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In this issue ofCell Genomics, Xu et al. report a comprehensive analysis of the genetics of 26 blood cell traits,
leveraging data from two large biobanks to construct and make available machine-learning optimized poly-
genic scores (PGSs). In addition to delivering insights into the biology and clinical associations of these traits,
the authors evaluate and provide recommendations on methods for PGS construction.
Blood measurements are ubiquitous in

healthcare and key biomarkers for many

diseases. Their broad availability has

enabled the construction of large cohorts

combining blood traits with genetic

data, which in turn have powered exten-

sive genome-wide association studies

(GWASs). These GWASs1 have identified

more than 17,000 genetic associations

for a range of blood measurements. Poly-

genic scores (PGSs; or a polygenic risk

score [PRS] when targeted to a disease

trait) are constructed to estimate the

shared effects of many genetic variants

on a phenotype. While PRSs are typically

used in a context of identifying individuals

at risk for common diseases, PGSs can

also be used to quantify the contribution

of genetic factors to quantitative traits.

Now,Mike Inouye and colleagues2 report,

in this issue of Cell Genomics, a compre-

hensive evaluation of methods for PGS

construction for 26 blood cell traits. They

provide insights into the genetic basis of

blood cell traits, develop and evaluate a

range of predictive methods for PGS

construction, and provide a resource of

optimized PGSs. More broadly, their

work guides on optimal methods in con-

structing PGSs using either summary or

individual-level genetic datasets.

Prior GWASs in large-scale cohorts,

including UK Biobank,3 have demon-

strated that blood cell traits are heritable

and have identified numerous genetic as-

sociations. The most recent large-scale

meta-analysis performed by Vuckovic

et al.1 have assembled a list of �17,000

associations for 29 blood cell phenotypes

at more than 7,000 genomic loci. In the

current study, in order to assess the pre-
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dictive ability of these genetic associa-

tions, Xu et al.2 analyze measurements

for 26 blood traits available in the UK Bio-

bank3 and INTERVAL4 datasets. They use

a range of methodologies to construct

PGSs using UK Biobank data for training

and then evaluate these PGSs in the IN-

TERVAL cohort, which plays the role of

an out-of-training evaluation cohort.

The evaluation in the INTERVAL dataset

confirms the substantial contribution of

genetics to the inter-individual variability

of these blood traits. The Pearson correla-

tion coefficient in the INTERVAL evalua-

tion cohort between PGS and blood trait

ranged from �0.17 (for basophil percent-

age of white cells) to �0.6 (for mean

platelet volume). Using the INTERVAL da-

taset and a regression analysis with a sex

interaction term, the authors identified

significant sex-specific differences in

PGS effect sizes for 10 of the 26 blood

traits. For example, one standard devia-

tion of the PGS for hemoglobin concen-

tration predicted a mean difference of

1.48 g/dL in men and slightly more than

2 g/dL in women.

The predictive power of genetics for

blood traits matters because this genetic

component has the potential to alter the

interpretation of blood tests. Specifically,

does only the absolute value of the

biomarker matter, or is there benefit in

considering the difference between the

measured blood cell trait and its geneti-

cally predicted value? Relevant to this

question, the inclusion of a PGS for

HBA1c levels has been shown to improve

type 2 diabetes (T2D) diagnosis by

altering the HBA1c threshold for T2D

diagnosis for each individual.5 Hence,
Cell Genom
ticle under the CC BY-NC-ND license (http://cr
the larger the predictive power of PGS

is for a given blood trait, the greater

the opportunity to refine the clinical inter-

pretation.

To learn about shared genetics be-

tween diseases and blood cell traits, Xu

et al.2 also evaluated correlation between

their PGSs with six common disease

PRSs (asthma, allergy, coronary artery

disease, Crohn’s disease, rheumatoid

arthritis, and schizophrenia). The authors

found several statistically significant cor-

relations capturing known associations

between the actual traits, such as be-

tween asthma and eosinophil count/

eosinophil percentages, or white blood

cell count and Crohn’s disease. Among

the intriguing findings, the association be-

tween the monocyte count PGS and the

schizophrenia PRS supports a role of

inflammation in the etiology of schizo-

phrenia and should warrant additional ex-

plorations.

Xu et al.2 also provide useful insights

into the performances of existingmethod-

ologies for PGS construction by evalu-

ating six PGS methodologies. These

include themethod of pruning and thresh-

olding (P+T), a current standard in PGS

construction, as well as five supervised

learning methods: LDpred2,6 elastic net

(EN), Bayesian ridge (BR), multilayer per-

ceptron (MLP), and convolutional neural

network (CNN). To support further evalua-

tion and benchmarking, the authors made

their code to construct these PGSs avail-

able on the GitHub public repository

(https://github.com/xuyu-cam/PGS-BC-

Traits-Using-ML-DL). They also released

the PGS models for the 26 blood traits in

the PGS catalog.7
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Three key methodological features of

this evaluation should be highlighted prior

to stating its results. First, the INTERVAL

biobank was used as an ‘‘out-of-training’’

evaluation cohort, allowing the authors to

spot when methodologies overfit to the

training cohort (UK Biobank in this case).

Second, the variant selection step that is

performed prior to running the machine-

learning toolkit includes the selection of

interaction terms between variants, which

are handled elegantly by the EN and BR

methodologies and most likely contribute

to their effectiveness. Because the

concept of interaction or genetic epistasis

is often confusing and hard to interpret, it

should be noted that these interaction

terms may well be capturing predomi-

nantly statistical concepts about missing

variant or haplotype information rather

than biologically meaningful interacting

variants. Third, in a final analysis, the au-

thors alter the complexity of the training

space by tuning the number of variants

included in the model. They then evaluate

the impact of this variant space on the

performance of the three methods that

best scale to large variant sets (EN,

LDpred2, and P+T).

What do we learn from this methodo-

logical evaluation? First, and consistent

with other PGS evaluation work,8 the pre-

dictive performance of machine-learning

methodologies (LDpred2, EN, BR) ex-

ceeded the performance of the simpler

P+T methodology. Second, more com-

plex models including non-linear terms

(e.g., CNN andMLP) did not provide addi-

tional predictive benefit. Hence, the

incredible excitement around the devel-

opment of deep-learning methodologies

for multiple applications has yet to trans-

late into predictive benefit for PGS con-

struction.9

The third, and most useful, lesson of

this evaluation is that under specific con-

ditions, the performance of EN can

exceed the performance of LDpred2.

This performance gap becomes measur-

able when two things jointly happen: use

of a larger genetic variant space and eval-

uation of the predictive model on the out-

of-training INTERVAL evaluation set. A

potential interpretation of this finding is

that when performing training on a com-

plex variant space, LDpred2 appears

more prone to overfitting than EN. This

result is intriguing because LDpred2 is
2 Cell Genomics 2, 100088, January 12, 2022
one of the most commonly used methods

for PGS construction. These findings pro-

vide a baseline for future evaluation and

benchmarking of PGS methodologies

as well as additional motivation for the

development of PGS methods that can

leverage individual level data.

However, some caution is required

prior to concluding that EN should

become a method of choice for PGS con-

struction. It is essential to note that, unlike

the other methods evaluated here,

LDpred2 and P+T are designed to be

trained using GWAS summary statistics

and require minimum access to individ-

ual-level data. Such training data are

much easier to share than individual-level

data. Close inspection of the results of Xu

et al.2 shows that the benefit of individual-

level data methodologies over LDpred2 is

often limited and trait dependent. There-

fore, the added methodological flexibility

may not overcome the reduced training

sample size availability if summary statis-

tics cannot be used. To some extent, the

datasets for blood cell traits investigated

here are atypical and favor methods

based on individual-level data because

of the extremely large sample size training

set provided by UKBiobank. However, for

most diseases, especially low-incidence

diseases, prospective cohorts with indi-

vidual-level data, even as large as UKBio-

bank, only provide a limited number of

cases. Targeted case control cohorts will

often be more valuable for PRS training

but have shared individual-level data

less frequently, hence putting more

emphasis on summary statistics method-

ologies. Lastly, a method like LDpred2

requires substantial tuning and optimiza-

tion. Its observed overfitting may reflect

sub-optimum choices in variant filtering

and parameter optimization. Different

choices could narrow or even reverse

the performance gap observed in this

study.

While keeping in mind the caveats

stated above, this study opens the door

to the use of flexible methodologies

based on individual-level data for PGS/

PRS construction, provided that suffi-

cient training data are available. While

the work of Xu et al.2 uses two biobanks

that are extremely well powered for

blood cell traits, PRS training for most

diseases requires considerably larger

sample sizes than what UK Biobank (or
any other single biobank) can currently

offer to be effective.

Is the perspective of individual-level

data training across multiple biobanks

realistic? While the current study was

able to use individual-level data for blood

cell traits in two biobanks, in general, the

lack of individual-level data sharing

across biobanks and large cohort studies

has been a major obstacle for PRS

training. The perspective of using feder-

ated cross-biobank datasets for training

and evaluating PRS without having to

set up complex data-sharing approaches

is exciting and forward looking and has

the potential to impact genomic predic-

tion and medicine significantly by

enabling the derivation of more predictive

models.

However, the technical challenges asso-

ciated with PRS training across multiple

biobanks without requiring combining

these datasets within a single computing

instance are vast. As an illustration, recent

efforts from the Global Biobank Meta-

Analysis Initiative (GBMI10) still rely on an

initial GWAS step, basing their main ana-

lyses on summary statistics rather than

individual-level data. One can imagine

technical solutions where PRS training

happens independently in each biobank

and the resulting insights (but not the

raw data) are aggregated in a central

computing instance. However, this vision

remains a relatively distant future.

The future of PGS methodology devel-

opment and, more broadly, genomic

prediction is tied to the increasing avail-

ability of biobank and large-scale cohort

datasets. The appropriate software infra-

structure will need to be developed to

maximize the value of the data. Depend-

ing on the trait of interest, individual-level

data approaches may add value to sum-

mary statistics methodologies, but the

optimal decision will depend on data

availability together with the methodolog-

ical path taken by the research commu-

nity. The work of Xu et al.2 contributes

to this journey and will inform future

steps in PGS methods development,

with the end goal to support future clinical

use cases.
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