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The basic reproductive number, R0, is one of the most important epidemiological quantities. R0 provides
a threshold for elimination and determines when a disease can spread or when a disease will die out.
Classically, R0 is calculated assuming an infinite population of identical hosts. Previous work has shown
that heterogeneity in the host mixing rate increases R0 in an infinite population. However, it has been
suggested that in a finite population, heterogeneity in the mixing rate may actually decrease the finite-
population reproductive numbers. Here, we outline a framework for discussing different types of het-
erogeneity in disease parameters, and how these affect disease spread and control. We calculate “finite-
population reproductive numbers” with different types of heterogeneity, and show that in a finite
population, heterogeneity has complicated effects on the reproductive number. We find that simple
heterogeneity decreases the finite-population reproductive number, whereas heterogeneity in the
intrinsic mixing rate (which affects both infectiousness and susceptibility) increases the finite-population
reproductive number when R0 is small relative to the size of the population and decreases the finite-
population reproductive number when R0 is large relative to the size of the population. Although het-
erogeneity has complicated effects on the finite-population reproductive numbers, its implications for
control are straightforward: when R0 is large relative to the size of the population, heterogeneity
decreases the finite-population reproductive numbers, making disease control or elimination easier than
predicted by R0.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The effect of heterogeneity on disease dynamics is a foundational
question in infectious disease modeling. Recently, renewed attention
has been given to the impact of heterogeneity on the basic repro-
ductive number, R0 (Lloyd-Smith et al., 2005; Smith et al., 2007;
Alex Perkins et al., 2013). R0 is the average number of secondary
infections from a single infectious individual in an otherwise totally
n).
susceptible population. Kermack and McKendrick (1927) formulated
R0 assuming a disease spreading in a large, homogeneous popula-
tion; this construction of R0 has since dominated epidemic theory.

Despite the common, convenient assumption that diseases are
spread in well mixed homogeneous populations, there is a great
deal of evidence that population heterogeneity is an important
determinant of disease spread. Woolhouse et al. (1997) argued that
heterogeneity in disease spread is pervasive, and often character-
ized by the ‘20/80 rule’ – i.e., 20% of infected individuals cause 80%
of cases. Perhaps the most famous example of disease heterogeneity
is typhoid Mary, who is estimated to have caused over 50 new
cases, despite typhoid having an R0 of 2.8 (Pitzer et al., 2014;
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Fig. 1. Schematic of the different types of heterogeneity in individual level para-
meters. The red people are infected and the pink people are susceptible. Each arrow
represents a contact and the weight of the arrow represents the probability that
contact will result in infection. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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Brooks, 1996). Other examples include: vector-borne diseases,
including malaria (Scott et al., 2006), dengue fever (De Benedictis et
al., 2003) and West Nile Virus (Kilpatrick et al., 2006); sexually
transmitted infections (STI), including HIV (Galvani and May, 2005)
and gonorrhea (Nold, 1980; Hethcote et al., 1982); and other directly
transmitted diseases such as severe acute respiratory syndrome
(SARS) (Lloyd-Smith et al., 2005), tuberculosis (TB) (Kline et al.,
1995), and small pox (Lloyd-Smith et al., 2005). Individual variation
has important implications for disease dynamics, including emer-
gence, spread, and control.

The effect of population heterogeneity on the basic reproduc-
tive number, R0, has been well studied (Dye and Hasibeder, 1986;
Lloyd-Smith et al., 2005; Alex Perkins et al., 2013; Smith et al.,
2007; Diekmann et al., 1990; May and Anderson, 1984). May and
Anderson explored the effects of heterogeneity on R0 for directly
transmitted diseases and showed that heterogeneity increases R0,
making eradication harder under a homogeneously applied
immunization program (May and Anderson, 1984). Diekmann et al.
(1990) defined and calculatedR0 for heterogeneous populations of
directly-transmitted diseases. They calculated R0 in terms of the
next-generation operator, which maps generations of infected
individuals to each other. Like other calculations of R0, it assumes
one infected individual in an otherwise very large population of
susceptible hosts. Dye and Hasibeder (1986) showed that for
vector-borne diseases, heterogeneity in the mosquito biting rate
increases R0, which suggests that heterogeneity makes invasion
likely and elimination more difficult than would be predicted by a
standard calculation of R0 based on parameters. Lloyd-Smith et al.
(2005) showed that for directly transmitted diseases with het-
erogeneous transmission, like SARS, both the probability that an
epidemic will occur and the subsequent size of the epidemic will
be affected: heterogeneity made extinction more likely than pre-
dicted by the standard calculation of R0, but if an epidemic did
occur, it was more likely to be explosive.

While heterogeneity increases R0 in infinite populations, Smith
et al. (2007) suggest that heterogeneity actually decreasesR0 in finite
populations. They introduced the idea of calculating the expected
number of secondary infections from a single infectious individual in
a finite population of susceptible hosts. Motivated by malaria, a dis-
ease with a largeR0, whereR0 can easily approach or exceed the size
of the population, they simulated these finite-population reproduc-
tive numbers and show that in a finite population, heterogeneity
actually decreases R0; this is because in a finite population, indivi-
duals who are more susceptible are more likely to get infected mul-
tiple times, absorbing some possible infections. Keegan and Dushoff
(2014) calculated these finite-population reproductive numbers for
both vector-borne and directly-transmitted diseases assuming a well
mixed host population.

Building on this previous work we calculate finite-population
reproductive numbers for directly transmitted diseases under
different assumptions of heterogeneity in transmission. We also
discuss a framework for discussing different “types of hetero-
geneity” (Fig. 1) and their importance in terms of disease control
and intervention. Like classical calculations of R0, we are only
interested in the initial spread of infection and our calculations
ignore the longer term depletion of susceptibles. Previous work
(Smith et al., 2007; Keegan and Dushoff, 2014) also took this
approach in calculating finite-population reproductive numbers. In
a study of homogeneous finite population reproductive numbers,
Ross (2011) did account for the depletion of susceptibles in their
estimates of the finite-population reproductive numbers with
homogeneous transmission and showed that this further reduced
the finite-population reproductive number.
1.1. Heterogeneity framework

In general, heterogeneity in transmission can be broken into
two categories: structural heterogeneity where individuals are
separated into groups, either by age or by spatial structure; and
heterogeneity in individual level parameters in which individuals
exhibit different disease-related behaviors (Lloyd-Smith et al.,
2005; Dushoff, 1999). Here, we outline the different types of het-
erogeneity in individual level parameters.

Although a great deal of work has been done in understanding
how heterogeneity affects the spread and control of infectious
diseases (e.g. Lloyd-Smith et al., 2005; Dushoff, 1999; Diekmann
et al., 1990), we have found little detailed discussion of different
types of heterogeneity in transmission and their effects. Often,
heterogeneity is discussed in terms of presence/absence: a popu-
lation is assumed to be homogeneous or it is not. Less attention is
given to the type or types of heterogeneity in disease spread.
When heterogeneity is discussed in more detail, it tends to be
discussed in terms of heterogeneity in infected individuals, ie
“super-spreaders” (Galvani and May, 2005; Lloyd-Smith et al.,
2005; Stein, 2011) and “super-shedders” (Caroline Breese Hall,
2007; Stephens et al., 2009; Chase-Topping et al., 2008), likely
because heterogeneity in susceptible individuals is harder to
measure. However, clearly identifying and understanding the dif-
ferent types of heterogeneity and how they affect disease
dynamics provides new opportunities for control. Here, we outline
a framework for discussing heterogeneity in individual-level
parameters.

1.1.1. Mixing rate
The mixing rate, also called “contact rate” describes the num-

ber of contacts that an individual has that could result in an
infection. Mixing rates vary by modes of transmission and by
disease. The contact rate for a vector-borne disease depends on
hosts being bitten by vectors and consequently, it is dependent
both on host-related and vector-related factors. The mixing rate
for an STI is the number of potentially infectious sexual contacts an
individual has. This can be affected by a multitude of factors
including condom use, etc. For other directly transmitted diseases,
the mixing rate may be harder to quantify and depend on specific
disease-related factors such as how long infectious particles
remain in the air or stay alive on surfaces, and environmental
factors such as humidity (Caroline Breese Hall, 2007; Bean et al.,
1982; Karim et al., 1985; Miller and Artenstein, 1967; Kao and
Yang, 2006).



Fig. 2. The finite-population reproductive number, RmðNÞ, for gamma distributed heterogeneity. The solid lines are the finite-population reproductive numbers with dif-
ferent coefficients of variation and the dot-dashed lines represent the infinite reproductive numbers with corresponding coefficients of variation. (a) The finite-population
reproductive numbers versus the null reproductive numbers, Rnull with a fixed population of size N¼100 (dashed line) and (b) the finite-population reproductive numbers
versus the population size for fixed R0 ¼ 100 (dot-dashed line). The points represent the average of 500,000 simulations of each.

Fig. 3. The finite-population reproductive numbers, RmðNÞ, versus the homo-
geneous basic reproductive number, R0 for gamma distributed (light green) and
log-normally distributed (forest green) heterogeneity for CV¼2. The population
size is N¼100, the homogeneous R0 is the solid black line and the heterogeneous
reproductive numbers are the solid green lines, the homogeneous finite-population
reproductive number, RðNÞ, is the dotted black line, and the dot-dashed lines
represent heterogeneous finite-population reproductive numbers with different
coefficients of variation. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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Heterogeneity affects mixing rates in a multitude of ways. For a
vector-borne disease, such as malaria, heterogeneity in the mixing
rate is often a result of host-related factors, such as differential
attractiveness to mosquitoes (e.g. Port et al., 1980; Shirai et al.,
2004; Lindsay et al., 2000) or the use of bed nets (Lengeler et al.,
2004). Heterogeneity in the mixing rate for sexually transmitted
infections can be affected by including rate of sexual partner
change, sexual practices (Joseph Hotz Avner Ahituv and Philipson,
1996), and access to condoms (Chimbindi et al., 2010; MacPhail et
al., 2009; Bassett and Mhloyi, 1991; Pettifor et al., 2004). For
directly transmitted diseases, contacts are often harder to define,
and heterogeneity arises from a mixture of host, pathogen, and
environmental factors. Heterogeneity in the mixing rate can be
further broken down into the mixing rate of infected individuals
and the mixing rate of susceptible individuals. Here, we assume
that individuals have an intrinsic mixing rate that does not change
with infection status.
Heterogeneity in infected mixing: The mixing rate of infected
individuals is the number of contacts that an infected individual
has that could result in an infection, during the course of infection.
This type of heterogeneity is the most widely discussed and is
often discussed in terms of infected individuals with large num-
bers of contacts, or super-spreaders (Lloyd-Smith et al., 2005;
Galvani and May, 2005).

Malaria is a well known example of a disease with hetero-
geneity in the mixing rate: some hosts are more attractive to
mosquitoes for a variety of reasons, including body size (Port et al.,
1980), blood type (Shirai et al., 2004), pregnancy (Lindsay et al.,
2000; Ansell et al., 2002), and alcohol consumption (Shirai et al.,
2002; Lefèvre et al., 2010), among others. An example of a directly
transmitted disease with heterogeneity in the mixing rate of
infected individuals is SARS. During the 2002–2003 SARS epi-
demic, renewed attention was given to the role of super-spreading
events in the epidemic; particularly in the context of control. In a
model of SARS transmission, Lloyd-Smith et al. (2005) showed that
targeted control was up to three times more effective than random
control.

Heterogeneity in susceptible mixing: The mixing rate of suscep-
tible individuals is the number of contacts that a susceptible
individual has that could result in an infection. The susceptible
mixing rate may or may not be closely related to the infected
mixing rate, depending on whether contacts are symmetric, and
whether behavior is changed by the disease. For example, vector-
borne and sexually transmitted diseases involve symmetric con-
tact (both the susceptible and infected individual need to be bitten
by a vector, or to have sexual intercourse to transmit disease),
whereas food-borne illnesses often involve asymmetric contact
(food workers infect food consumers, but not the other way
around). Ebola virus disease is an example where behavior is
changed by disease: effective mixing rates of well people depend
on how likely they are to be involved in care-giving, and likely vary
less than the effective mixing rates of infectious people. Sick
individuals may also voluntarily attempt to reduce risk (Ijumba et
al., 2004; Funk et al., 2009).

1.1.2. Probability per contact
The probability of infection per contact describes the prob-

ability of successful transmission per potentially infectious contact.
A “potentially infectious contact” is defined as one which would
succeed in transmitting if both the probability of transmitting and



Fig. 5. The finite-population reproductive numbers, Rtm ðNÞ, versus the basic
reproductive number, R0 for gamma distributed (light green) and log-normally
distributed (forest green) heterogeneity for CV¼2. The population size is N¼100,
R0 is the solid black line, the homogeneous finite-population reproductive number,
RðNÞ, is the dotted black line, and the dot-dashed lines represent heterogeneous
finite-population reproductive numbers with different coefficients of variation. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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the probability of contracting an infection are 1. The probability of
successful transmission is the product of an infectiousness prob-
ability and a susceptibility probability.

Heterogeneity in infectiousness: The infectiousness of an indivi-
dual is the probability of transmitting an infection per potentially
infectious contact, assuming the susceptibility probability is 1. This
type of heterogeneity is often discussed in terms of individuals who
shed a lot of virus, or super-shedders (Caroline Breese Hall, 2007;
Stephens et al., 2009; Chase-Topping et al., 2008).

Influenza and tuberculosis are examples of directly transmitted
diseases with heterogeneity in infectiousness. For influenza, viral
shedding influences the per contact infectiousness, there is a large
variation in the number aerosolized respiratory secretions, making
some individuals more infectious than others (Caroline Breese Hall,
2007). Additionally, external factors such as taking antipyretics may
also increase the per-contact probability of transmission by
increasing both the rate and duration of viral shedding (Earn et al.,
2014). For TB, access to health care interventions and proper nutri-
tion may reduce the probability of transmitting per contact, by
reducing the risk of pulmonary TB (Kline et al., 1995).

HIV is an example of an STI with heterogeneity in infectious-
ness. For HIV, the infectiousness per contact varies for a variety of
reasons: individuals who are co-infected with another STI have
been shown to be more infectious per contact (Galvin and Cohen,
2004; Abu-Raddad et al., 2008), while individuals on antiretroviral
treatment are less infectious per contact (Wawer et al., 2005).

Heterogeneity in susceptibility: The susceptibility of an indivi-
dual is the probability of contracting an infection per potentially
infectious contact, assuming the infectiousness probability is 1.
This is the least talked about as it is likely the hardest to measure
and probably depends on the interaction between host, pathogen,
and environment.

An example of a disease with heterogeneity in susceptibility is
HIV. There are a multitude of factors that can cause susceptibility
to vary including gender and circumcision. It has been suggested
that women are physiologically more susceptible to HIV than men
(Glynn et al., 2001; Quinn and Overbaugh, 2005) and that male
circumcision has a protective effect against the per contact
transmission of HIV (Williams et al., 2006; Bailey et al., 2007).
Fig. 4. The finite-population reproductive number, Rtm ðNÞ, for gamma distributed he
different coefficients of variation and the dot-dashed lines represent the infinite reprodu
reproductive numbers versus the null reproductive numbers, Rnull with a fixed populat
versus the population size for fixed R0 ¼ 50 (dot-dashed line). The points represent the
2. Methods

We calculate finite-population reproductive numbers for
directly transmitted diseases under three heterogeneity assump-
tions: heterogeneity in intrinsic mixing rate (assumed to be
independent of disease status), RmðNÞ; heterogeneity in mixing
rate when infected, Rtm ðNÞ; and heterogeneity in the probability of
contracting an infection per contact, Rsp ðNÞ. Two other assump-
tions: heterogeneity in the probability of transmitting an infection
per contact, Rtp ðNÞ and heterogeneity in mixing rate when sus-
ceptible, Rsm ðNÞ, are shown in the Appendix.

We also talk about the different infinite population reproduc-
tive numbers. The basic reproductive number in a homogeneous
population, which we refer to as “Rnull” and the infinite population
reproductive numbers with heterogeneity, R0.

We numerically calculate each of the five finite-population
reproductive numbers using two distributions of the underlying
heterogeneity. We use gamma distributed and log-normally
terogeneity. The solid lines are the finite-population reproductive numbers with
ctive numbers with corresponding coefficients of variation. (a) The finite-population
ion of size N¼50 (dashed line) and (b) the finite-population reproductive numbers
average of 500,000 simulations of each.



Fig. 6. The finite-population reproductive number, Rtp ðNÞ, for beta distributed heterogeneity. The solid lines are the finite-population reproductive numbers with different
coefficients of variation and the dot-dashed lines represent the infinite reproductive numbers with corresponding coefficients of variation. (a) The finite-population
reproductive numbers versus the null reproductive numbers, Rnull with a fixed population of size N¼50 (dashed line) and (b) the finite-population reproductive numbers
versus the population size for fixed R0 ¼ 50 (dot-dashed line). The points represent the average of 500,000 simulations of each.

Fig. 7. The finite-population reproductive numbers, Rtp ðNÞ, versus the basic
reproductive number, R0 for beta distributed (light green) and logit-normally
distributed (forest green) heterogeneity for CV¼2. The population size is N¼500,
R0 is the solid black line, the homogeneous finite-population reproductive number,
RðNÞ, is the dotted black line, and the dot-dashed lines represent heterogeneous
finite-population reproductive numbers with different coefficients of variation. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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distributed heterogeneity for RmðNÞ, Rtm ðNÞ, and Rsm ðNÞ and
beta distributed and logit-normally distributed heterogeneity for
Rtp ðNÞ and Rsp ðNÞ.

2.1. Assumptions

We assume a finite population of size N. We talk about trans-
mission, t ¼ tmtp, as the product of the mixing rate of infected
individuals, tm, and the probability of transmitting an infection per
infectious contact, tp. Similarly, we talk about susceptibility,
s¼ smsp, as the product of the mixing rate of susceptible indivi-
duals, sm, and the probability of contracting an infection per con-
tact, sp.

Here, we calculate all five of the finite-population reproductive
numbers twice, once with each of the distributions of tm, sm
(gamma and log-normal distributions) and tp, sp (beta and logit-
normal distributions). We talk about the mean mixing rates tm and
sm for infected and susceptible individuals and the mean prob-
ability of infection, tp and sp. Further, when all susceptible indi-
viduals are the same, we talk about the mean susceptibility, s and
when all infected individuals are the same, we talk about the
mean infectiousness t .

We assume that an infected individual of type y produces a
geometric distribution of new contacts with mean of t(y). This is
equivalent to assuming that the infection and recovery processes
are Markovian (Keegan and Dushoff, 2014). We assume that all
hosts behave independently and we ignore the longer-term
depletion of susceptibles. Since the host population is finite,
some of the possible infections may fall on the same susceptible
host, so the average number of realized infections, in general, will
be smaller.

2.2. Calculation framework

We start with a known infectious individual of type y. We know
that this infected individual produces a geometric distribution of
potentially successful challenges (contacts) with mean t(y) (where
tðyÞ ¼ tmðyÞtpðyÞ). For each challenge, the risk to a particular sus-
ceptible individual of type x, is sðxÞ

smN
, where sm is the mean sus-

ceptible mixing rate.
The probability of escaping a challenges from an infected

individual is 1� sðxÞ
smN

� �a
. The risk of being infected by at least one of

those contacts is 1� 1� sðxÞ
smN

� �a� �
. Using the generating function

method detailed in Keegan and Dushoff (2014), we find the risk to
a susceptible individual of type x from a single infected individual
of type y is:

sðxÞtðyÞ
sðxÞtðyÞþsmN

ð1Þ

The expected number of infections from the known infectious
individual is

sðxÞtðyÞ
sðxÞtðyÞþsmN

� �
x
N ð2Þ

We then average over the distribution of “typical” individuals
(Diekmann et al., 1990), sðyÞ=s, and find:

RðNÞ ¼ sðyÞ
s

sðxÞtðyÞN
sðxÞtðyÞþsmN

� �
x

� �
y

ð3Þ



Fig. 8. The finite-population reproductive number, Rsm ðNÞ, for gamma distributed heterogeneity. The solid lines are the finite-population reproductive numbers with
different coefficients of variation and the dot-dashed lines represent the infinite reproductive numbers with corresponding coefficients of variation. (a) The finite-population
reproductive numbers versus the null reproductive numbers, Rnull with a fixed population of size N¼50 (dashed line) and (b) the finite-population reproductive numbers
versus the population size for fixed R0 ¼ 50 (dot-dashed line). The points represent the average of 500,000 simulations of each.

Fig. 9. The finite-population reproductive numbers, Rsm ðNÞ, versus the basic
reproductive number, R0 for gamma distributed (light green) and log-normally
distributed (forest green) heterogeneity for CV¼2. The population size is N¼500,
R0 is the solid black line, the homogeneous finite-population reproductive number,
RðNÞ, is the dotted black line, and the dot-dashed lines represent heterogeneous
finite-population reproductive numbers with different coefficients of variation. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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Which is equivalent to

RðNÞ ¼
Z

sðyÞ
s

Z
sðxÞtðyÞN

sðxÞtðyÞþsmN
f ðxÞf ðyÞdx dy ð4Þ

where f(x) is the distribution of susceptible individuals and f(y) is
the distribution of infected individuals. Here, we always choose
the same distribution for f(x) and f(y) however, we allow the mean
of the distributions to vary (s, t, and m).

2.2.1. Heterogeneity in mixing rate, RmðNÞ
We calculate the finite-population reproductive number for the

case where we allow only heterogeneity in the mixing rates of
infected and susceptible individuals.

To account for individuals contacting each other we need the
rate at which susceptible individuals contact infected individuals s
to be proportional to the rate at which infected individuals contact
susceptibles t, so we write t ¼ μ and s¼ μ=μ.
We find the expected number of new infections from our
known infectious individual is

μðxÞμðyÞN
μðxÞμðyÞþμN

� �
x

ð5Þ

We then account for the distribution of typical individuals,
μðyÞ=μ and find

RmðNÞ ¼ μðyÞ
μ

μðxÞμðyÞN
μðxÞμðyÞþμN

� �
x

� �
y

ð6Þ
3. Results

We calculate the finite population reproductive number for
each of the four types of heterogeneity and for heterogeneity in
intrinsic mixing. We find:

Heterogeneity in intrinsic mixing, RmðNÞ

RmðNÞ ¼
μðyÞ
μ

μðxÞμðyÞN
μðxÞμðyÞþμN

� �
x

� �
y

ð7Þ

We solve RmðNÞ numerically, once for each of two distributions
of mixing rates, gamma distributed heterogeneity in mixing
(Fig. 2) and log-normally distributed heterogeneity in mixing (Fig.
B3); we compare the results of the two distributions for a fixed
coefficient of variation (Fig. 3).

Heterogeneity in transmission mixing Rtm ðNÞ

Rtm ðNÞ ¼
stðyÞN

stðyÞþsmN

� �
y

ð8Þ

We solve Rtm ðNÞ numerically, once for each of the two dis-
tributions of transmission mixing rates, gamma distributed het-
erogeneity in transmission mixing (Fig. 4) and log-normally dis-
tributed heterogeneity in transmission mixing (Fig. B2); we com-
pare the results of the two distributions for a fixed coefficient of
variation (Fig. 5).

Heterogeneity in transmission probability Rtp ðNÞ

Rtp ðNÞ ¼
tðyÞsN

tðyÞsþsmN

� �
y

ð9Þ

We solve for Rtp ðNÞ numerically, once for each of the two dis-
tributions of mixing rates, beta-distributed heterogeneity (Fig. 6)
and logit-normally distributed heterogeneity (Fig. B2); we



Fig. 10. The finite-population reproductive number, Rsp ðNÞ, for beta distributed heterogeneity. The solid lines are the finite-population reproductive numbers with different
coefficients of variation and the dot-dashed lines represent the infinite reproductive numbers with corresponding coefficients of variation. (a) The finite-population
reproductive numbers versus the null reproductive numbers, Rnull with a fixed population of size N¼500 (dashed line) and (b) the finite-population reproductive numbers
versus the population size for fixed R0 ¼ 100 (dot-dashed line). The points represent the average of 500,000 simulations of each.

Fig. 11. The finite-population reproductive numbers, Rtp ðNÞ, versus the basic
reproductive number, R0 for beta distributed (light green) and log-normally dis-
tributed (forest green) heterogeneity for CV¼2. The population size is N¼500, R0

is the solid black line, the homogeneous finite-population reproductive number,
RðNÞ, is the dotted black line, and the dot-dashed lines represent heterogeneous
finite-population reproductive numbers with different coefficients of variation. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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compare the results of the two distributions for a fixed coefficient
of variation (Fig. 7).

Heterogeneity in susceptible mixing, Rsm ðNÞ

Rsm ðNÞ ¼
sðyÞ
s

sðxÞtN
sðxÞtþsmN

� �
x

� �
y

ð10Þ

Rsm ðNÞ ¼
sðxÞtN

sðxÞtþsmN

� �
x

ð11Þ

We solve for Rsm ðNÞ numerically, once for each of the two
distributions of mixing rates, gamma-distributed heterogeneity
(Fig. 8) and log-normally distributed heterogeneity (Fig. B2); we
compare the results of the two distributions for a fixed coefficient
of variation (Fig. 9).

Heterogeneity in susceptibility probability Rsp ðNÞ

Rsp ðNÞ ¼
sðyÞ
s

sðxÞtN
sðxÞtþsmN

� �
x

� �
y

ð12Þ
Rsp ðNÞ ¼
sðxÞtN

sðxÞtþsmN

� �
x

ð13Þ

We solve for Rsp ðNÞ numerically, once for each of the two dis-
tributions of mixing rates, beta-distributed heterogeneity (Fig. 10)
and logit-normally distributed heterogeneity (Fig. B2); we com-
pare the results of the two distributions for a fixed coefficient of
variation (Fig. 11).

Figs. 2 (a), 4(a), 6(a), 8(a), 10(a) and B1(a), B2(a), B2(c), B2(e), B2
(g) show how the finite-population reproductive numbers change
as R0 changes for a fixed population size. Since the finite-
population reproductive numbers are limited by the size of the
population whereas the infinite reproductive numbers are not, the
finite-population reproductive numbers diverge from their corre-
sponding infinite population reproductive number as R0 approa-
ches the size of the population. Where they diverge depends on
both the distribution and the coefficient of variation of that dis-
tribution; although where the finite-population reproductive
numbers depend on these factors, the finite-population repro-
ductive number with CV¼3 diverges around 1/5 N whereas the
homogeneous finite-population reproductive number diverges
around 1/2 N. Further, for heterogeneity in intrinsic mixing, the
heterogeneous finite-population reproductive numbers are larger
than the homogeneous finite-population reproductive number
when R0 is small relative to the size of the population and the
heterogeneous finite-population reproductive numbers are smal-
ler than the homogeneous finite-population reproductive number
when R0 is large relative to the size of the population. For gamma
distributed heterogeneity, this occurs between 1/3 N and 3/4 N
(Fig. 2(a)) and at around N for log-normally distributed hetero-
geneity (Fig. B3). For the other four types of heterogeneity, the
homogeneous finite-population reproductive number is always
larger than the heterogeneous finite-population reproductive
numbers (Fig. 12).

Figs. 2 (b), 4(b), 6(b), 8(b), 10(b) and B1(b), B2(b), B2(d), B2(f),
B2(h) show how the finite-population reproductive numbers vary
with the size of the population for fixed R0. These figures show
the finite-population reproductive numbers converging on their
corresponding infinite population reproductive numbers. The rate
at which the finite-population reproductive numbers converge on
their corresponding infinite population R0 depends on the coef-
ficient of variation.

Figs. 3, 5, 7, 9, and 11 compare the results of the two dis-
tributions for each of the finite-population reproductive numbers.



Fig. 12. Plot comparing the different distributions. (a) Plot of the ratio of the heterogeneous finite-population reproductive numbers to the homogeneous finite-population
reproductive number versusR0; for each of the four distributions of heterogeneity and for both intrinsic mixing (dashed lines) and simple heterogeneity (solid lines). (a) Plot
of the ratio of the heterogeneous finite-population reproductive numbers to R0 versus R0; for each of the four distributions of heterogeneity and for both intrinsic mixing
(dashed lines) and simple heterogeneity (solid lines).
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Although the results are fairly robust to the distribution, the finite-
population reproductive numbers with log-normally and logit-
normally distributed heterogeneity are larger than the finite-
population reproductive numbers with gamma and beta dis-
tributed heterogeneity, respectively, for the biologically relevant
parameter range.
4. Discussion

Host heterogeneity has been shown to have a significant effect
on disease dynamics (Dye and Hasibeder, 1986; Lloyd-Smith et al.,
2005; Alex Perkins et al., 2013; Smith et al., 2007; Diekmann et al.,
1990). Of particular interest is the effect of heterogeneity in
transmission on R0 (Dye and Hasibeder, 1986; Lloyd-Smith et al.,
2005; Alex Perkins et al., 2013; Smith et al., 2007). In an infinite
population of susceptible hosts, heterogeneity has been shown to
increase R0, whereas in a finite population, we show that het-
erogeneity has a more complicated effect on the reproductive
number.

Smith et al. (2007) found that in a finite population, heterogeneity
in the attractiveness to mosquitoes decreases the reproductive
number; our results for simple heterogeneity (i.e. heterogeneity
either mixing or probability for only susceptible or infected) support
this Figs. 4, 6, 8, 10, and B2. However, for heterogeneity in the mixing
rate of both infected and susceptible individuals, we find that when
the population is large compared to the homogeneous R0, hetero-
geneity increases RmðNÞ compared to the homogeneous R0; and
when the population is small relative to R0, heterogeneity decreases
RmðNÞ compared to the homogeneous R0 Figs. 2 and B3.

Compared to the heterogeneous R0, the effect of small popu-
lation decreases the reproductive number. In general heterogeneity
increases the effective mixing rate, because the most susceptible
individuals are also the most infectious individuals. This has
complex effects in the finite population, when the size of the
population is large relative to R0, few people are contacted mul-
tiple times, so increasing the mixing rate increases the reproduc-
tive number. However, when the size of the population is small
relative to R0, many more people are contacted multiple times,
absorbing some possible infections, reducing RmðNÞ Figs. 2 and B3.
Smith et al. (2007) considered only heterogeneity in attrac-
tiveness to mosquitoes. Here, we consider five different types of
heterogeneity: the four simple types outlined in the Section 1.1
and heterogeneity in the mixing rate of both susceptible and
infected individuals (the last corresponds to Smith's assumptions).
We find simple expressions for each of the five finite-population
reproductive numbers in terms of the distribution of hetero-
geneity and the size of the population.

We show that R0 is affected by both the choice of the family of
distributions of the heterogeneity (e.g., gamma and log-normal)
and the specific CV of its distribution. Figs. 3, 5, 7, 9, and 11 show
the effect of the distribution on the finite-population reproductive
numbers for a fixed coefficient of variation (CV¼2). While the
distribution of heterogeneity for a fixed CV affects the finite-
population reproductive numbers, the CV has a larger effect on
how much the finite-population reproductive number is changed
due to heterogeneity. Figs. 2, 4, 6, 8, 10, B2, and B3 show the effect
of the coefficient of variation on the finite-population reproductive
numbers. For very small values of the CV, the finite-population
reproductive numbers converge on the homogeneous finite-
population reproductive number; as CV increases, so does the
effect of heterogeneity.

For simple heterogeneity (Rtm ðNÞ;Rsm ðNÞ;Rtp ðNÞ, and Rsp ðNÞ),
in which heterogeneity always decreases the finite-population
reproductive numbers, classical calculations of R0 are over-
estimating the diseases actual reproductive number. And
although heterogeneity in the mixing rate has a more complicated
effect on the finite-population reproductive number, it has the
same implications for control: it suggests that for a disease with a
largeR0 spreading in a small heterogeneous population, the actual
reproductive number may be lower than the standard calculation
of R0, making control easier than predicted.
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Appendix A. Calculation framework

A.1. Heterogeneity in transmission mixing Rtm ðNÞ

We calculate the finite-population reproductive number for the
case where we allow only transmission mixing rates, tm, to vary.
We find the expected number of infections from our known
infectious individual is

stðyÞN
stðyÞþsmN

� �
x

ð14Þ

stðyÞN
stðyÞþsmN

ð15Þ
A.2. Heterogeneity in transmission probability Rtp ðNÞ

We calculate the finite-population reproductive number for the
case where we allow only probability of transmitting an infection
per contact, tp, to vary.

We find the expected number of infections from the known
infectious individual is

tðyÞsN
tðyÞsþsmN

� �
x

ð16Þ
Fig. B1. The finite-population reproductive number, RmðNÞ, for log-normally distributed
different coefficients of variation and the dot-dashed lines represent the infinite reproduc
reproductive numbers versus the null reproductive numbers, Rnull with a fixed populati
versus the population size for fixed R0 ¼ 100 (dot-dashed line).
tðyÞsN
tðyÞsþsmN

ð17Þ
A.3. Heterogeneity in susceptible mixing, Rsm ðNÞ

We calculate the finite-population reproductive number for the
case where we allow only susceptible mixing rates, sm, to vary. We
find the expected number of new infections as follows:

sðxÞtN
sðxÞtþsmN

� �
x

ð18Þ
A.4. Heterogeneity in susceptibility probability Rsp ðNÞ

We calculate the finite-population reproductive number for the
case where we allow only heterogeneity in the probability con-
tracting an infection per contact, sp.

We find the expected number of new infections from a single
infected individual of type y is:

sðxÞtN
sðxÞtþsmN

� �
x
: ð19Þ
Appendix B. Results

B.1. Additional figures

See Figs. B1, B2, and B3.
heterogeneity. The solid lines are the finite-population reproductive numbers with
tive numbers with corresponding coefficients of variation. (a) The finite-population
on of size N¼100 (dashed line) and (b) the finite-population reproductive numbers



Fig. B2. Plot of the finite-population reproductive numbers, for log-normally distributed heterogeneity. The solid lines are the finite-population reproductive numbers with
different coefficients of variation and the dot-dashed lines represent the infinite reproductive numbers with corresponding coefficients of variation. (a,c,e,g) the finite-
population reproductive numbers versus the null reproductive numbers, Rnull with a fixed population of size N¼100 (dashed line) and (b,d,f,h) the finite-population
reproductive numbers versus the population size for fixed R0 ¼ 100 (dot-dashed line). (a,b) Rtm ðNÞ (c,d) Rtp ðNÞ (e,f) and (g,h).
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Fig. B3. The finite-population reproductive number, RmðNÞ, for (a) gamma distributed and (b) log-normally distributed heterogeneity. The solid lines are the finite-
population reproductive numbers with different coefficients of variation and the dot-dashed lines represent the infinite reproductive numbers with corresponding coef-
ficients of variation. The finite-population reproductive numbers versus the null reproductive numbers, Rnull with a fixed population of size N¼10 (dashed line).
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