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Abstract: Pseudo-nitzschia pungens is a common component of the phytoplankton community of
the northern Adriatic Sea. In this study, an in-depth morphological analysis of P. pungens was carried
out in both cultured strains isolated in different periods and field samples, revealing a surprisingly
wide variability in a number of details, with both the gross morphology and ultrastructural levels
deviating from the nominal P. pungens. Colonies showed an overlap (from one-third to one-sixth)
and a transapical axis (rarely reaching 3 µm), strongly differing from the original description of
the species. Moreover, valves may be either symmetrical or slightly asymmetrical, with striae almost
always biseriate but sometimes uniseriate or triseriate. Poroids’ morphology in cingular bands
was characterized by a wide variability (square, circular, or rectangular poroids without or with
up to two hymen sectors), with several combination of them, even within the same cingular band.
Phylogenetic analyses based on ITS rDNA showed that the P. pungens of the northern Adriatic Sea
belonged to clade I. Domoic acid was not detected.

Keywords: domoic acid; ITS; LSU; morphometry; NW Adriatic Sea; phylogeny; ultrastructure;
taxonomy; ASP toxins

1. Introduction

Planktonic diatom species of the genus Pseudo-nitzschia are recorded in coastal regions worldwide.
Among the 53 known species [1], 26 have been shown to produce domoic acid (DA) [2,3],
causing neurologic disorders and memory loss in vertebrates linked to the consumption of contaminated
shellfish (Amnesic Shellfish Poisoning) [4,5]. In this genus, the number of genetic lineages is markedly
higher than the number of taxa discernible by light microscope (LM). With the description of several
new Pseudo-nitzschia species, detailing and comparing additional ultrastructural characters has become
necessary [6–8]. Indeed, several species not easily distinguishable using LM have been described using
electron microscopy (EM) coupled with molecular techniques [9–17].

Traditionally, species of the genus Pseudo-nitzschia have been subdivided in two LM-discernible
groups based on cell width in valve view: All the species wider than 3 µm have been combined into
the seriata group, while those less than 3 µm are in the delicatissima group [18]. Pseudo-nitzschia pungens,
with its varieties, is a cosmopolitan species detected from temperate to tropical waters [8,19–21],
ascribed to the seriata group. The combination of a few morphological characters (including cell
size, overlap of cells in colonies [22]) has usually been enough to distinguish P. pungens from other

Plants 2020, 9, 1420; doi:10.3390/plants9111420 www.mdpi.com/journal/plants

http://www.mdpi.com/journal/plants
http://www.mdpi.com
https://orcid.org/0000-0002-1134-7849
https://orcid.org/0000-0002-6633-1203
http://dx.doi.org/10.3390/plants9111420
http://www.mdpi.com/journal/plants
https://www.mdpi.com/2223-7747/9/11/1420?type=check_update&version=2


Plants 2020, 9, 1420 2 of 19

Pseudo-nitzschia species within the seriata group (e.g., P. fraudulenta (Cleve) Hasle under LM [23]).
Nevertheless, the global distribution of this species and its varieties have received increasing attention
after Casteleyn et al. [24,25] recognized the existence of three closely related lineages (i.e., clade I, II,
and III) based on ITS rDNA region analyses, which is also supported by morphological and mating
studies [8]. These three clades approximately correspond to the morphological varieties P. pungens var.
pungens (clade I), P. pungens var. cingulata (clade II), and P. pungens var. aveirensis (clade III) [24,26,27].
To date, among the P. pungens varieties, P. pungens var. cingulata and P. pungens var. aveirensis are not
toxic, while P. pungens var. pungens is the only one containing both toxic and nontoxic strains [21,27–30].
There are several morphological features useful to distinguish those clades, such as (i) the shape of
the poroids of the valvocopula, (ii) the number of fibulae and striae in 10 µm, (iii) the number of
the poroids in 1 µm, (iv) the number of additional poroids in 10 striae, and (v) the transapical axis
dimension [8,24]. Moreover, two subgroups of clade III (i.e., IIIa and IIIb) with apparently different
geographic distribution (Western Pacific and Western/Northeastern Atlantic strains, respectively)
were recently distinguished by ITS sequences [21], although no significant morphological differences
have been detected [8]. Regarding the mating studies, an apparent reproductive isolation has been
highlighted between clade I and clade III, while strains of clade I and II are sexually compatible and
able to produce hybrid offspring with intermediate valve width and structure of valvocopula [31].

Pseudo-nitzschia pungens has been commonly recorded in the phytoplankton community
of the Mediterranean Sea, although its geographical distribution is seemingly restricted to
the northernmost areas of the basin in the NW [28,32–35], as well as in NE Mediterranean Sea [29],
and it is a quite recurrent species in the diatom community of the northern Adriatic Sea [30,36–38].
Previous molecular studies carried out on the P. pungens from the northern Adriatic have highlighted
that the Adriatic strain belonged to clade I [30]. However, an in-depth ultrastructural analysis on
the Adriatic P. pungens population has not been carried out so far.

Since its first record in 2000 [39], in the Adriatic Sea, the presence of DA in shellfish has been
detected only occasionally [7,40], with concentration always well below the EU regulatory limit
of 20 mg kg−1 [41], despite blooms of several potentially toxic Pseudo-nitzschia species such as
P. pungens, P. calliantha, P. delicatissima, P. fraudulenta, P. multistriata, and P. pseudodelicatissima [40,42],
which commonly occur throughout the year in the study area [43]. High-performance liquid
chromatography (HPLC) using UV detection is the most popular method used for the determination of
DA in shellfish tissues, which was developed by Quilliam and Wright [44] and modified by AESAN [45].
However, as DA concentrations in Pseudo-nitzschia strains and phytoplankton field samples are often
very low, more sensitive methods of detection are required. Among other developed methods,
LC-MS exhibits good results in terms of sensitivity, accuracy, and selectivity [46], representing one of
the best tools to investigate DA presence in cultured strains and phytoplankton field samples.

The aim of this study was to characterize the P. pungens population of northwestern Adriatic,
based on molecular and ultrastructural features of both natural and culture samples, as well as
the analysis of its toxin content.

2. Results

2.1. Morphology

Cells of Pseudo-nitzschia pungens from culture material (Figures S1–S9) and from field samples
showed very similar morphological and morphometric features. Cells had fusiform to lanceolate shape
in both girdle (Figure 1A,B,E–G) and valve view (Figure 1C,D and Figure 2A). All the morphometric
measurements have been performed with EM, except for the Apical Axis (AA) measured both in LM
and SEM. The AA ranged from 51.1 µm to 127.6 µm, while the Transapical Axis (TA) ranged from
2.0 µm to 3.7 µm (Table 1 and Table S1). The central nodule was absent, and the raphe continued for
the full length of the cells (Figure 3A).
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Figure 1. Pseudo-nitzschia pungens LM (A–D) and SEM images (E–G). (A,B) Colonies in girdle view,
showing a different overlap indicated by the grid (one-third and one-fifth of the total cell length,
respectively). (C) Colony in valve view. (D) Colony in valve view with cells slightly expanding one
a side making asymmetrical colony. (E–G) Valve view of three cells showing the wide Transapical Axis
(TA) variability. Red lines mark the asymmetry of the valve. Scale bar = 20 µm (A–D); 2 µm (E); 10 µm
(F,G). Images obtained from the following strains: (A,C,D) 01181; (B) 01186; (E) 01189; (F,G) 04196.
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Figure 2. Pseudo-nitzschia pungens SEM micrographs of valves. (A) Cell in valve view. (B) Detail of valve
showing the irregular density of fibulae (interrupted circle) and striae (arrows). The decreasing density
of poroids toward the apical end is shown. (C) Detail of the central part of the valve with an incomplete
third row of poroids (white circle). (D) Detail of the central part of the valve showing the most common
striae pattern with two rows of poroids. Scale bar = 10 µm (A); 2 µm (B–D). Images obtained from
field samples.
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Table 1. Morphometric characteristics of Pseudo-nitzschia pungens reported in literature and in this study. n.r., not reported.

Apical Axis (µm) Transapical Axis (µm) Fibulae in 10 µm Striae in 10 µm Poroids in 1 µm Band Atriae (in 10 µm) Apical Axis/Overlap Location Type of Samples Clade/Variety References

74–142 2.9–4.5 9–15 9–15 3–4 n.r. 3 n.r. n.r. [47]

71–140 2.8–4.5 10–14 10–14 3–4.5 20–24 n.r. Pacific coast of
USA (California)

Field and
culture samples II/cingulata [26]

100–155
(116.1 ± 13.2)

n = 74

1.8–4.0
(2.9 ± 0.5)

n = 60

10–20
(12.3 ± 1.6)

n = 78

10–14
(12.0 ± 1.1)

n = 82

2–4
(3.3 ± 0.4)

n = 81
n.r.

3–5
(4)

n = 70

Danish coastal
waters n.r. n.r. [48]

72–135
(99.1 ± 21.5)

2.4–4.5
(3.9 ± 0.8)

9–13
(10.8 ± 1.9)

9–13
(10.8 ± 1.6)

3–4
(3.4 ± 0.3)

17–18
(17.5 ± 0.4) n.r. Sea of Japan Field samples n.r. [49,50]

94–160 2–4 10–16 10–16 4–5 n.r. n.r.
Pacific coast

of USA
(Washington State)

Field samples n.r. [51]

74–174 2.4–5.3 9–16 9–16 n.r. n.r. 3 Gulf of Mexico Field samples n.r. [52]

92–156
(113 ± 31)

n = 3

3.5–4.2
(4.0 ± 0.3)

n = 3

10–11
(11 ± 0.3)

n = 4

10–11
(10.5 ± 0.5)

n = 5

1–3
(2.5 ± 0.6)

n = 6
4 Canada, Bay of

Fundy Field samples n.r. [53]

24.4–121.0
(79.1 ± 8.7)

n = 70

2.4–3.8
(3.2 ± 0.4)

n = 70

9–13
(11.9 ± 0.3)

n = 70

10–14
(11.1 ± 0.5)

n = 70

2–4
(3.0 ± 0.5)

n = 50
n.r. n.r. North Sea Culture samples I/pungens [24]

87.9–108.7
(101.5 ± 27.2)

n = 42

3.4–4.7
(3.9 ± 0.1)

n = 42

11–15
(12.7 ± 0.2)

n = 50

10–13
(11.6 ± 0.3)

n = 42

3–5
(4.2 ± 0.5)

n = 50
n.r. n.r. North Sea Culture samples II/cingulata [24]

74–147
(112 ± 17.6)

n = 35

2.6–4.5
(3.4 ± 0.5)

n = 35

10–13
(11 ± 1.2)

n = 5

9–13
(11.4 ± 1.5)

n = 5

2.5–3
(2.9 ± 0.2)

n = 5
n.r. n.r. Catalonia, NW

Mediterranean Field samples n.r. [34]

70–156
116.9 ± 24.6

n = 81

2.2–4.8
(3.75 ± 0.57)

n = 81

9–13
(11.2 ± 1.3)

n = 10

9–13
(11.4 ± 1.4)

n = 10

2.5–3
(3.0 ± 0.2)

n = 10
n.r. n.r. Catalonia, NW

Mediterranean Field samples n.r. [35]

86.3–160.8
(104.6 ± 10.42)

n = 50

3.7–5.3
(4.5 ± 0.35)

n = 50

10–16
(12.8 ± 1.4)

n = 50

10–13
(11.1 ± 0.68)

n = 50
n.r. n.r. 3–5 North Sea Field samples n.r. [54]

47–100
(67.7 ± 14.8)

2.7–3.7
(3.3 ± 0.6)

13–16
(14.8 ± 0.7)

13–16
(14.9 ± 0.7)

3–5
(4.0 ± 0.0)

21–25
(23.0 ± 1.1) 5–6 Atlantic Ocean,

Portugal Culture samples III/ aveirensis [27]

84–165 3.0–5.0 13–18
Striae n.r.

Interstriae:
13–16

2–3 n.r. n.r. Atlantic Ocean,
southern Brazil Field samples pungens [55]

89–122 3.0–4.0 13–14
Striae n.r.

Interstriae:
12–14

3–4 n.r. n.r. Atlantic Ocean,
southern Brazil Field samples cingulata [55]
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Table 1. Cont.

Apical Axis (µm) Transapical Axis (µm) Fibulae in 10 µm Striae in 10 µm Poroids in 1 µm Band Atriae (in 10 µm) Apical Axis/Overlap Location Type of Samples Clade/Variety References

n.r.
1.9–3.2

(2.5 ± 0.41)
n = 28

10–17
(13 ± 2.3)

n = 8

8–15
(13 ± 2.3)

n = 8

2–4
(3 ± 0.6)

n = 8
n.r. 4.5–4.8 NE Adriatic Sea Field samples n.r. [36]

n.r.
2.5–3.6

(2.9 ± 0.3)
n = 75

11–14
(12.2 ± 0.9)

n = 71

11–14
(12.0 ± 0.8)

n = 71

2–4
(3.5 ± 0.6)

n = 105

14–20
(16.5 ± 1.6)

n = 45
n.r. Northern Aegean

Sea Culture samples I [29]

93–126 2.8–3.2 11–15 11–14 3–3.4 n.r. 3–4 Gulf of Mexico Field samples n.r. [56]

72–149 3.0–4.1 11–13 10–12 3–4 15–23 n.r. Atlantic Ocean,
Gulf of Maine Culture samples n.r. [57]

80–92
(86.21 ± 3.66)

n = 24

2.4–4.2
(3.75 ± 0.96)

n = 24

9–13
(11.4 ± 1.2)

n = 10

10–13
(11.2 ± 0.9)

n = 10

2–4
(2.97 ± 0.45)

n = 35
n.r. n.r. NE Adriatic Sea

(Gulf of Trieste) Culture samples I [38]

51.1–99.4
(78.9 ± 11.7)

n = 213

2.0–3.6 (2.82 ± 0.32)
n = 80

5–18
(11.6 ± 1.9)

n = 79

9–16
(11.3 ± 1.2)

n = 81

1–4
(3 ± 0.6)
n = 90

12–23
(16.2 ± 2.7)

n = 88

2.9–6.0
(3.9 ± 0.6)

n = 130

NW Adriatic
Sea (Senigallia
LTER station)

Culture samples I this study

57.2–127.6
(93.9 ± 25.8)

n = 26

2.4–3.7
(2.8 ± 0.33)

n = 15

9–16
(11.6 ± 1.98)

n = 13

9–14
(11.3 ± 1.3)

n = 14

3–4
(3.4 ± 0.5)

n = 15
n.r.

3.7–5.2
(4.6 ± 0.5)

n = 14

NW Adriatic
Sea (Senigallia

LTE station)
Field samples I this study
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Scale bar = 2 µm (A–C); 1 µm (D,E). Images obtained from the following strains: (A,B) 01186; (C,D) 
04191; (E) 01185. 

Striae were almost always (72% of the observations) biseriate (Figures 2C,D and 3), with rounded 
poroids without hymen sectors (Figure 4A–D). Moreover, 3–4 additional poroids in each stria were 
observed in the 60% of the observations (additional poroids in 10 striae = 2.9 ± 2.79, n = 41) (Figures 
3C and 4B,C), forming an incomplete third row (Figures 2C and 4A). The presence of additional 
poroids was more frequent in the part of the stria close to the raphe (Figures 3C and 4B–D). 
Sometimes (28%), striae were uniseriate (Figures 2B and 4E). The number of poroids in 1 µm ranged 
between 1 and 4 (Table 1). Cells with a very low density of poroids were not rare (22%, Figure 3D), 
and a decreasing density of poroids from the valve center toward the apices was often observed 
(Figures 2B and 3B,E). 

Figure 3. Pseudo-nitzschia pungens SEM micrographs of internal valve faces. (A) Detail of valve with
regular fibulae and striae and an additional poroid (black circle). (B) Detail of valve showing lower
number of poroids toward the apical part. (C) Detail of valve showing irregular density of fibulae
(dotted black circle) with several additional poroids (black arrows). (D) Detail of the central part
of the valve with very low density of poroids. (E) Detail of apical part with very low density of
poroids. Scale bar = 2 µm (A–C); 1 µm (D,E). Images obtained from the following strains: (A,B) 01186;
(C,D) 04191; (E) 01185.

Cells formed stepped colonies of several cells with an overlap that ranged from one-third to
one-sixth of the AA length (Figure 1A,B, Table 1). Cells were strongly silicified. The interstriae and
fibulae were discernible in LM (Figure 1A,C). Although colonies were generally symmetrical in valve
view (Figure 1C), asymmetrical colonies were not rare (Figure 1D).

In valve view, valves were slightly asymmetrical with minor hemivalve to major hemivalve area
ratios ranging from 0.56 to 0.99 (n = 49, 0.82 ± 0.12) and from 0.57 to 0.94 (n = 13, 0.80 ± 0.12) in
cultured and field samples, respectively. The number of fibulae in 10 µm was 5–18, and the number of
striae in 10 µm was 9–16 (Table 1). The number of fibulae was generally the same as the number of
striae (Figures 2D and 3A). At times, the number of fibulae was higher (Figures 2B and 3C), but it was
rarely lower.

Striae were almost always (72% of the observations) biseriate (Figure 2C,D and Figure 3),
with rounded poroids without hymen sectors (Figure 4A–D). Moreover, 3–4 additional poroids in
each stria were observed in the 60% of the observations (additional poroids in 10 striae = 2.9 ± 2.79,
n = 41) (Figures 3C and 4B,C), forming an incomplete third row (Figures 2C and 4A). The presence
of additional poroids was more frequent in the part of the stria close to the raphe (Figures 3C and
4B–D). Sometimes (28%), striae were uniseriate (Figures 2B and 4E). The number of poroids in 1 µm
ranged between 1 and 4 (Table 1). Cells with a very low density of poroids were not rare (22%,
Figure 3D), and a decreasing density of poroids from the valve center toward the apices was often
observed (Figures 2B and 3B,E).
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Scale bar = 1 µm (A–C,E); 0.2 µm (D). Images obtained from the following strains: (A,E) 031832; (B,D) 
01185; (C) 01186. 
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the same cingular band (Figures 5 and 6). In general, poroids’ dimensions showed a decreasing trend 
in the abvalvar direction (i.e., poroids in the third cingular band were narrower than those in the first 
two, and sometimes (25%), no poroids were detected), even if, often (40%), the dimensions and the 
shape of poroids in the first two cingular bands did not differ so much (but the second band had 
more striae with smaller poroids than the valvocopula, e.g., Figure 5A). Band striae (12–23 in 10 µm, 
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Figure 4. Pseudo-nitzschia pungens TEM micrographs of valves. (A–D) Detail of striae showing (A)
an incomplete third row of poroids, (B–C) two additional poroids in the area of the stria close to the
raphe, (D) additional poroid in the internal part of the stria. (E) Detail of valve face with regular density
of fibulae and irregular density of striae (arrows indicate striae with only one row of poroids). Scale bar
= 1 µm (A–C,E); 0.2 µm (D). Images obtained from the following strains: (A,E) 031832; (B,D) 01185;
(C) 01186.

In girdle view, cingular bands showed a wide morphological variability both in the shape of
poroids and in the number and size of sectors within them (Figure S10A,B, respectively), even within
the same cingular band (Figures 5 and 6). In general, poroids’ dimensions showed a decreasing trend in
the abvalvar direction (i.e., poroids in the third cingular band were narrower than those in the first two,
and sometimes (25%), no poroids were detected), even if, often (40%), the dimensions and the shape of
poroids in the first two cingular bands did not differ so much (but the second band had more striae with
smaller poroids than the valvocopula, e.g., Figure 5A). Band striae (12–23 in 10 µm, mean 16.2 ± 2.7,
n = 88) were perforated, with (a) oval to rectangular, (b) square, or (c) circular poroids (Figure S10),
showing one, two (partially to completely divided), or no hymen sectors (Figure 6). Within each
cingular band, either poroids characterized by only one shape (Figure 5C or Figure 5B(a)) or poroids
with different shapes (Figure 5D–F) could occur. Nevertheless, cingular bands with only circular
poroids were never observed.

All the patterns of hymenation were observed in poroids (Figure 6), except for circular poroids
that were observed only without hymen sectors (Figure 6A) or with one sector.
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Figure 6. Pseudo-nitzschia pungens TEM micrographs of valvocopulae with different poroid pattern: (A,B)
with no sectors, (C) one entire or partially divided sector, (D) two sectors (black arrows). Scale bar = 2 µm
(A); 0.2 µm (B), 3 µm (C,D). Images obtained from the following strains: (A) 01185; (B) 01186; (C,D) 031832.
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2.2. Molecular Analyses

BLAST results of the 13 LSU sequences confirmed the identification of Pseudo-nitzschia pungens
(showing from 99 to 100% of identity with Pseudo-nitzschia pungens LSU sequences from GenBank).

The final alignment was obtained from a total 94 ITS1-5.8s-ITS2 rDNA sequences of P. pungens
from different geographical locations, including four sequences from this study.

The complete alignment was rooted with P. multiseries (AY257844). The alignment comprised
632 characters, of which 116 were variable sites and 31 were parsimony-informative. Three clades
were recovered (Figure 7).Plants 2020, 9, x FOR PEER REVIEW 11 of 20 
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differed from the original description. In the earliest description of P. pungens, an overlap of one-third 
of the cells in colony (or more) and a transapical axis (TA) wider 3 µm has been reported [47], as well 
as for all the other species belonging to the seriata group. Nevertheless, the P. pungens from this study 
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Figure 7. Bayesian consensus tree based on ITS1-5.8s-ITS2 of Pseudo-nitzschia pungens rooted with
P. multiseries (AY257844). Sequences from this study are in bold. Only ML bootstraps values ≥ 70%,
and BI posterior probabilities (PP) ≥ 0.90 are shown. (ML/PP). Scale bar = substitutions/site.

ML and BI analysis revealed the P. pungens strains of this study fell into clade I with a strongly
supported bootstrap value (88), and there was a p-distance value of 0.0004 between them and
the other sequences of clade I. Clade I was closely related to clade II (mean p-distance value: 0.0143),
while the highest p-distance was observed with clade III (mean p-distance value: 0.0319). The highest
p-distance among P. pungens clades were observed between clade II and clade III (mean p-distance
value: 0.0356).

2.3. Toxin Content

None of the tested strains by LC-MS/MS produced DA in detectable amounts. The LOD varied
between 0.09 and 0.02 fg cell−1.
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3. Discussion

In this study, a significant morphological variability in Pseudo-nitzschia pungens populations from
the northern Adriatic Sea was highlighted by analyzing a consistent number of samples from both
field and cultured material.

The molecular characterization revealed that the Adriatic population belonged to the clade I,
as the P. pungens nominal variety [24]. However, a number of morphological and ultrastructural details
differed from the original description. In the earliest description of P. pungens, an overlap of one-third
of the cells in colony (or more) and a transapical axis (TA) wider 3 µm has been reported [47], as well
as for all the other species belonging to the seriata group. Nevertheless, the P. pungens from this study
revealed an overlap (from one-third to one-sixth) and a TA (rarely reaching 3 µm), strongly differing
from the original description of the species, but in agreement with what previously reported for several
P. pungens strains, irrespective of clade/variety (Table 1). Indeed, the increasing studies focusing on this
species have shown that a number of morphological features, previously indicated as key characters,
would be not strictly respected. Some authors have already reported an overlap much lower (ranging
from one-fourth to one-sixth) in Canada, the Bay of Fundy [53], the northeastern Adriatic Sea [36],
the North Sea [54], the Gulf of Mexico [56], the Danish coastal waters [48], and the Atlantic coast of
Portugal (P. pungens var. aveirensis) [27], and a TA often less than 3 µm (down to 1.9), especially in
the Mediterranean coast of Greece [29], the northeastern Adriatic Sea [36], and the Atlantic coast of
Portugal (P. pungens var. aveirensis) [27] (Table 1).

Although striae are generally reported as biseriate, an incomplete third row of poroids was
very common. Such third row of poroids has been detected in other strains included in all other
clades/varieties [24,27,47,48]. On the contrary, the presence of uniseriate striae was reported for the first
time in this study.

All the main morphological data of the Adriatic P. pungens matched with those of the other
clades/varieties, except for (i) the density of band striae in 10 µm (12–23) that slightly diverges from
that reported in Pacific coast of USA (California) and in Atlantic coast of Portugal (for P. pungens var.
cingulata and P. pungens var. aveirensis, 20–24 and 21–25, respectively) [26,27], (ii) the density of fibulae
in 10 µm (5–18) that slightly diverges from that reported in Danish coastal waters (10–20) [48], and (iii)
the density of poroids in 1 µm (1–4) that slightly diverges from that reported in the Pacific coast of
USA (Washington State) (4–5) [51] (Table 1).

In this study, the cell asymmetry of P. pungens in valve view has been highlighted for the first
time, although it could be noticed looking at the TEM micrographs of P. pungens var. aveirensis ([27],
Figure 47).

Several ultrastructural features have been indicated as useful to discriminate among P. pungens
varieties, such as the shape and pattern of poroids in the cingular bands (Figure S11) [24,27].
While the nominal variety (P. pungens var. pungens) has three cingular bands, all with one row
of oval to rectangular poroids [22], P. pungens var. cingulata is characterized by different cingular bands,
i.e., the valvocopula has square poroids having two rows of 2–3 hymen sectors, while the second band
has rectangular poroids characterized by 1–2 hymen sectors; no descriptions have been reported for
the third band [26]. A further poroids’ pattern was described by Churro et al. [27] who established the
variety P. pungens var. aveirensis, having two types of cingular bands, valvocopula with square poroids
split into two to three parts and the second band with one row of oval (sometimes split) poroids ([27],
Figure 51 and Figure 51 insert).

The morphology of the poroids in cingular bands of the Adriatic P. pungens was characterized
by a wide variability among strains and within strains and among field samples, showing a number
of different combinations of ultrastructural details previously used to discriminate the P. pungens
varieties described so far. In fact, cingular bands could have square, circular, or rectangular poroids
without or with 1–2 hymen sectors, with several combination of them, even within the same cingular
band. As a consequence, this high variability in ultrastructural detail patterns makes such details
uninformative for discriminating the N Adriatic P. pungens (belonging to clade I, as the P. pungens



Plants 2020, 9, 1420 11 of 19

nominal variety [24]) from P. pungens var. aveirensis. On the contrary, N Adriatic P. pungens clearly
differs from P. pungens var. cingulata.

Poroids’ dimensions in the cingular bands of P. pungens var. cingulata and P. pungens var. aveirensis
showed a decreasing trend in the abvalvar direction (i.e., poroids in the third cingular band were
narrower than those in the first two cingular bands) [26,27], as often observed in this study for P. pungens
from the Adriatic Sea. However, differently from the other varieties, in our samples, it was not rare
to observe that, in the dimensions of poroids, the first two cingular bands did not differ, so much
that valvocopula and the second cingular band were not always easily discernable. In these cases,
the second cingular band could be distinguished because of the slightly higher number of band striae
in 10 µm.

Until now, the P. pungens varieties have been approximatively ascribed to the three clades:
P. pungens var. pungens~clade I, P. pungens var. cingulata~clade II, and P. pungens var. aveirensis~clade
III [24,26,27]. Nevertheless, results of this study suggest that a clade does not necessary correspond
to a morphological variety and vice versa. Indeed, Adriatic P. pungens clade I showed a wide
morphological variability, covering at least two varieties (i.e., P. pungens var. pungens and P. pungens
var aveirensis).

Field and experimental studies showed that diatom frustules can be significantly modified by
environmental conditions such that genetically identical individuals could be identified as different
species [58,59]. For example, salinity and temperature, among other conditions, have strong effects
on frustule morphology, clearly demonstrating the flexibility in diatom morphogenesis [58,60,61].
Some of the morphological features, defined as key characteristics for diatom taxonomic identification,
have been shown to be more variable than previously thought [62,63]. In this regard, morphological
variability should be investigated under different environmental conditions and in the highest possible
number of individuals in order to cover the entire morphological variability within the same population.

The wide morphological and morphometrical variability observed in the P. pungens clade I
population from Adriatic Sea, often overlapping characteristics proper of different varieties, could be
explained by taking in account the great number of observations that were performed in this study
compared with the previous ones (Table 1). Moreover, the analyses were conducted under a wide
spectrum of conditions (i.e., from field and cultured samples sampled in different periods and with
different strains of different ages). Nevertheless, this wide variability was detected also between
different specimens belonging to the same sample, suggesting that this variability was intrinsic and
only partially ascribable to the different environmental conditions.

Finally, although some strains of P. pungens clade I were recorded to be toxigenic [29], none of
the cultured strains of P. pungens clade I from this study produced DA in detectable amounts,
in accordance with what previously observed in NW Adriatic strains [30] and with the results from
the official monitoring of shellfish production sites [64] in the NW Adriatic Sea, that only sporadically
revealed the presence of DA in shellfish and at very low levels [7,40].

4. Materials and Methods

4.1. Study Area and Sampling

The study area is the coastal station SG01 (43◦45.86′ N, 13◦13.00′ E) of the Senigallia-Susak transect
located in the southern part of the northern Adriatic subbasin, 1.2 nM from the Italian coastline
(bottom depth: 12 m), and is included in the LTER (Long-Term Ecological Research) Italian sites,
where phytoplankton and environmental parameters have been sampled since 1988.

Sampling was carried out with at about a monthly frequency, from January 2018 to December
2019. Water samples were collected at surface by Niskin bottles, in 250 mL dark glass bottles and
preserved by adding 0.8% formaldehyde prefiltered and neutralized with hexamethylenetetramine [65],
and stored at 4 ◦C until analysis was performed. Moreover, net (20 µm mesh) samples were collected
for cell isolation (see below).
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4.2. Pseudo-Nitzschia Strain Isolation

The isolation of single cells of Pseudo-nitzschia pungens was carried out in 24-well plates following
the capillary pipette method [66]. Cultures were maintained at 21 ◦C with a 12:12 h of light:dark
photoperiod and an irradiance of 100 µmol m−2 s−1, in sterile filtered seawater enriched with
f/2 nutrients [67]. Every month, the algal cultures were checked for their purity and quality and
refreshed with fresh culture medium. A total of 14 Pseudo-nitzschia pungens strains were set up.

4.3. DNA Extraction from Algal Culture PCR Amplification and Sequencing

Of the total 14 strains set up, 13 were used for the molecular analyses. Algal cultures were
harvested during their late exponential phase and centrifuged at 4000× g for 15 min in order to obtain
the pellets. Pellets were extracted using CTAB (N-cetyl-N,N,N-trimethylammoniumbromide) buffer
(2% CTAB, 1 M Tris pH 8.0, 0.5 M EDTA pH 8.0, 5M NaCl, 1%) modified from Doyle and Doyle [68].

Extracted DNA was amplified by Polymerase Chain Reaction (PCR) technique, carried out with
a SimpliAmpTM Thermal Cycler.

The D1-D3 region was amplified using universal primers: forward primer D1R (5′-ACC CGC
TGA ATT TAA GCA TA-3′) and reverse primer D3Ca (5′-ACG AAC GAT TTG CAG GTC AG-3′) [69].
The ITS region was amplified using ITS1 (5′-TCC GTA GGT GAA CCT GCG G-3′) and ITS4 (5′-TCC
TCC GCT TAT TGA TAT GC-3′) [70].

PCR products were visualized with UV from an agarose gel (1%).
The PCR conditions for LSU and ITS region were 94 ◦C for 4 min, followed by 35 cycles of 94 ◦C

for 30 sec, annealing at 60 and 58 ◦C (for LSU and ITS regions, respectively) for 45 sec, and elongation
at 72 ◦C for 1 min, followed by further elongation at 72 ◦C for 5 min.

4.4. Sequence Analyses

Taxonomic assignation was performed by blasting each LSU sequences against the GenBank
database (NCBI on-line BLAST web interface version 2.9.0+ [71]) to determine the closest
known sequences.

Sequences were adjusted for the presence of double peaks by eye with BioEdit [72]. Among the ITS
sequences from this study, 4 were aligned with 90 sequences retrieved from GenBank. Pseudo-nitzschia
multiseries was the outgroup sequences (Table S2). The selection of outgroup sequences was based on
the findings by Lim et al. [21].

Alignments were made with ClustalW [73] using the default setting and were then edited
manually. Regions that did not fit with the others were excluded from the phylogenetic analyses.
Two independent analyses were used to conduct the ITS1-5.8s-IT2 phylogeny: Maximum Likelihood
(ML) and Bayesian Inference (BI). The best nucleotide substitution model was tested with Partitionfinder
2 [74]. The generalized time-reversible evolution model (GTR+G) was used for the construction of
the RAxML phylogenetic analysis, and Kimura’s two-parameter model (K80 + I) was used for
the Bayesian inference tree. ML analyses were carried out with RAxML [75] 1000 pseudo replicates
through Cipress portal [76].

Bayesian analyses were carried out using MrBayes 3.2 [77] with 3,000,000 Markov chain and Monte
Carlo generations, a sample frequency of 1500, and a diagnosing frequency of 1000. The 50% majority
rule consensus tree was constructed discarding the first 25% of samples. Posterior probabilities were
calculated to measure tree strength.

The distance estimation matrix between groups was calculated with the p-distance method using
the default setting of MEGA 7 [78].
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4.5. Morphological Characterization

4.5.1. Light Microscopy Analyses

Pseudo-nitzschia cells were measured at 1000×magnification using an inverted microscope (ZEISS
Axiovert 135) equipped with phase contrast. The Apical Axis (AA) and the overlapping region of
the cells in a chain were measured in at least 100 cells from cultured strains and field samples.

4.5.2. Ultrastructural Characterization (TEM and SEM)

Samples for TEM and SEM analyses were harvested from cultured strains in exponential growth
phase, collected during 2018–2019 (Table S3) and from field net samples collected in February and
May 2019.

Samples were acid-cleaned following von Stosch’s protocol [18]. A drop (2 µL) of the cleaned
material was placed on a grid and on a stub and observed with a Philips TEM 400 microscope and
a SEM (FE-SEM; Zeiss Supra 40, Carl Zeiss AG, Oberkochen, Germany), respectively.

Several cells were measured (see Table 1 for the number of cells used for each measurement) both
from cultured and field samples for Transapical Axis (TA), fibulae, striae, and poroids’ density in both
valves and cingular bands with particular focus to valvocopula.

A measurement of valval symmetry was performed on SEM micrographs, calculating the cell
surface with an image analysis software and using the formula as follows: Cells in valval view
were divided into two hemivalves by the apical axis, crossing the half of the transapical axis.
Then, the symmetry was expressed as the ratio of the two hemivalve areas (minor hemivalve:major
hemivalve, Figure S12). Valves were asymmetric when the ratio , 1.

4.6. Toxin Content

4.6.1. Chemicals and Standards

The acetonitrile (MeACN) and formic acid (FA) were of LC-MS grade, and the methanol (MeOH)
was of HPLC grade. Water was distilled and passed through a MilliQ water purification system (DIW)
(Millipore Ltd., Bedford, MA, USA).

Certified reference material for DA, CRM-DA-g (103.3 µg mL−1), was purchased from the Institute
of Biotoxin Metrology at the National Research Council of Canada (NRCC, Halifax, Nova Scotia,
Canada). Calibration solutions of DA were prepared from serial dilutions of the reference material
in DIW.

4.6.2. DA Extraction

Chemical analysis of Pseudo-nitzschia pungens needs a large quantity of cells, so each strain
was grown in an increasing volume up to 2 L to achieve abundances, ranging from 17 × 104 to
61 × 104 cells mL−1 among the cultured strains.

The strains were grown in the same culture conditions reported above. Cells were harvested from
the early stationary growth phase. Algal pellets of 4 P. pungens strains (Table S3) were extracted using
a mixture of MeOH/H2O (50:50 v/v), following the official EU-RL RP-LC-UV method (EURLMB 2008),
for the determination of DA in shellfish and finfish.

All culture volume (2 L) was centrifuged for 20 min at 2500× g (4 ◦C) in 40 centrifuge tubes (50 mL
volume). Pellets were combined and extracted with 5 mL of MeOH/H2O (50:50 v/v), vortex-mixed
for 1 min, and bath-sonicated for 10 min. After sonication, the aliquot was centrifuged for 10 min at
2500× g (4 ◦C), and the supernatant was transferred to a 100 mL evaporation flask. Pellet extraction
was repeated three times, and the supernatants were combined and evaporated to dryness. The residue
was reconstituted in 1 mL of MeOH/H2O (50:50 v/v) and filtered through a 0.2 µm syringe filter
(Minisart, Sartorius, Germany) for LC-MS/MS analysis.
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4.6.3. LC-MS/MS Analysis

LC-MS/MS analyses were performed using a hybrid triple-quadrupole/linear ion trap 3200
QTRAP mass spectrometer (AB Sciex, Darmstadt, Germany) equipped with a Turbo V source and an
electrospray ionization (ESI) probe. The mass spectrometer was coupled to an Agilent model 1200 LC
instrument (Palo Alto, CA, USA), which included a solvent reservoir, inline degasser, quaternary
pump, refrigerated autosampler, and column oven.

The method was implemented following the conditions described by Mafra et al. [46], which were
properly modified. LC separation was performed using a Gemini®® NX-C18 column (2 mm × 100 mm,
3 µm particle size; Phenomenex, Torrance, CA, USA), set at 40 ◦C, with a flowrate of 0.4 mL min−1.
Mobile phase A was DIW and B MeACN, both containing 0.2% of FA. Gradient elution was adopted,
as described below: From 10% to 20% B in 5 min, from 20% to 35% B in 1 min, then hold for 6 min,
return to the original conditions at 13 min, and hold for 7 min before the next injection.

Infusion experiments were performed using CRM-DA-g to set the turbo IonSpray source
parameters as follows: Nebulizer Gas (GS1) 50 psi, Auxiliary Gas (GS2) 60 psi, Temperature (TEM)
600 ◦C, Ion Spray Voltage (IS) 5000 V, Curtain Gas (CUR) 20 psi.

DA was detected using Multiple Reaction Monitoring (MRM) in positive ion mode by selecting
the following transitions: m/z 312.2→266.1, m/z 312.2→220.1, and m/z 312.2→161.1. In addition,
the pseudotransition m/z 334.2→334.2 of sodium adduct [DA + Na]+ was monitored to investigate ion
suppression due to salts. A declustering potential (DP) of 60 V and a collision energy (CE) of 30 V were
used for all transitions.

LOQ, calculated assuming a signal/noise (S/N) ratio of 10 was 10 ng mL−1, while LOD (S/N ratio
of 3) was 3 ng mL−1.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/11/1420/s1,
Figure S1: Pseudo-nitzschia pungens SEM micrographs (Strain ID = 01185). (A) Valve view. (B) Detail of the biseriate
striae with low density of poroids. (C) Girdle view. Scale bar = 2 µm, Figure S2: Pseudo-nitzschia pungens SEM
micrographs (Strain ID = 01186). (A) Valve view. (B) Detail of the biseriate striae. (C) Girdle view: dimensions and
shape of poroids in the first two cingular bands are similar. Scale bar = 2 µm, Figure S3: Pseudo-nitzschia pungens
SEM micrographs (Strain ID = 01189). (A) Valve view. (B) Cingular bands showing square and rectangular
poroids. Scale bar = 2 µm, Figure S4: Pseudo-nitzschia pungens SEM micrographs (Strain ID = 031832). (A–C) Valve
view showing different patterns of symmetry (highlighted by the white lines). Scale bar = 10 µm, Figure S5:
Pseudo-nitzschia pungens SEM micrographs (Strain ID = 04191). (A) Valve view. (B, C) Detail of the biseriate
striae with different density of poroids. (D) Girdle view: dimensions and shape of poroids in the first two
cingular bands are similar, while the third cingular band has smaller poroids. Scale bar = 10 µm (A); 2 µm
(B, D); 1 µm (C), Figure S6: Pseudo-nitzschia pungens SEM micrographs (Strain ID = 04194). (A) Valve view.
(B) Detail of the biseriate striae. (C, D) Girdle view: (C) dimensions and shape of poroids in the first two cingular
bands are similar; (D) poroids with different shapes and hymenation occurring in the same cingular band.
Scale bar = 10 µm (A); 2 µm (B–D), Figure S7: Pseudo-nitzschia pungens SEM micrographs (Strain ID = 04196).
(A) Valve view of the internal valve face. (B) Detail of the biseriate striae with low density of poroids. (C) Girdle
view showing a decreasing trend in abvalvar direction of the poroids’ dimensions. Scale bar = 10 µm (A); 2 µm
(B–C), Figure S8: Pseudo-nitzschia pungens SEM micrographs (Strain ID = 05197). (A) Valve view. (B) Detail of the
biseriate striae. (C, D) Girdle view: (C) dimensions and shape of poroids in the first two cingular bands are similar,
while the third cingular band has smaller poroids; (D) poroids with different hymenation occurring in the same
cingular band. Scale bar = 10 µm (A); 1 µm (B, D); 2 µm (C), Figure S9: Pseudo-nitzschia pungens SEM micrographs
(Strain ID = 05199). (A) Valve view. (B) Detail of the biseriate striae. (C, D) Girdle view: (C) dimensions and
shape of poroids in the first two cingular bands are similar; (D) poroids with different shape and hymenation
occurring in the same cingular band. Scale bar = 10 µm (A); 2 µm (B, C); 0.3 µm (C), Figure S10: Schematic
drawing describing the poroids’ morphologies of N Adriatic Sea Pseudo-nitzschia pungens. (A) Shapes of poroids:
Type a: oval to rectangular. Type b: square poroids. Type c: circular. (B) Pattern of hymenation: Type I: no hymen
sectors. Type II: one hymen sectors. Type III: two hymen sectors. Type IV: one partially divided hymen sector,
Figure S11: Drawing representing the ultrastructure of poroids in the cingular bands of the three P. pungens
varieties: (A) var. pungens [22]; (B) var. cingulata [26]; (C) var. aveirensis [27]. VC: valvocopula; II: second cingular
band; III: third cingular band. No information about the third cingular band is available in var. cingulata and var.
aveirensis, Figure S12: Pseudo-nitzschia pungens cell divided into two hemivalves. Green area: minor hemivalve;
red area: major hemivalve, Table S1: Morphometric characteristics of Pseudo-nitzschia pungens strains from
the coastal site SG1 of LTER Senigallia transect. n.r., not reported, Table S2: List of sequences retrieved from
Genbank for the construction of the Bayesian consensus tree. Strains from this study are in bold. (c) strains of
which PCR products were cloned, Table S3: List of Pseudo-nitzschia pungens strains from the coastal site SG1 of
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LTER Senigallia transect, cleaned for morphological characterization with TEM and SEM. Strain IDs indicated in
bold are those analyzed for toxin content.
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