (Canepari et al., 2010). That
proteomics technology is capable of detecting minute changes in
the isoform expression pattern of skeletal muscle proteins has
previously been demonstrated by the application of fluorescence
difference in-gel electrophoresis for the analysis of muscle tran-
sitions following chronic electro-stimulation (Donoghue et al.,
2007). The same methodology was applied for evaluating potential
protein changes in sarcopenia.

During aging, specific force and maximum shortening velocity
of muscles are reduced, which is believed to be mostly due to an
altered density and property of myosin molecules (Prochniewicz
et al., 2007). The pathophysiological shift to a slower muscle phe-
notype was clearly confirmed by the sub proteomic profiling of the
contractile apparatus of aged rat muscle, which revealed a drastic
increase in both abundance and phosphorylation levels of slow
myosin light chain MLC2 (Gannon et al., 2009). Comprehensive
proteomic surveys of crude extracts from aged human and ani-
mal muscle agree with the idea of a slower-contracting mode in
senescent fiber populations. Key regulatory and contractile ele-
ments were shown to exhibit a switch to slower isoforms during
aging, including myosin heavy chains, myosin light chains, actin,
tropomyosin, and various subunits of the troponin complex (Piec
et al., 2005; Gelfi et al., 2006; O’Connell et al., 2007; Doran et al.,
2008; Donoghue et al., 2010). Figure 1 outlines the proposed fast-
to-slow transformation process in aged muscle with respect to
contractile proteins. Muscle transitions are probably a secondary
occurrence as a consequence of an apoptosis-triggered loss of

Table 1 | Major trends in protein changes during skeletal muscle aging as revealed by mass spectrometry-based proteomics*.

Proteomic approach Muscle tissue Fast-to-slow transitions Glycolytic-to-oxidative shift References

Proteomic profiling of

urea-soluble proteome

Human vastus

lateralis

Slow MLC2 ↑; fast MLC2

↓; cardiac α-actin ↑; fast

TnT ↓; TM-α ↓

ATP synthase ↑; ACO ↑; GAPDH

↓; ENO ↓; TPI ↓
Gelfi et al. (2006)

Proteomic profiling of

urea-soluble proteome

Rat

gastrocnemius

MHC IIB ↓; MHC I ↑; fast

MLC2 ↓; slow MLC2 ↑;

cardiac α-actin ↑; TM-α ↓

ATP synthase ↑; ICDH ↑; ACO ↑;

SDH ↑; Cyt-c RED ↑; GAPDH ↓;

ENO ↓; ALD ↓;TPI ↓; PGM ↓; PFK

↓; PK ↓; ALB ↑; MYO ↑; FABP3 ↑

Capitanio et al. (2009), O’Connell

and Ohlendieck (2009), Lombardi

et al. (2009), Doran et al. (2008),

Piec et al. (2005)

Sub proteomic screening

of contractile fraction

Rat

gastrocnemius

Slow MLC2 ↑; various

fast MLC ↓; fast TnT ↓;

MHC I ↑; MHC II ↓

ATP synthase ↑; ENO ↓ Gannon et al. (2009)

Analysis of protein

nitration, phosphorylation

and glycosylation

Various rat

muscles

Differential effects on

PTMs; slow MLC2-P ↑
Differential effects on PTMs;

various glycolytic enzymes ↓
Kanski et al. (2005), Gannon et al.

(2008), O’Connell et al. (2008)

*The table lists markers of the contractile apparatus (MHC, myosin heavy chain; MLC, myosin light chain;TM, tropomyosin;TnT, troponin subunitT) and key enzymes

of glycolysis (GAPDH, glyceraldehyde-3-phosphate dehydrogenase; ENO, enolase; ALD, aldolase;TPI, triosephosphate isomerase; PGM, phosphoglucomutase; PFK,

phosphofructokinase; PK, pyruvate kinase) and oxidative metabolism (ICDH, isocitrate dehydrogenase; ACO, aconitase; SDH, succinate dehydrogenase; Cyt-c RED,

cytochrome-c reductase; ALB, albumin; MYO, myoglobin; FABP, fatty acid binding-protein).

Frontiers in Physiology | Striated Muscle Physiology December 2011 | Volume 2 | Article 105 | 2

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Striated_Muscle_Physiology
http://www.frontiersin.org/Striated_Muscle_Physiology/archive


Ohlendieck Proteomics of aged skeletal muscle

FIGURE 1 | Fast-to-slow muscle transitions during muscle aging as

revealed by proteomics. Shown is a diagram of the effect of aging on the
main contractile and regulatory proteins of the actomyosin apparatus.
Proteomic profiling has clearly established an age-related shift to slower
protein isoforms of myosin heavy chain (MHC), myosin light chain (MLC),

actin (Act), and tropomyosin (TM), as well as troponin subunits (TnC, TnT, TnI).
Besides the slowing of contractile force, the progressive loss of muscle mass
and resulting contractile weakness are the main cause of sarcopenia of old
age. The background shows a transverse section of gastrocnemius muscle
stained with hematoxylin and eosin.

spinal motor neurons, faulty reinnervation mechanisms following
denervation and selective atrophy of type II fibers (Vandervoort,
2002; Edstrom et al., 2007; Aagaard et al., 2010).

GLYCOLYTIC-TO-OXIDATIVE SHIFT IN SENESCENT MUSCLE
Energy for the regulation and maintenance of the excitation–
contraction–relaxation cycle is supplied by ATP via anaerobic
glycolysis, the phosphocreatine shuttle, the citric acid cycle and
oxidative phosphorylation. Carbohydrate and fatty acids consti-
tute major energy substrates during physical exercise and the
amino acid pool also interacts with the citric acid cycle in con-
tracting fibers. Under anaerobic conditions pyruvate is converted
into lactate, and under aerobic conditions the glycolytic conver-
sion of glucose to pyruvate is followed by the enzymatic reactions
of the citric acid cycle and oxidative phosphorylation (Wells et al.,
2009). The density of enzymes that are associated with glycoly-
sis, the phosphocreatine shuttle, the citric acid cycle, and oxidative
phosphorylation reflect the metabolic status of individual muscles.
Although gel electrophoresis-based proteomics is afflicted with
various biological and technical problems, it is an ideal analytical
tool for studying the abundant and mostly soluble enzymes that
constitute the glycolytic system (Ohlendieck, 2010). Proteomics
has been successfully applied for studying the catalytic elements
associated with glycolysis and shown that their density is drasti-
cally altered during development, muscle differentiation, physio-
logical adaptations, and many pathological mechanisms, such as

muscular dystrophy or diabetes mellitus. In analogy, proteomic
profiling of senescent muscle tissue has confirmed that slower-
contracting aged muscle exhibit a glycolytic-to-oxidative shift.
This phenomenon is comparable to fast-to-slow transitions in
chronic low-frequency stimulated fast muscles, which are charac-
terized by a drastic decrease in glycolytic enzymes and a concomi-
tant increase in mitochondrial markers of oxidative metabolism
(Donoghue et al., 2007).

While the expression of glycolytic enzymes such as enolase,
triosephosphate isomerase and pyruvate kinase is lower in senes-
cent muscle (Gelfi et al., 2006; Capitanio et al., 2009), mitochon-
drial enzymes such as succinate dehydrogenase and NADH dehy-
drogenase are clearly elevated during aging (O’Connell and Ohlen-
dieck, 2009). However, variances in the differential expression of
certain glycolytic enzymes exist between human and rodent mus-
cle during aging (Gelfi et al., 2006; Doran et al., 2008; Donoghue
et al., 2010). Interestingly, the supramolecular organization of
mitochondrial complexes involved in oxidative phosphorylation
was shown to be disturbed. Aged mitochondria exhibited lower
levels of complex I, complex III, and complex V, but increased
amounts of complex II and an unchanged expression of com-
plex IV (Lombardi et al., 2009). A recent proteomic study of
calpain-interacting proteins has shown an association between the
Ca2+-dependent proteolytic system and ATP synthase and actinin,
suggesting a role of calpains in mitochondrial and cytoskele-
tal dysfunction in sarcopenia (Brule et al., 2010). Age-related
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muscle degeneration was also shown to have a drastic effect on
post-translational modifications in numerous metabolic proteins,
affecting especially glycosylation, phosphorylation, and tyrosine
nitration in glycolytic enzymes (Kanski et al., 2005; Gannon et al.,
2008; O’Connell et al., 2008). The diagrammatic presentation in
Figure 2 summarizes the involvement of cytosolic and mitochon-
drial pathways in the proposed glycolytic-to-oxidative shift in aged
muscle metabolism. An age-related adaptation of metabolism is
most likely a result of lost spinal motor neurons and subsequent
faulty reinnervation of denervated muscle fibers, yielding a higher
percentage of oxidative type I fibers (Vandervoort, 2002; Edstrom
et al., 2007; Aagaard et al., 2010).

CONCLUSION
Skeletal muscle tissue is highly abundant in the body and plays a
central role in metabolism and body movement. Hence, the age-
dependent loss in muscle mass and function has a severe impact
on overall body homeostasis and causes frailty in aged individuals.
The frailty syndrome is increasingly recognized as an extreme risk
indicator of adverse health outcomes in the elderly (Evans et al.,
2010). This warrants detailed molecular and cellular studies into
the molecular pathogenesis of metabolic and contractile dysreg-
ulation in the aged neuromuscular system. Mass spectrometry-
based proteomics has clearly confirmed a fast-to-slow contractile
transformation process and a glycolytic-to-oxidative metabolic
shift during skeletal muscle aging. From a pathophysiological

point of view, it is unlikely that fiber type shifting or bioener-
getic changes are causative factors of sarcopenia, but rather a
consequence of muscle wasting. Primary factors with an unknown
pathological hierarchy are proposed to be loss of motor neurons,
chronic inflammation, insulin resistance, disuse-related muscular
atrophy, decreased levels of essential growth hormones, a reduced
regenerative capacity, and various nutritional deficiencies with
advancing age (Evans, 2010). Many histological studies indicate
that a transition in fiber composition occurs during aging with a
higher fiber type I to fiber type II ratio in senescent muscle tis-
sue, probably based on selective atrophy of fast-twitching fiber
populations (Vandervoort, 2002). Although there is no consensus
on this aspect of a fiber-selective degradation process during the
molecular pathogenesis of sarcopenia, proteomic findings clearly
agree with a general reduction in the fast fiber population in the
elderly.

As reviewed by Berger and Doherty (2010), after the fifth decade
a 2% reduction in muscle mass per year is observed in many
humans, which has a serious impact on the steadily increasing
number of aged members of society. Thus, to prevent the loss of
independence due to severe age-related impairments of the neuro-
muscular system, the urgent implementation of resistance training
programs (Mangione et al., 2010) combined with a protein-rich
and balanced diet (Rolland et al., 2011) is needed to promote
healthy aging. For the proper differential diagnosis of sarcopenia
of old age and the swift evaluation of novel treatment regimes, the

FIGURE 2 | Glycolytic-to-oxidative shift during muscle aging as revealed

by proteomics. Shown is a diagram of the main bioenergetic pathways for
the provision of adenosine triphosphate (ATP) for the contractile activity of
skeletal muscle fibers including glycolysis, the creatine phosphate shuttle, the
citric acid cycle and oxidative phosphorylation. Proteomic profiling has clearly

established an increase in mitochondrial enzymes and concomitant decrease
in glycolytic enzymes during the fast-to-slow transformation process in aging
skeletal muscle tissue. The background shows a transverse section of
gastrocnemius muscle that was histochemically stained for the presence of
the mitochondrial marker enzyme succinate dehydrogenase.
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availability of reliable biomarkers is essential. In order to catalog
and characterize as many new indicators as possible, future bio-
chemical studies should be more comprehensive with respect to
integral membrane proteins and low-abundance proteins, which
are currently underestimated in proteome-wide surveys. This
will require the application of modified proteomic techniques
involving improved protein separation methods, enhanced protein

digestion approaches and more sensitive mass spectrometric
analyses.
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