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Abstract

ion and medical treatment only appear to yield short-term weight
Obesity has become a global health problem. Lifestyle modificat
loss. Roux-en-Y gastric bypass (RYGB) is the most popular bariatric procedure, and it sustains weight reduction and results in the
remission of obesity-associated comorbidities for obese individuals. However, patients who undergo this surgery may develop
hypoglycemia. To date, the diagnosis is challenging and the prevalence of post-RYGB hypoglycemia (PRH) is unclear. RYGB alters
the anatomy of the upper gastrointestinal tract and has a combined effect of caloric intake restriction and nutrient malabsorption.
Nevertheless, the physiologic changes after RYGB are complex. Although hyperinsulinemia, incretin effects, dysfunction of b-cells
and a-cells, and some other factors have beenwidely investigated and are reported to be possible mediators of PRH, the pathogenesis
is still not completely understood. In light of the important role of the gut microbiome in metabolism, we hypothesized that the gut
microbiome might also be a critical link between RYGB and hypoglycemia. In this review, we mainly highlight the current possible
factors predisposing individuals to PRH, particularly related to the gut microbiota, which may yield significant insights into the
intestinal regulation of glucose metabolic homeostasis and provide novel clues to improve the treatment of type 2 diabetes mellitus.
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Introduction after 1 to 5 years or gain more weight. The combination of

anti-obesity medical treatment and lifestyle management
Overweight and obesity have become global epidemics.
Recently, the World Health Organization announced that
the prevalence of obesity had nearly tripled worldwide
between 1975 and 2016, leading to a prevalence of
overweight or obesity among adults of 39%.[1] Obesity is
characterized by abnormal or excessive fat accumulation
and the development of a wide variety of comorbidities,
such as type 2 diabetes mellitus (T2DM),[2] cardiovascular
diseases,[3] non-alcoholic fatty liver disease,[4] musculo-
skeletal disorders,[5] and several types of cancers.[6,7]

Therefore, the prevalence and rapid growth of obesity have
resulted in a tremendous health and economic burden and
call for powerful interventions to alleviate not only body
weight but obesity-related comorbidities.

Lifestyle interventions, such as modification of dietary
intake and increasing physical activity, can result in a 5%
to 10% reduction of body weight in obese patients.
However, weight regain usually occurs after 3 to 9months,
and almost 90% will return to their original body weight
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can lead to an additional 2 to 8 kg of weight loss.[8,9] Given
the complex etiology and pathogenesis of obesity,
including genetic, environmental, physiological, socioeco-
nomic, and epigenetic factors,[10,11] a combination of
pharmacology and lifestyle management to treat obesity
seems to be limited and lacks long-term effectiveness.[8]

Over the last two decades, bariatric surgery has emerged as
an effective tool for fighting obesity, and it leads to long-
term weight loss and remission of obesity-related compli-
cations.[12,13]

It is estimated that there are 350,000 bariatric operations
done worldwide every year.[14] Currently, clinical practice
guidelines recommended bariatric surgery for patients with
a body mass index (BMI) ≥40 or ≥35 kg/m2 with one or
more obesity-related metabolic disorders such as T2DM,
hyperlipidemia, hypertension, or obstructive sleep ap-
nea.[15] Bariatric surgery reduces body weight by changing
the anatomy of the gastrointestinal tract to restrict energy
intake and/or decrease nutrient absorption. Laparoscopic
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Roux-en-Y gastric bypass (RYGB) is one of the most
common and effective weight-reduction procedures, and it

for PRH was recommended. They proposed that after
ruling out other causes of hypoglycemia, patients should be
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creates an upper 15 to 30 mL gastric pouch based on the
lesser curvature, which is completely divided from the
gastric remnant and then anastomosed to the distal
jejunum. Thus, RYGB has a combined effect of caloric
restriction and nutrition malabsorption.[16] Many obese
patients with diabetes experience sustained weight loss and
remarkable remission of glucose metabolic disorders after
RYGB.[17,18] However, post-bariatric surgery hypoglyce-
mia is the most frequent and disabling adverse event after
RYGB. Although hypoglycemia is also observed after
sleeve gastrectomy and other bariatric surgeries, this
review is focused on RYGB, given the greater number of
published clinical studies on RYGB at present. The specific
mechanism underlying post-RYGB hypoglycemia (PRH) is
complex and largely unclear.[16] The incretin effects and
nesidioblastosis do not completely explain the phenome-
non.[19] It is well known that the gut microbiota plays an
important role in metabolic health, whereas microbial
dysbiosis occurs in patients with obesity and T2DM.[20,21]

Recently, a growing number of studies have shown that the
gut microbiota significantly changes after RYGB,[22] which
indicates that the intestinal microbiome might be a crucial
factor in explaining PRH. This review summarizes the
current possible mechanisms mediating PRH, with a focus
on the gut microbiota.

The Diagnosis and Prevalence of PRH
Hypoglycemia is generally diagnosed by the Whipple triad
and is defined by a plasma glucose level below 2.8 mmol/L
and a combination of clinical symptoms and signs
(autonomic or neuroglycopenic) of hypoglycemia and
resolution by carbohydrate administration.[23] The auto-
nomic symptoms caused by activation of the autonomic
nervous system include anxiety, higher heart rate,
shakiness, hunger, and sweating. The neuroglycopenic
symptoms are derived from brain glucose deprivation and
range from cognitive impairments, behavioral changes,
psychomotor abnormalities, blurred vision, difficulty
speaking and thinking, seizure to coma.[24] PRH typically
occurs after meals and thusmight be misdiagnosed as other
postprandial hypoglycemia diseases. Additionally, the
levels of blood glucose for PRH are largely controver-
sial.[25] Therefore, there is still a lack of consensus in
defining and diagnosing PRH. In the latest review
summarized by Dr. Patti et al,[26] a diagnosis flowchart
Table 1: Summarization of the incidence of PRH in different studies.

References Patient numbers Assessing methods Months

[27] 5040 Hospitalization
[28] 145,582 Self-reported
[29] 1119 Questionnaire
[30] 351 OGTT
[31] 175 OGTT
[32] 957 OGTT 12
[33] 1206 OGTT 12
[34] 40 CGM

PRH: Post-RYGB hypoglycemia; OGTT: Oral glucose tolerance test; CGM:

1835
diagnosed with PRH with the following conditions:
postprandial neuroglycopenia occurring 1 to 3 h after
meals with a history of bypass surgery at least 6 to
12 months before symptom onset; documented hypogly-
cemia (venous glucose level of 54 mg/dL) at the time of
neuroglycopenic symptoms and relief of symptoms after
glucose administration; and no hypoglycemia after a
prolonged fasting period of at least 12 h. The oral glucose
tolerance test (OGTT) is not well-tolerated for patients
experiencing upper-gastrointestinal surgery, which would
result in severe dumping syndrome. In contrast, solid and
liquid mixed meals containing protein, carbohydrates, and
fat have been used to evaluate glucose tolerance and induce
hypoglycemia for the diagnosis of PRH in clinical practice
and research studies. Nevertheless, there is no currently
accepted standard for meal testing. Continuous glucose
monitoring (CGM) has gained increasing popularity and
has become a helpful and promising tool to identify
patterns of glycemic excursions and diagnose PRH in
patients with a history of RYGB surgery.[26]

In light of the unstandardized diagnosis of PRH, the
reported prevalence of PRH is also inconsistent [Table 1].
The first report about the incidence of PRH was from a
national cohort of 5040 patients undergoing gastric bypass
in Sweden from 1986 to 2006. They found that incidences
of hospitalization for hypoglycemia after gastric bypass
surgery were significantly increased (hazard ratio, 2.7;
95% confidence interval, 1.2–6.3), although the propor-
tion of gastric bypass patients with hypoglycemia was very
low (0.2%).[27] Two subsequent studies also evaluated the
prevalence of self-reported PRH. The Bariatric Outcomes
Longitudinal Database study in the US reported that the
incidence of PRH was 0.1% among 145,582 patients.[28]

However, another study in Edinburgh showed that 34.2%
of 1119 patients who underwent RYGB or vertical sleeve
gastrectomy (VSG) reported postprandial symptoms
potentially indicating post-surgery hypoglycemia.[29] Re-
cently, several smaller studies used OGTT to assess the
frequency of postprandial hypoglycemia in patients who
underwent RYGB. Pigeyre et al showed a prevalence of
10.4% in patients with PRH 12 months after the RYGB,
which was defined as 120 min plasma glucose <50 mg/
dL.[30] However, Brix et al[31] reported that 32.6% of
patients 2 years after RYGB developed hypoglycemia
based on the same diagnosis as that used by Pigeyre et al.
after RYGB Glucose standard (mg/dL) Incidence rates (%)

– – 0.2
– – 0.1
– – 34.2
12 <50 10.4
24 <50 32.6
and 60 <50 9.1 and 7.9
and 60 <60 2.7 and 13.3
86 <55 75

Continuous glucose monitoring; –: Not applicable.
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Another two longitudinal studies assessed the prevalence
of PRH in patients 1 and 5 years after surgery through

production by a-cells. However, for patients with PRH,
b-cell suppression is decreased in patients after RYGB
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OGTT. Raverdy et al[32] reported a PRH (<50mg/dL)
incidence of 9.1%and 7.9%at 1 year and 5 years following
RYGB, respectively, whereas Lee et al[33] showed PRH
(<60mg/dL) of 2.7% and 13.3%, respectively, in a cohort
of non-diabetic patients who underwent RYGB, which
indicated that the incidence of PRH might be associated
with the glucose and insulin levels before surgery.
Additionally, CGMwas also used to evaluate hypoglycemia
and was performed in a total of 40 patients 86 months
after RYGB. Surprisingly, the results showed that 75% of
the patients developed PRH based on 5-day CGM.[34]

Overall, the prevalence of PRH is largely inconsistent
given the differences in diagnostic glucose level standards,
assessment strategy, individual variation in patients, sample
numbers, and time course. Thus, large cohort studies with
the same diagnostic standards for PRH are necessary in the
future.

Currently Possible Mechanisms Underlying PRH
Incretin effects

Understanding the mechanism of PRH is important to
prevent this disabling event and provide evidence and
targets for the treatment of glucose abnormalities.
However, the underlying mechanism of hypoglycemia
after surgery is complex and incompletely elucidated.[19,26]

In light of the altered upper gastrointestinal structure and
the dominant timing of hypoglycemia after RYGB, factors
regulating postprandial glucose homeostasis might play
essential roles, especially the gut factors. Multitudes of
evidence show that food intake leads to a larger glycemic
excursion with earlier and higher peaks as well as lower
nadir of glucose in patients who underwent RYGB, which
is caused by fast nutrient emptying from the remnant
stomach pouch to intestine.[35,36] In parallel with altered
postprandial glucose pattern, the response of food-induced
insulin secretion and gut hormone production are also
changed.[36,37] Inappropriate postprandial hyperinsuline-
mia and approximately ten-fold elevation of glucagon-like
peptide 1 (GLP-1) after meal were observed in patients
with PRH.[35] GLP-1 is an insulinotropic gut peptide
and contributes to meal-induced insulin secretion in
patients after RYGB, which were inversely validated by
decreased postprandial insulin levels in subjects post-
RYGB compared with non-surgical controls after blocking
GLP-1 by the GLP-1 receptor antagonist exendin 9-
39.[36,38,39] Patients with PRH had higher glucose, insulin,
and GLP-1 levels but similar GLP-1 receptor levels after
meals than those without hypoglycemia.[35,36,40] GLP-1
receptor antagonist could reverse hypoglycemia along with
decreased insulin secretion in PRH patients.[36,41] Howev-
er, the elevated glucose appearance after meal intake could
not be inhibited by exendin 9-39, which indicated that
there might be some other factors contributing to PRH
other than GLP-1.[36]

Dysfunction of b-cells and a-cells
836
In normal conditions, hypoglycemia leads to decreased
insulin secretion by b-cells and increased glucagon
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when the glucose level is reduced during hyperinsulinemia
hypoglycemic clamp than in non-surgical controls.[42,43]

Additionally, reduced insulin clearance is also observed in
patients with PRH compared with non-hypoglycemia
patients.[35] Additionally, a placebo-controlled, random-
ized, double-blind, crossover study proposed a role for
glucose-induced interleukin (IL) 1b in hypoglycemia after
gastric bypass surgery, which could be improved by
sodium-glucose transporter 2 inhibitors and IL-1 antago-
nism. Elevated IL-1b leads to an exaggerated postprandial
insulin release.[44] A previous study reported that b-cell
mass also increased in patients with PRH.[45] However,
another study was designed to reduce b-cell mass by partial
pancreatectomy, but it had no effects on improving
hypoglycemia in patients with PRH, which indicated that
b-cell mass was not the dominant contributor to
hypoglycemia.[46] In addition to b-cell function, studies
also showed that a-cell function, which is characterized by
glucagon secretion, was also impaired in response to
PRH.[36,40,43,47] Therefore, the dysfunction of b-cells and
a-cells might play some roles in mediating PRH. However,
a recent clinical study of RYGB reversal surgery in six
patients with severe PRH showed that all of the subjects
had improved hypoglycemia after reversal of RYGB along
with diminished postprandial glucose, insulin, and GLP-1
excursions. At the same time, insulin secretion and
clearance were improved. This study further indicated
that the pathophysiology of PRHwas not inherent to b-cell
hyperplasia or hyperfunction but primarily due to altered
anatomical structures and associated other changes.[48]

Other potential factors
Other factors that regulate glucose homeostasis might also
contribute to PRH. A recent study showed that non-insulin
dependent glucose disposal (glucose effectiveness) was also
significantly increased in patients with PRH.[49] Increased
adiponectin and decreased leptin might also play a role in
mediating the decreased glucose levels after RYGB.[50] The
independent effects from weight loss of RYGB on energy
homeostasis also included systemic repression of growth
hormone receptor signaling, which might be a mechanism
for PRH, but needs further exploration.[51] However, all of
the above factors cannot completely explain the incidence
and development of PRH. There might be some other
factors mediating this event. It is true that RYGB
dramatically changes and reconstitutes the upper gastro-
intestinal structure, which is definitely the origin of
hypoglycemia. The gut microbiome is recognized as a
forgotten metabolic organ and are located in the intestine.
The gut microbiome has been reported to be intimately
associated with systemic metabolism, gut hormones, and
bile acid (BA) metabolism. Does the gut microbiome
change after RYGB? Does the intestinal microbiome also
play some roles in PRH?

The Gut Microbiota is Significantly Altered After RYGB
The gut microbiota of humans consists of trillions of
microorganisms, including bacteria, viruses, and eukar-
yotes. The genome of the gut microbiome is more than 100
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times larger than the human genome. Bacteroides,
Firmicutes, and Actinobacteria are the predominant phyla,

malabsorption, and changes in acid exposure to the gastric
remnant and proximal small intestine, all of which might
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and the major genera includes Prevotella, Bacteroides,
Clostridium, Faecalibacterium, Lactobacillus, and Bifido-
bacterium. A neonate may procure its microbiota from the
intrauterine environment, the delivery method, and
breastfeeding.[52] The gut microbiome develops as a
newborn grows up according to dietary and environmental
factors such as drug intake, infections, and life style
patterns.[52] Although the gut microbiome appears to be
stable during adulthood, some factors, such as host’s diet,
lifestyle, and antibiotic use, can still alter its composition. It
has been well established that the gut microbiome plays
physiological roles in absorption of fats and fat-soluble
vitamins in the host diet, digestion of complex carbohy-
drates and plant polysaccharides, and regulation of BA-
related metabolism. Additionally, gut microbiota also
helps to maintain the intestinal epithelial barrier, regulate
intestinal permeability, and regulate innate and adaptive
immunity.[53] A balanced and healthy gut microbiota is
necessary for the metabolic health.

Numerous experimental and clinical studies have reported
changes in gut microbiota diversity and composition after
RYGB, a topic which has been reviewed before.[22] Thus, in
this review, we briefly summarize recently published reports
that detected alterations of gut microbiota after RYGB. The
first study implemented by Dr. Zhang et al discovered an
increase in Gammaproteobacteria and a decrease in
Firmicutes in patients after RYGB compared with nor-
mal-weight controls and obese patients.[54] Several subse-
quent human studies and experimental animal models
validated and showed similar post-RYGB changes in the gut
microbiome.[55-57] In addition to the alterations inmicrobial
components, an increase in the gut microbial richness after
RYGB was also uncovered in a clinical trial.[58] For the
starting point and duration of the altered intestinal
microbiome, a clinical trial detected and followed the
alterations in gut microbiota in morbidly obese patients
afterRYGB.They showed that increasedmicrobial diversity
and altered composition could be observedwithin 3months
of RYGB and more than half of the changed bacteria
were stable in relative abundance 1 year later.[59] Another
human study also demonstrated that changes in the gut
microbiota occur within 3 months and are stable even
9 years after RYGB.[55] In summary, microbial remodeling
after RYGB does happen, and it mainly includes increases
in gut microbiota richness, reduction in the Firmicutes, and
increase in Gammaproteobacteria/Proteobacteria. Howev-
er, discrepancy also exists among the published studies.
Some studies reported decreased Bacteroidetes at the
phylum level after RYGB,[56,60,61] while others showed
the opposite changes.[62,63] The inconsistency among these
studies might be attributed to differences in obesity severity,
analysis methods, and timepoints studied after surgery. It
should be mentioned that the sample sizes are small, with
less than ten cases in most studies. More studies with larger
sample sizes would be helpful to confirm the alterations in
gut microbiota after RYGB.

Multiple factors may contribute to the changes in gut
microbiota after RYGB. The RYGB procedure leads to
restriction of the amount and types of food, nutrient
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be expected to alter the gut microbiota. By comparing
changes in microbial composition at different timepoints
after RYGB, Li et al[56] demonstrated that the surgical
effect on gut microbiota was at least partially independent
of food intake. Importantly, studies have suggested that
BMI before and weight loss after RYGB are unlikely to
have great impact on the gut microbial changes.[55,57]

Many studies reported that intestinal rearrangement after
RYGB is a vital factor for the gut microbial
changes.[59,60,64] Nevertheless, proton pump inhibitor
therapy during the first 3 months after surgery and
antibiotics used during the peri-operative period can also
influence the gut microbiota, which clinicians should be
aware of. Does the changed gut microbiota have some
effects on metabolic alterations after RYGB?

Altered gut microbiota could be involved in the regulation
of glucose metabolism in patients after RYGB. Studies
have reported a possible association between RYGB-
inducedmicrobial changes and humanmetabolic indices in
plasma.[58,60] Murphy et al[61] found that there were no
phyla level changes in patients with persisting diabetes
1 year after RYGB; in those who achieved diabetes
remission after RYGB, therewere three significant changes
at the phyla level (increases in Firmicutes and Actino-
bacteria, decrease in Bacteroidetes) and 13 significant
changes at the species level. In another study, significant
correlations were found between plasma glucose with
Faecalibacterium prausnitzii, as well as HbA1c with
Trichothecium roseum and Veillonella parvula. In all, a
clear correlation exists between microbial composition
and gene function with metabolic parameters.[60] Further-
more, Arora et al[65] transferred microbiota from sham or
RYGB-treated fa/fa rats to germ-free mice and found that
postprandial glucose levels were lower in mice that
received the cecal microbiota from RYGB rats versus that
from sham-operated rats, which indicated that changes in
the gut microbiome after RYGB could be amediator for its
glucose reduction effect. Through transplantation of the
RYGB-associated gut microbiota into germ-free mice,
Liou et al[57] showed that the altered gut microbiota was
sufficient to trigger decreases of host weight and adiposity.
Similarly, Tremaroli et al[55] demonstrated that surgically
alteredmicrobiota promoted reduction of fat deposition in
recipient mice by colonizing germ-free mice with stool
from the patients. Therefore, microbial changes might also
be a potential mechanism in PRH. What factors mediate
these effects?

Potential Factors Mediating the Effects of the Intestinal
Microbiome on PRH

Evidence has shown that the gut microbiome plays
important roles in glucose metabolism. Many studies
have reported significant differences in intestinal micro-
biota between metabolic disorders and healthy individua-
ls.[66] The role of the microbiome in the progression of
T2DM and metabolic syndrome is becoming clear and
acknowledged.[67,68] Conversely, probiotics have been
shown to affect gut microbiota and improve glucose
homeostasis.[69] How does the gut microbiota influence
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metabolism? Studies have indicated that the microbiota
modulates inflammation, interacts with dietary constitu-

muscles and adipose tissue also leads to improvements in
insulin sensitivity, contributing to reduced plasma glu-

SCFAs might be another mediator
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ents, regulates the circadian clock, and affects gut
permeability, insulin sensitivity, and even overall energy
homeostasis.[66,70] For example, microbial products such
as lipopolysaccharide can drive low-grade inflammation,
which has been recognized as a potential cause of insulin
resistance,[71] and the metabolic benefit of fiber is at least
partially mediated by the gut microbiota.[72] Furthermore,
gut hormones produced by the gut and regulated by the
intestinal microbiota are important mediators in the
crosstalk between the gut and other metabolic organs.[73]

In this review, we mainly review the role of BA metabolism
and microbiota-derived metabolites, such as short-chain
fatty acids (SCFAs), in the metabolic adaptation and
changes after gastric bypass surgery.

BAs might be a link between the gut microbiota and
metabolic changes after RYGB

BAs, which are water-soluble, cholesterol-derived amphi-
pathic molecules of saturated hydroxylated C-24 sterols
produced by human hepatocytes, constitute approximately
50% of the organic component of bile. Cholic acid (CA)
and chenodeoxycholic acid (CDCA) are the main primary
BAs synthesized in humans. They are conjugated to either
taurine or glycine. The primary BAs are secreted into the
bile and stored in the gallbladder until secretion in the
duodenum. In the intestine, they are deconjugated and
transformed into “secondary Bas” by the gut microbiota.
Most BAs are recaptured in the ileum and return to the
liver via the portal vein, in a process named enterohepatic
recirculation. BAs regulate their own synthesis and
transport via the nuclear farnesoid X receptor (FXR) in
the intestine, through which they regulate glucose
metabolism as a hormone. Evidence has shown that BAs
are involved in the regulation of glucose metabolism by
controlling insulin signaling, hepatic glucose production,
glucose utilization, and the secretion of GLP-1.[74]

Alterations in gut microbial communities, which play a
crucial role in the transformation of primary BAs to
secondary BAs, result in changes in BA metabolism, and
thusmay influence glucosemetabolism.Although studies on
relationships between circulating BA concentrations and
changes in gut microbiota after RYGB are scarce, a
relationship has been reported between increased circulat-
ing BA concentrations and changes in gut microbial
composition after VSG.[75] In RYGB, the shortened route
of enterohepatic recirculation expedites the contact of
luminal BAs with the ileum where gut microbiota regulates
the transformation of secondary BAs, leading to earlier and
more activeBA reabsorption.Clinical studies have indicated
that circulating BA concentrations, especially for secondary
BAs, significantly increase following RYGB,[76-80] while a
simultaneous decrease in blood glucose levels has frequently
been observed. BAs bind to FXR and induce synthesis of
fibroblast growth factor 19 (FGF-19) in humans, which
further circulates into the liver to inhibit hepatic BA
production through decreasing 7a-hydroxylase.[81] In the
liver, FGF-19 activates glycogen synthesis and inhibits
gluconeogenesis, which subsequently leads to a decrease in
circulating glucose concentrations. Activation of FXR in the
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cose.[82] In patients after RYGB, coordinated increases in
BAs and FGF-19 and decreases in blood glucose levels have
been reported.[83,84] At the same time, increased GLP-1
levels and insulin productionwere observed in patients who
underwent RYGB. Subsequently, Sachdev et al also showed
that RYGB elevated the concentrations of BAs and FGF-19
in patients with T2DM compared with those with intensive
medical management, and this was negatively associated
with theirHbA1c levels.[85] Similarly, patients with diabetes
resolution afterRYGBhad larger increases in serum levels of
FGF-19 and BAs (CA and deoxycholic acids) than patients
without diabetes remission.[78] CDCA intake stimulated
GLP-1 secretion in patients after RYGB through activation
of G-protein-coupled bile acid receptor (TGR5).[86] Recent-
ly, a clinical study performed proteomic analysis of blood
samples in patients with PRH and asymptomatic post-
RYGB to explore the mechanisms contributing to glucose
reduction after RYGB. They showed that FGF-19 levels
were 2.4-fold higher in patients with PRH compared with
asymptomatic controls.[87] However, a clinical study
showed that the total BA and FGF19 levels cannot explain
the acute decreases in blood glucose, low-density lipopro-
tein-cholesterol, and high-density lipoprotein-cholesterol or
increases in GLP-1 secretion 1 week after RYGB.[88]

Therefore, gut microbiota regulation of BA metabolism
might be an important mechanism for PRH (summarized
in Table 2). However, this cannot be concluded with the
few studies on relationships between BAs and changes in
gut microbiota after RYGB and the complicated interac-
tion between gut microbiota and BAs. More studies are
required to clarify how gut microbiota influence BAs and
contribute to the hypoglycemia after RYGB.
SCFAs, which mainly include acetate, propionate, and
butyrate, are gut microbiota-derived metabolites mainly
produced in the colon by fermentation of non-digestible
polysaccharides. They act on G-protein-coupled receptors
(GPCRs) such as free fatty acid 2 (FFA2) and FFA3, which
are widely expressed in many tissues, to regulate host
energy expenditure and appetite and to inhibit histone
deacetylation. It has been reported that SCFAs play an
important role in glucose metabolism. Both FFA2 and
FFA3 are normally expressed in pancreatic cells, and
studies have shown activation of these GPCRs may result
in insulin secretion.[89-91] Furthermore, butyrate increases
the production of GLP-1 and peptide YY, and it is also
involved in reducing appetite, activating brown adipose
tissue, and diminishing diet-induced obesity.[92] In T2DM
patients, butyrate levels decreased while other SCFAs
increased, and a deficiency in overall SCFAs production
was also reported.[93] Conversely, SCFAs supplementation
is associated with beneficial effects in T2DM.[94]

It is a reasonable hypothesis that gut microbiome remodel-
ing results in changes in SCFAs, which might mediate
hypoglycemia in post-RYGB patients. The effect of RYGB
on increasing energy expenditure is well-established, and it
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may contribute to hypoglycemia after RYGB.[95,96] As
SCFAs are involved in host energy expenditure, this effect

further decipher their roles and specific mechanisms in
mediating glucose-lowing effects and to validate their

Table 2: The role of BAs and FGF-19 in mediating the effects of metabolic changes after RYGB.

Subjects Comparisons BAs and FGF-19 Metabolism References

Obese patients after RYGB After RYGB vs. BMI-
matched unoperated
control

BAs ↑ GLP-1 and PYY ↑ [76]

Obese patients (33.8 months
after surgery)

RYGB vs. weight-
matched unoperated
controls

Postprandial total BAs
and FGF-19 ↑

TG ↓
apoB48 ↑

[77]

RYGB-operated subjects
(1 year after)

Diabetes vs. without
diabetes;
Diabetes remission vs.
non-remission

FGF-19 and BAs ↓;
FGF-19 and BAs ↑

CYP7A1 gene ↑ [78]

Obese patients with T2DM 1 year after vs. before Secondary, unconjugated
BAs ↑
FGF-19 ↑

HbA1c ↓
Weight loss

[79]

Morbidly obese patients 3 months after vs. before Bile salts and FGF-19,
FGF-21 ↑

Improved insulin
resistance and
hepatic fat ↓

[80]

Obese subjects 6-week after vs. before FGF-19 and total BAs ↑ GLP-1 and PYY ↑ [83]

Obese women with T2DM 2 year after vs. before FGF-19 and BAs ↑ Weight ↓
GLP-1 and PYY ↑

[84]

Patients with uncontrolled
T2DM

1 year after vs. before FGF19 and BAs ↑ HbA1c ↓ [85]

RYGB-operated participants Chenodeoxycholic acid
vs. placebo

Total BA ↑
FGF-19 ↑

GLP-1, PYY, C-peptide
and glucagon ↑

[86]

Patients after RYGB Hypoglycemia vs.
asymptomatic

FGF-19 ↑ –
[87]

T2DM subjects 1 week after vs. before No changes in fasting total
BAs and FGF19

Glucose, LDL-C and
HDL-C ↓
GLP-1 ↑

[88]

RYGB: Laparoscopic Roux-en-Y gastric bypass; T2DM: Type 2 diabetes mellitus; BMI: Bodymass index; BAs: Bile acids; ↑: Increase; FGF-19: Fibroblast
growth factor 19; ↓: Decrease; FGF-21: Fibroblast growth factor 21; GLP-1: Glucagon-like peptide 1; PYY: Peptide YY; TG: Triglyceride; –: Not
applicable; LDL-C: Low-density lipoprotein cholesterol; HDL-C: High-density lipoprotein cholesterol.
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could be due to altered microbial signaling that increases
host energy expenditure. Liou et al[57] reported an increased
resting energy expenditure along with increased concentra-
tion of the SCFA propionate in the cecum in RYGB
microbiota-recipient mice. Similar results were found by
Tremaroli et al,[55] who colonized germ-free mice with the
fecalmicrobiota collected fromhumans9 years post-RYGB.
Therefore, SCFA changes resulting from altered gut micro-
biota after RYGBmaymediate host energy expenditure and
then contribute to hypoglycemia. Whether other mecha-
nisms are involved in SCFA regulation of glucose metabo-
lism in PRH needs to be further explored.

Overall, the composition and diversity of the intestinal
microbiota are dramatically reshaped after RYGB, and
this leads to changes in BA metabolism and metabolites,
especially SCFAs. BAs and the associated FGF-19
pathway, in which intestinal bacteria is involved, have
been shown to play an important role in mediating the
glucose levels and incretin effects after RYGB. Additional-
ly, altered SCFAs also influence energy metabolism in
patients who underwent RYGB. However, studies com-
paring the gut microbiota and associated BA and SCFAs
between patients with hypoglycemia and non-hypoglyce-
mia after RYGB are limited. Future studies are required to

1

influence on the PRH.

Conclusions
Overall, there are no other strategies to sustain weight loss
and yield remission of metabolic disorders for obese
individuals other than bariatric surgery. RYGB is one of
the most popular bariatric procedures. However, patients
who undergo RYGB may develop hypoglycemia, which is
a disabling and challenging complication. To date, the
pathogenesis of PRH is incompletely understood. Incretin
effects, dysfunction of b-cells and a-cells, non-insulin
dependent glucose disposal, adipokines, growth hormone
receptor signaling, and the gut microbiota, as summarized
in this review, might be potential mediators of PRH
[Figure 1]. Dietary modifications, including carbohydrate
restriction and avoidance of high glycemic index
foods,[97-100] and medical/surgical intervention are cur-
rently used but are limited in ability to treat and prevent
this hypoglycemia.[48,101-105] Therefore, clarifying the
underlying mechanism linking hypoglycemia to RYGB
and developing promising measures to prevent and treat
PRH is urgently needed. Future studies are needed to
further elucidate the pathophysiology of this condition as
well as the diagnostic standard and treatment approaches,
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which could target the gut microbiome and associated
factors to develop novel therapeutics for PRH. Further-

8. Derosa G, Maffioli P. Anti-obesity drugs: a review about their
effects and their safety. Expert Opin Drug Saf 2012;11:459–471.

Figure 1: Overview of the potential contributors to post-RYGB hypoglycemia. ↑: Increase; ↓: Decrease; FGF-19: Fibroblast growth factor 19; GLP-1: Glucagon-like peptide 1; SCFAs: Short-
chain fatty acids.
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more, this could yield significant insights into the intestinal
regulation of glucose metabolic homeostasis and provide
novel clues on how to improve hyperglycemia.
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