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Systemic lupus erythematosus (SLE) is diagnosed and classified by criteria, or by
experience, intuition and traditions, and not by scientifically well-defined etiology(ies) or
pathogenicity(ies). One central criterion and diagnostic factor is founded on theoretical
and analytical approaches based on our imperfect definition of the term “The anti-dsDNA
antibody”. “The anti-dsDNA antibody” holds an archaic position in SLE as a unique
classification criterium and pathogenic factor. In a wider sense, antibodies to unique
transcriptionally active or silent DNA structures and chromatin components may have
individual and profound nephritogenic impact although not considered yet – not in
theoretical nor in descriptive or experimental contexts. This hypothesis is contemplated
here. In this analysis, our state-of-the-art conception of these antibodies is probed and
found too deficient with respect to their origin, structural DNA specificities and clinical/
pathogenic impact. Discoveries of DNA structures and functions started with Miescher’s
Nuclein (1871), via Chargaff, Franklin, Watson and Crick, and continues today. The
discoveries have left us with a DNA helix that presents distinct structures expressing
unique operations of DNA. All structures are proven immunogenic! Unique autoimmune
antibodies are described against e.g. ssDNA, elongated B DNA, bent B DNA, Z DNA,
cruciform DNA, or individual components of chromatin. In light of the massive scientific
interest in anti-DNA antibodies over decades, it is an unexpected observation that the
spectrum of DNA structures has been known for decades without being implemented in
clinical immunology. This leads consequently to a critical analysis of historical and
contemporary evidence-based data and of ignored and one-dimensional contexts and
hypotheses: i.e. “one antibody - one disease”. In this study radical viewpoints on the
impact of DNA and chromatin immunity/autoimmunity are considered and discussed in
context of the pathogenesis of lupus nephritis.
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INTRODUCTION

This theoretical study critically analyses immunology of DNA
and chromatin. The discussion is basically immunological and
unlinked from SLE, but elements of the syndrome is discussed, as
chromatin autoimmunity is relevant to understand SLE in both
historical and contemporary contexts1.

“For the current state of knowledge remains vague when
history is not considered, just as history remains vague without
substantive knowledge of the current state” (Ludwik Fleck2) (1).

The citation above is highly relevant as backdrop for this study.
The central idea is to reconsider historical data on DNA and anti-
dsDNA antibodies in light of contemporary prioritized insight.

History and Scientific Impact of
Antibodies to DNA
The first reports on antibodies against dsDNA appeared in 1938
and 1939 in context of bacterial infections (2–4). Two decades later
they were described in SLE (5–8). Already here we observe a conflict
between the current view that the antibodies are unique biomarkers
for SLE [see a relevant contextual discussion of “biomarker” (9)]
and the historical facts that the antibodies were first described in
patients infected with bacteria. Today, the strong links between anti-
DNA antibodies and infections and malignancies is not considered
important in contemporary rheumatological contexts (Table 1
presents the major critical elements in this study).

Anti-DNA antibodies are, nevertheless, important and play
informative and controversial roles in history of immunology
(10–16), in studies of antibody diversity and immunoglobulin
variable region structures and genetics (11, 17–21), in molecular
biology (22–26) as well as in rheumatology, infections and in
malignancies [see e.g. (12, 13, 25, 27–32)]. In contrast to the
considerable amount of studies on phenomenological and basic
aspects of anti-dsDNA antibodies3, we still do not definitively know
the critical incitements that promote their production in vivo.

Furthermore, there is today not consensus on their targets in
vivo – whether DNA (13) or non-DNA structures (33, 34).
Important scientific data describing antibody specificity against
functional DNA structures (Figure 1) are in current clinical
immunology contexts largely neglected - but erroneously
discussed in terms of avidity and not specificity (see below). This
is not so in basic DNA research where structure and operation of
individual forms of DNA are central elements to understand nature
of DNA in biology (discussed below).

These short and decisive statements derive from a large series
of studies, from preliminary conclusions, and from a categorical
1References listed in this section are meant as valid examples, and do not intend to
represent a complete biography of aspects of anti-dsDNA antibodies.
2Ludwik Fleck (1896 –1961) was a Polish physician, biologist and philosopher. In
the 1930s he developed the philosophical concepts of "Denkstil" ("thought style")
and the "Denkkollektiv" ("thought collective"). Fleck´s concept of the "thought
collective" is central in the philosophy of science and in logology (the "science of
science") and was a leading force in the Polish school of logology. He used his
consept to describe non-linear evolution of scientific ideas in a “thought
collective”, much as in Thomas Kuhn´s "periodic paradigm shift" concept.
3Per August 2021 more than 41.700 publications are found in PubMed using the
term “anti-DNA antibodies”
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lack of international consensus. This is documented in
hypotheses and theory studies [see e.g. (12, 35, 36)].
Conversely, the “Anti-dsDNA antibody” has achieved an
aristocratic and time wise pompous status as a diagnostic and
a pathogenic factor: See e.g. the Wikipedia-statement: “Anti-
dsDNA antibodies are incredibly specific for SLE4”. This
statement is from historical and contemporary concepts and
data difficult to understand, because the data on the antibodies in
non-SLE conditions are neglected or overlooked.

The cited Wikipedia statement is worryingly close to a warning
Chalmer has formulated: “Biased under-reporting of research
should be outlawed” (37). If we consider current views on a
clinical impact of anti-dsDNA antibodies, we have to realize that
aspects and data that oppose their status as a prototypical biomarker
for SLE are clearly under-reported. [Figure 2A, discussed in (13)].
This is clear as deviant reports provide us with unmistakable data on
anti-dsDNA antibodies in non-SLE conditions [Figure 2A,
discussed in (13)]. In contrast, a categorically positive correlation
of anti-dsDNA antibodies with SLE and lupus nephritis is reported.
The SLE classification criterion - “The anti-dsDNA antibody” - in
singular represents a group of unique individual antibodies against
DNA structures and probably none of them are unique for SLE.
This is discussed in detail below.
DNA STRUCTURES AND ANTI-DNA
ANTIBODIES

In the modern history of DNA discoveries, different structures of
DNA have been described (38, 39). Their unique roles are
basically to facilitate and regulate DNA repair, replication and
transcription of genes. Insight into these structures have
provided us with basic understanding of genetics and DNA
biology. Notably, the structures have a striking, yet largely
overlooked relevance in an autoimmune context: Each
structure has, aside from its basic function, a unique ability to
induce highly specific anti-dsDNA antibodies (see below).

A central research focus has over decades been to describe
elements of dsDNA and chromatin fragments as stimulators of B
cells and T cells in context of SLE [(12, 24, 30, 40), discussed
below, and in (13)]. Autoimmune hepatitis, for example, has
recently become a focus in this context (41).

Studies of DNA and chromatin structures have indeed
promoted fertile scientific achievements (see Table 2 for a
short history). Settled DNA/chromatin structures have
provided us with insight into immunological processes that
regulate tolerance for chromatin, but also into basic aspects of
the immune system itself (see Table 2). Some research directions
have, however, been hampered by deficient strategic hypotheses
(see central problems described in Table 1).

In light of this cognition, it is therefore a substandard
statement to underline that modern clinical immunology and
rheumatology propose that antibodies to dsDNA are a
fundamental single unit and a central SLE classification
4https://en.wikipedia.org/wiki/Anti-dsDNA_antibodies
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Rekvig Theoretical Analysis on Anti-DNA Antibodies
criterium. This is stated in the “The 1982 revised American
College of Rheumatology (ACR) SLE classification criteria”, in

“The Systemic Lupus International Collaborating Clinics (SLICC)
classification criteria for systemic lupus erythematosus”, and in “The
2019 European League Against Rheumatism/American College of
Rheumatology Classification Criteria for Systemic Lupus
Erythematosus” (54–56) where the anti-dsDNA antibodies are
defined irrespective structural DNA specificity. The focus on “The
anti-dsDNA antibody” as a separate and specific criterion has most
probably derailed a productive and critical, clinically relevant, research
focus on anti-dsDNA antibodies. This relates to definition of them as a
diagnostic marker as well as a pathogenic factor in SLE. This dilemma
puts the critical focus on specificity versus avidity of these antibodies.
ANTIBODIES AGAINST DNA
STRUCTURES: DIVERSITY OF
SPECIFICITIES OR DIVERSITY OF
AVIDITIES—FACTS AND CONTRAFACTS

The next interpretative problem derived from the fact that “The
anti-dsDNA antibody” bind differently in assay systems like
enzyme-linked immuno-sorbent assay (ELISA), Crithidia
luciliae immune-fluorescent test (CLIFT), the Farr and other
assays [see e.g. (57, 58) and Figure 2B]. Binding in one or the
other assay has been misinterpreted as if “The anti-dsDNA
antibody” possesses a spectrum of avidities (59) – and not a
spectrum of different unique DNA specificities as may appear in
individual assay system, like binding of antibodies against bent B
DNA as in core nucleosomes or in plasmid DNA (as in CLIFT),
while antibodies to elongated linear B DNA, cruciform dsDNA,
ssDNA in transcriptionally active chromatin, are all detected by
e.g. ELISA assays using DNA designed for each structure, or to Z
DNA formed in high salt as in the Farr assay (38, 60–62). It is
Frontiers in Immunology | www.frontiersin.org 3
relevant to stress that ssDNA in clinical immunology is often
erroneously described as denatured DNA, and not as a real
functional DNA structure (see below for details).

Thus, different antibodies have distinct specificities, and all
autoimmune IgG anti-dsDNA antibodies produced in vivo are
principally antigen-driven by any of the whole spectrum of DNA
structures described in chromatin (38, 39). They are consequently
affinity maturated and may all be of high avidity [see e.g. (11, 20, 21,
63, 64)]. Thus, specificity of antibodies for DNA structures may
have informative impact on classification of SLE and on
pathogenicity in SLE and lupus nephritis [discussed in (65)].

Importantly, this rationalization opens for a new understanding
of the distinctions between specificity versus avidity and the
consequent pathogenic impact of anti-DNA antibodies.
Furthermore, this interpretation strongly supports the view that
pathogenic impact of anti-dsDNA antibodies may encompass all
possible anti-DNA antibody sub-specificities towards structures
exposed in extra-cellular chromatin.

This (still mostly) theoretical discussion puts a focus on the
nature, origin and function of individual antibodies recognizing
dsDNA in all of its structural forms shaped in biologically active
chromatin. This puts the focus on origin of these antibodies.
ORIGIN OF SPECIFIC ANTI-DSDNA
ANTIBODIES—A CONCISE ANALYSIS

In the aftermath of description of autoimmunity to dsDNA in
1957 (5–8), the complexity of tolerance-regulation of DNA
immunity has led to contemporary studies of the immunogenic
impact of dsDNA as presented in NETs (31, 66), secondary
necrotic cells SNECs (67), and microparticles [(68, 69) discussed
in (16, 35) and below]. For central milestones important for our
understanding of tolerance and immunity to DNA, see Table 3.
TABLE 1 | Historical and contemporary definitions of DNA and anti-DNA antibodies.

An important reflection by Ludvik Fleck is a correction to our deficient considerations related to impact of DNA/chromatin and corresponding autoantibodies in clinical
medicine:
“For the current state of knowledge remains vague when history is not considered, just as history remains vague without substantive knowledge of the current state” (1).
The analyses presented here reveal that current knowledge remains vague on central aspects. It is easy to document that central data from historical science are not
considered in contemporary knowledge and documentation as outlined below:
•Historical data unmistakably demonstrate that anti-dsDNA antibodies were first described in bacterial infections (1938, 1939) – not in SLE (1957). This is not
considered in classification or diagnostic criteria, all of which uniformly inform that “The anti-dsDNA antibody” is specific for SLE: “one antibody – one disease”.
•Historical data unmistakably demonstrate that multiple functional DNA structures have individual immunogenic potentials and consequently induce production of unique
cognate anti-DNA antibodies. These are not considered in classification criteria, nor in discussions of pathogenicity of unique anti-DNA antibodies. Considered is just the
misleading term “The anti-dsDNA antibody”: Again leading to the paradigm: “One antibody – one disease”.
•Historical and recent data unmistakably demonstrate that anti-DNA and anti-chromatin antibodies execute their pathogenic potential by binding chromatin exposed in
situ on one hand – other data argue that anti-DNA antibodies bind cross-reactive, intrinsic matrix or basement membrane constituents.
•Till now, no collaborative and/or comparative studies have been performed across the different models of lupus nephritis. This should be regarded as a sine qua none
to develop consistent causal therapies, meaning therapy aiming at preventing true scientifically verified pathogenic processes. We have today to accept that the
processes are in conflict with each other with poor perspectives to be solved.
•Also, there is today a strong need to understand the impact of the steadily increasing number of previous and contemporary classification criteria for SLE. They are not
linked to each other in an etiological or pathogenetic context, and they define a large number of heterogenous clinical SLE phenotypes. This makes cohort studies on
homogenous SLE phenotypes difficult. Likewise, anti-dsDNA antibodies represent a group of antibody specificities. We need to define what we test for, why, and by
which assay principles in order to leave the silently accepted term “one antibody – one disease” behind.
•In conclusion: there is a need to create a bases for new definitions of parameters that may define bases for future studies. Those studies must aim to increase our
insight into what SLE classification criteria are, if they are linked through common processes, what the etiology encompasses, and what pathogenic pathways are
fundamental in SLE.
January 2022 | Volume 12 | Article 808008
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Regrettably, we have to admit that studies on autoimmunity
to dsDNA have been less conclusive and thus less successful than
the foregoing studies describing structure and function of the
DNA helix and chromatin. Still, our insight into clinically
relevant DNA-induced autoimmunity is founded on
phenomenology, artificial experiments and hypothetical
interpretations [discussed in (13)]. We can, however, argue for
the view that DNA structure-specific antibodies are selectively
induced by individual DNA configurations present in chromatin
(Figure 1), and not merely by the vast number of cross-reactive
non-DNA, non-polynucleotide structures [see detailed
discussion below, and (13, 70)]. In light of this, “The anti-
dsDNA antibody” is a critically inconsistent and erroneous
term that does not open for further insight into the clinical
impact of anti-DNA antibodies.

Autoimmunity Versus Immunity of DNA—
Two Roads Leading to the Same Center?
In order to probe hypotheses linked to experimental and
empirical studies aimed to describe origin of anti-dsDNA
antibodies, we need to settle a semantic distinction: Anti-
dsDNA antibodies may be the result of immune responses to
DNA-protein complexes in context of 2 principally different
mechanisms for termination of tolerance: Autoimmunity versus
immunity (see Figure 3A–D, for principle models).

This distinction is important to bring to the discussion forum;
autoimmunity signifies an autoimmune response promoted
solely by autologous dsDNA in complex with chromatin-
derived autologous proteins, while immunity implies immune
responses to dsDNA/chromatin in complex with a non-self (like
Frontiers in Immunology | www.frontiersin.org 4
infection-derived) DNA-binding protein component. In general,
antibodies to dsDNA generated in vivo is most probably a result
of both categories of immunity (concise models as described in
Figure 3C, D, respectively).

There are many reasons to argue for the validity of these
models to generate anti-DNA antibodies. These arguments were
basically presented as a theoretical model for the future by Radic
and Weigert in 1994 [presented in Figure 3A (11)] and as
experimental evidence-based models by Marion et al., Pisetsky
et al., and Rekvig et al. (32, 71–73). In absence of responsive T cells
a model for tolerance is presented (Figure 3B), and imply no help
for DNA/chromatin-specific B cells. Figure 3 presents a basic
model in scenarios linked to both immunity and autoimmunity of
DNA (Figure 3C, D, respectively). The basic model promoted by
Radic and Weigert predicts a molecular and cellular prototype
model also for linked production of antibodies to DNA, histones
and other chromatin associated proteins, in accordance with
theoretical reflections provided by Craft and Hardin already in
1987 (74). The immunity model (Figure 3C) and the autoimmune
model (Figure 3D) are validated by descriptive observations and
experimental data [see thorough discussions in reference (12, 13)].

Autoimmunity to dsDNA: An Autologous
Origin of Key Proteins That Render
dsDNA Immunogenic
Still, we have not satisfactorily determined which molecular and
cellular processes that are operational to promote production of
anti-dsDNA antibodies in vivo (12, 13, 32, 75, 76), although
DNA seems to be the B cell antigen (14, 16). A key question is
why it is so difficult to experimentally induce anti-dsDNA
A

C

B

D E

FIGURE 1 | DNA structures in chromatin express distinct DNA functions, and each structure is a unique antigen. Elongated (linker) DNA is a relaxed, right-handed.
low-energy linear form of B DNA (A), while compacted B DNA as in plasmids (not shown) and in core nucleosomes are defined as bent B DNA (B). In (C) the B DNA
helix is opened by single-DNA binding proteins (i.e. proteins stabilizing ssDNA and polymerizes involved in replication and repair). In (D) Z DNA is demonstrated,
which is a left-handed, high energy, supercoiled double helix. Physiologically, Z DNA forms during transcription as a result of torsional strain that depend on
interaction of mobile polymerases. Z DNA is predominantly associated with linker DNA and regulate transcription. Cruciform DNA is another structure formed in
dsDNA (E), and is different from B and Z DNA. Its generation requires that repeat sequences (palindromes) in one strand is repeated on the other strand in opposite
direction. The cruciforms are, like Z DNA, higher energy DNA structures. From an immunogenic point of view, each structure (A–E) is unique in terms of inducing
highly specific antibodies with potential pathogenic impact if chromatin is exposed in situ. See text for details.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rekvig Theoretical Analysis on Anti-DNA Antibodies
antibodies in vivo without introducing non-self carrier proteins
in complex with DNA/chromatin fragments. Examples are
provided in Figures 4 and 5, for induction of anti-structural
DNA antibodies and anti-chromatin antibodies, respectively by
DNA/chromatin-polyomavirus T antigen complexes. This is
Frontiers in Immunology | www.frontiersin.org 5
consistent with high propensity to e.g. viral infections in SLE
and cancers (71, 77, 78).

There are indeed studies that have demonstrated an
immunogenic potential of purely autologous chromatin. Voll
et al. demonstrated that histone-specific T cells (79), or release of
A

B

FIGURE 2 | Critical questions related to the SLE classification criterion “The anti-dsDNA antibody” (criterion 11 in ACR) or “Anti-dsDNA” (criterion 6, Immunological
criteria, SLICC). Principal problems are linked to the inadequate terminology of the anti-dsDNA antibodies. One problem [demonstrated in (A)] illustrates that “The anti-
dsDNA antibody” is not unique for SLE, but appears regularly in context of infections, malignancies, and sporadic in other conditions. Little is examined whether anti-
dsDNA antibodies are pathogenic and cross-reactive in the latter conditions [question marks in (A)], as they truly are in SLE. The second dominant problem considered
for the “Anti-dsDNA antibody” is that the antibodies are presented as if “it” is monospecific for dsDNA without further specifications of target DNA structures. This has
over decades crystallized the conception that different assay systems detect antibodies possessing different avidities but not different specificities! This conflict is
principally [demonstrated in (B)]. The “ssDNA/dsDNA” structures are categorized in 6 main sets. Antibodies against all these dsDNA structures have been identified by
conventional assay systems, like ELISA in physiological salt (ssDNA, B DNA, elongated B DNA, bent B dsDNA), in high salt (Z dsDNA), and cruciform dsDNA in addition
to heterogeneous binding to proteins and phospholipids. The idiom that anti-dsDNA antibodies bind dsDNA in a singular form as in the ACR or SLICC classification
systems must be challenged by the multifaceted recognition pattern of anti-dsDNA antibodies as informed about in (B) Thus, data in this figure require that assay
systems for anti-dsDNA antibodies relates to categorized structural DNA specificities. Lack of implementation of the structural and molecular recognition pattern
recognized by individual anti-dsDNA antibodies undermine the potential clinical impact of anti-dsDNA antibody sub-specificities.
January 2022 | Volume 12 | Article 808008
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TABLE 2 | Central scientists and the resolution of the DNA structure.

Miesher et al. (42, 43)
•Described in 1871 Nuclein later known as DNA.
Levene et al. (44, 45)
•Discovered ribose in 1909 and deoxyribose in 1929.
•Suggested the structure of nucleic acids as a repeating nucleotide tetramer.
•DNA contained adenine, guanine, thymine, cytosine, deoxyribose, phosphate group.
Chargaff et al. (46–48)
Defined in 1950, 1952 the 2 Chargaff rules
•In double-stranded DNA, guanine units is equal to cytosine units, adenine units is equal to thymine units.
•The composition of DNA varies between species.
Franklin et al. (49–51)
•In 1952 Franklin produced high-resolution photographs of crystallized DNA fibers, interpreted as a helical structure. She and Chargaff were close to defining the
structure of DNA.
•Franklin described the A and B forms of DNA.
Watson and Crick (52, 53)
•Used X-ray data from Franklin when they solved the helical structure of DNA in which A pairs with T, and C with G (equal to Chargaff´s 1. rule).
A

C

B

D

FIGURE 3 | Models for how production of anti-DNA antibodies may be initiated. In order to understand results of experimental and empirical studies aimed to
describe origin of anti-dsDNA antibodies, we need to settle a semantic distinction: Anti-dsDNA antibodies may be the result of immune responses to DNA-protein
complexes in two different contexts: immunity versus autoimmunity (A–D). Autoimmunity signifies an autoimmune response promoted solely by autologous dsDNA in
complex with chromatin-derived autologous proteins. Immunity implies immune responses to dsDNA/chromatin in complex with a non-self (like infection-derived)
DNA-binding protein component. In general, antibodies to dsDNA generated in vivo is most probably a result of both categories of immunity. There are many
reasons to argue for the validity of these models to generate anti-DNA antibodies. These arguments were basically presented as a theoretical model for the future by
Radic and Weigert in 1994 [presented in (A)]. In this model, aspects of affinity maturation is demonstrated as the B cell Ig variable regions are undergoing mutations
to basic or acidic residues (This figure, Panel a, is re-drawn from a figure in reference (11), and provided by courtesy of Dr. Marko Radic, University of Tennessee
Health Science Center). Deriving from this theoretical model, functional evidence-based models by Marion et al., Pisetsky, et al., and Rekvig et al. (32, 71–73) are
demonstrated. In absence of responsive T cells a model for tolerance is presented (B), and imply no help for DNA/chromatin-specific B cells. The distinction between
immunity and autoimmunity is demonstrated in Panels c an d, respectively. The principle difference relies on the specificity of the T cells. In immunity, the T cells are
specific for and engaged by non-self derived DNA-binding proteins (C), while in autoimmunity, the T cells are engaged by autologous, chromatin-derived proteins like
histones (D). The basic model promoted by Radic and Weigert predicts a molecular and cellular prototype model also for linked production of antibodies to DNA,
histones and other chromatin associated proteins, in accordance with theoretical reflections provided by Craft and Hardin already in 1987 (74). The repertoire of
chromatin-specific autoantibodies is from theoretic consideration the same for the models presented in (C, D) (see text for details).
Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 12 | Article 8080086
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chromatin-HMGB1 (High Mobility Group Box 1) complexes
(80), promoted production of anti-dsDNA antibodies. HMGB1-
containing nucleosomes from apoptotic cells were demonstrated
to induce anti-dsDNA and anti-histone antibody responses,
whereas nucleosomes taken from living cells did not (80).

Sisirak et al. (81) demonstrated that DNase 1L3 knock-out
mice spontaneously produced anti-dsDNA antibodies and
developed lupus nephritis. This study represented an
experimental correlate to observations that an inherited null
mutation of the DNase 1L3 gene is associated with early-onset
SLE phenotype and development of lupus nephritis (82). In their
study, Sisirak et al. made the logic conclusion that extracellular
chromatin is a potential self-antigen normally digested by
circulating DNase 1L3. This was further investigated by the
Boris Reizis group, where the central effect on DNase 1L3 in
prevention of autoimmunity towards DNA was ascertained, and
that autoantibody-mediated inhibition of DNase1L3 activity
facilitated anti-dsDNA autoreactivity in patients with severe
sporadic SLE (81, 83). Restoration of DNase 1L3 activity could
therefore represent a causal therapeutic approach to control the
manifestations of SLE promoted by exposure of chromatin
[discussed in (81, 83)]. Soni and Reizis provide strong
arguments for the view that DNA may represent an epicenter
in SLE as immunogen and pathogenic factor as extra-cellular
target for the anti-dsDNA antibodies [(16), see also (31)].
Frontiers in Immunology | www.frontiersin.org 7
The role of HMGB1- chromatin complexes to promote anti-
DNA antibody production, and the role of DNase 1L3 to prevent
production of anti-dsDNA antibodies represent important
conceptual advantages in our search for understanding the
molecular and cellular origin of anti-dsDNA antibodies.

Immunity to dsDNA: An Infectious
Origin of Key Proteins That Render
dsDNA Immunogenic
Valid historical data argue for the view that anti-dsDNA
antibodies are not unique for SLE (Figure 2A). Infections are
commonly encountered in both SLE and in malignant diseases
(73, 77, 78, 84, 85), a fact that may causally link anti-dsDNA
antibodies to diseases prone to infections.

From studies of infectious-related anti-dsDNA antibody
responses, we have insight into basic aspects of the molecular
and cellular requirements to fulfill stimulation of the immune
system [discussed in (11–13, 36, 70)]. One fairly well
documented experimental model proclaims that DNA, as a
hapten-like structure, a term introduced by Sercarz et al. (40,
86), must be complexed with certain immunogenic, in vivo
expressed infection-derived DNA-binding carrier proteins
[Figure 3C (27, 71, 75, 87)]. This has its experimental
counterpart in using artificial carrier proteins like the widely
used methylated bovine serum albumin [see e.g. (75, 87–89)].
A

B

FIGURE 4 | Several unique DNA structures are accessible for B cells that present immunogenic peptides from non-self DNA-binding proteins (here exemplified by
polyomavirus T antigen). As indicated, all these exemplified structures are solvent phase and accessible to B cells (A). In this figure, polyomavirus T antigen is
associated with chromatin in infected cells, and all DNA-specific B cells that bind DNA/chromatin-T antigen complexes present T antigen peptides to responsive
cognate T helper cells. The cognate interaction of DNA structure-specific B cells and T antigen peptide-specific T helper cells promote production of a repertoire of
DNA structure-specific antibodies. Since these antigens are accessible to B cell antigen receptors, circulating antibodies may have access to, and bind, the same
specter of antigens in chromatin exposed in e.g. glomerulus basement membranes (B). This model emerges from published experimental data on immunogenicity of
the selected DNA structures as is discussed in the present text. This model is also valid in a true autoimmune context. Responsive histone-specific T cells may fully
substitute T antigen-specific T cells. This will allow the same specter of DNA structure-specific antibodies (see text for details).
January 2022 | Volume 12 | Article 808008
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In somewhat different, but important and thought-provoking
studies, Pisetsky and co-workers investigated the autoimmunogenic
properties of bacterial DNA (32, 90, 91). They took logic and
important conceptual steps forwards by implementing CpG motifs
as an additional (adjuvant-like) stimulation of the innate immune
system (91–95).

Autoimmunity to DNA: The Possible Role
of Secondary Necrotic Cells (SNECs),
Microparticles, or Neutrophil Extracellular
Traps (NETs)
Alternatively, reduced clearance of apoptotic cells and
consequently accumulation of SNECs (96, 97), microparticles
(68), or exposure of NETs (31, 66, 98), have over time been
attributed central roles in promotion of autoimmunity to native
or to apoptosis-related modified chromatin-associated proteins
and dsDNA possibly involved in e.g. lupus nephritis (99–102).
However, no formal experimental evidences are presented that
anti-dsDNA antibodies are de facto induced by SNECs or NETs.
It is problematic that the relevant literature is categorized over
decades as hypothesis and theories studies [see e.g. (16, 31, 66)],
but not funded on solid reproducible experimental data. Such
structures may, nevertheless, induce immunity towards proteins
that are modified in e.g. NETs (in an altered self context), and
may have central pathophysiological roles as targets for relevant
autoantibodies (31).
Frontiers in Immunology | www.frontiersin.org 8
Cross-Stimulation of Anti-dsDNA
Antibodies by Phospholipids,
Peptides and Proteins
Non-DNA structures may promote production of anti-dsDNA
antibodies [see e.g. (13, 65, 103–108)]. Such structures may
encompass phospholipids that may share backbone structures
similar to dsDNA (109), or peptides/protein structures with no
apparent similarities to dsDNA (104, 108, 110, 111). A perfect
example of evolution of anti-dsDNA antibodies that may have
been promoted by a non-DNA structure is described by
Wellman et al. (112). The IgG antibody with the heavy chain
variable region in germline configuration did not bind DNA,
while somatic mutations introduced during affinity maturation
resulted in binding of the antibody to dsDNA.

However, critical questions must be raised in this context. No
doubt that proteins or peptides may induce anti-dsDNA
antibodies, but is this phenomenon exceptional? Have proteins
and polypeptides the potential to induce antibodies against all
different DNA structures and affinity maturate and converge
specificity of the antibodies towards the manifold of DNA
structures? Except for the Wellman-study, no published data
yet provide answers to these questions.

These observations and discussions have till now not
precipitated any conclusive evidence-based conclusions,
although strong arguments can be raised that in sum support
homologous stimulation of the immune system by native dsDNA
A

B

FIGURE 5 | Chromatin structures and immunogenic chromatin-associated proteins are accessible and may stimulate B and T cells. In the figure all the selected
molecules are accessible to B cells. As in (A), polyomavirus T antigen is associated with chromatin in virus-infected cells, and all chromatin-specific B cells may
present T antigen peptides to cognate T helper cells. This results in production of antibodies against unique DNA and chromatin/protein structures. Since these
antigens are accessible to B cell antigen receptors, circulating antibodies may have the potential to bind the same specter of accessible antigens in chromatin
exposed in e.g. glomerulus basement membranes (B). This demonstrates that chromatin-specific antibodies per se may have pathogenic potentials, and not only
anti-dsDNA antibodies. This model emerges from experimental data (see text). [This figure is modified from: Figure 5 in reference (35)].
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in complex with a T cell-specific immunogenic carrier protein as
a central trajectory in vivo (13).
THE BIOLOGY OF UNIQUE FORMS OF
DNA AND THEIR IMMUNOGENICITY
IN VIVO

This discussion is based on the contributions provided by
historically important scientific pioneers, their observations and
consequent interpretations: Characterization of dsDNA and
subsequent description of antibodies to dsDNA. A common
thread leads from the revolutionary discoveries of DNA and its
Frontiers in Immunology | www.frontiersin.org 9
structures by Miescher et al. in 1871 (42), Levene et al. in 1903
(44), Chargaff et al. in 1950 (46), Franklin et al. in 1953 (49),
Watson and Crick in 1953 (52, 53), up to studies of DNA´s
structure and function in chromatin by groups of Olins and Olins
(113), Kornberg (114, 115), Klug (116), Laskey (117), and others.
They contributed to our understanding of structure and biology of
the symbiosis of dsDNA and chromatin-associated regulatory
proteins (see Table 2).

Franklin was the first to describe unique forms of DNA
beyond its pure helix structure: The A and B DNA (49). The B
DNA was later described as a dynamic bi-structural DNA shape:
elongated (118, 119) or bent (120) B DNA, while ssDNA (121,
122), Z DNA (61), cruciform DNA (123), and other structures
TABLE 3 | Central scientists and milestone studies of anti-dsDNA antibodies.

Autoimmunity towards dsDNA were after 1957 centered around SLE (30, 209). Its relation to infections, as described in 1938-1939 was over time neglected.
Winkenwerder et al. (4), Sevag et al. (2, 210), Menzel et al. (3)
•They described in 1938-1939 antibodies to DNA in bacterial infections.
•Their data challenge the dogma of anti-dsDNA antibodies as a central biomarker for SLE.
Ceppellini et al. (5), Robbins et al. (7), Miescher et al. (6), Seligmann et al. (8)
•Described in 1957 antibodies to DNA in SLE.
•Their discovery formed later the basis for the dogma of anti-dsDNA antibodies as a central biomarker for SLE.
Sercarz et al. (40, 86)
•Proposed the hapten-carrier model for B and T cell cooperation in autoimmunity. This concept had a considerable impact on experimental studies on immunogenicity
of DNA.
Tonegawa et al. (17)
•Described in 1983 somatic mutations in the N-terminal part of the variable region of an antibody as a mechanism for generation of antibody diversity.
Hood et al. (18)
•They proposed a model for variable region gene rearrangement mediated by proteins which recognize the same conserved sequences adjacent to both light and heavy
chain immunoglobulin gene segments.
•An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH.
Weigert et al. (211–213)
•He discovered a fundamental mechanism of B cell tolerance which he entitled receptor editing.
•Weigert was the first to describe immunoglobulin variable region somatic hypermutation which is an adaptive mechanism to increase avidity, and to converge specificity
towards the immunogen.
Stollar et al. (10, 61, 70, 214)
Central pioneer on
•Immunogenic potential of DNA structures
•immunochemical characterization of DNA and
•genetical mapping of anti-DNA antibodies.
Schwartz et al. (215)
•Immunogenicity of DNA and anti-dsDNA antibodies, centralized around SLE
Isenberg et al. (216, 217)
•Clinical impact of anti-DNA antibodies, analyses of large SLE cohorts.
Tsokos et al. (30, 209, 218)
•Performed studies of cellular and molecular pathogenic processes of systemic lupus erythematosus (SLE).
•Central in the field of molecular abnormalities of immunity in SLE.
Pisetsky et al. (12, 219)
Studies on the immunological properties of DNA as related to two main topics:
•The induction of anti-DNA responses in systemic lupus erythematosus
•the stimulation of innate immunity by bacterial DNA.
Reizis et al. (16)
•The Reizis group provide strong arguments for the view that DNA may represent an epicenter in SLE as B cell antigen and pathogenic factor as extra-cellular target for
the anti-dsDNA antibodies.
•They propose and provide data that DNase 1L3 prevents autoimmunity towards DNA.
Winkler et al. (112)
•Provided evidence that an affinity-maturated DNA specific autoantibody emerged from an antibody with undetectable affinity for DNA. The somatically mutated heavy
chain variable region from the DNA-specific antibody was reverted by site-directed mutagenesis to germline configuration with loss of specificity for DNA. They made the
important conclusion that affinity-maturated autoantibodies may develop during a normal immune response from non-autoimmune B cells. In light of high rates of
infections their study may have high impact to understand origin of anti-dsDNA antibodies. This adds to data demonstrating that (nucleosomal) dsDNA also directly have
immunogenic potential when complexed with an immunogenic carrier protein.
Other central contemporary scientists (14, 152, 187, 220–224)
•They have investigated origin, clinical and pathogenic impact of anti-DNA antibodies. They are all important and they are referred to in this study.
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were all described in context of specific functions of DNA (see
detailed discussion below, Figure 1, and (124, 125).

In the history of “The anti-dsDNA antibody” few random
attempts have been performed to determine whether all
structural DNA-specificities are strongly associated with SLE.
Thus, it is not established if unique anti-dsDNA antibody
specificities are linked to distinct SLE classification criteria or
even to non-SLE related disorders (13). These obvious problems
are not considered in the recent expansion of the SLE
classification criteria (54–56). In the following sections the
roles of DNA structures, functions and their cognate
antibodies will be summarized and discussed.
B DNA

Structure and Biology of B DNA
B DNA is the most disseminated DNA structure in the human
genome. The fundamental composition (47, 48) and structure of
the B form DNA as a right-handed double helix (49, 50, 126)
reflect in many ways the basic B DNA in its relaxed low energy
conformation. Changes in the B DNA structure reflect dynamic
conversion of the basic structure into variants like ssDNA, Z
DNA, cruciform DNA, bent DNA and others (see Figures 1 and
4). Such activation-related structures have their own, unique
ability to induce highly specific immune responses, with
relevance to the impact of anti-dsDNA in SLE and
lupus nephritis.

The B DNA is reversibly transformed into two different B
DNA structures with impact on specific immune responses: The
elongated linker B DNA and the bent B DNA formed in the core
nucleosome (for other structures, see below).

Elongated B DNA
Linker DNA is a stretched elongated B DNA. Its name defines its
context, a link between core nucleosomes, shaping the electron
microscopy picture of beads on a string (113). The
histone H1 binds to linker DNA where DNA connects the
fundamental chromatin units, the core nucleosomes. The role
of histone H1 in chromatin is manifold, and H1 contributes to
chromatin compaction (127). H1 is a central molecule that
basically unmask DNA and contribute to regulation of
transcription and other effects involving DNA (128, 129).
Thus, H1 is highly mobile in the nucleus, which may indicate
its strategic ability to expose B DNA to DNA regulatory proteins.

Bent dsDNA
As H1 slides along linker DNA, the histone octamer (two copies
each of the four core histones H2A, H2B, H3 and H4) slides
along B DNA and form bent DNA (120, 130–132), thus
facilitating further effects of regulatory proteins like high-
mobility group proteins to bend DNA into various degrees of
flexible conformations (133–135). Studies on kinetoplast DNA [a
network of circular DNA (136)] have demonstrated that certain
sequences cause DNA to be highly bent, and that other sequences
bend in response to binding of proteins (137). Thus, bent B DNA
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is a widely spread structure in chromatin, which may impact its
immunogenic power.

B DNA structures undergo transformation between elongated
and bent B DNA necessary to promote transcription and
replication (132, 138, 139). The amount of bent DNA is
therefore substantial (132). Summarizing this information,
functional alterations of the DNA structure generate unique
stimulators of the adaptive immune system in substantial amounts.

Spontaneous Production of Anti-B
DNA Antibodies
The origin and clinical impact of anti-B DNA antibodies (termed
anti-mammalian dsDNA antibodies in cl inical and
immunological contexts) have been difficult to understand.
Therefore, immune responses towards B DNA has been, and is
still being regarded as enigmatic. The reason for this derives from
two problems: DNA immunogenicity, and affinity maturation of
ongoing immune responses against peptides or phospholipids
mimicking or apparently not mimicking DNA although
stimulating to anti-B DNA antibody production.

In many lupus-prone murine models [for review, see e.g.
(140, 141)], antibodies against B DNA appear spontaneously.
They distinctively recognize elongated and/or bent dsDNA as in
chromatin and kinetoplasts in different assay systems (57). These
spontaneously produced antibodies are pathogenic (but not
always)! by promoting lupus nephritis (65), dermatitis (142)
and some forms of cerebral lupus (143, 144). The capacity of
some anti-DNA antibodies to promote inflammation in the
kidneys is more rigorously documented than in the skin or
brain. The reason for this is the documented devastating effect
exerted by the organ-selective silencing of the renal endonuclease
DNase 1. This leads to a consequent accumulation of extra-
cellular large chromatin fragments in glomerular matrices and
membranes where they are targeted by anti-dsDNA antibodies
[(65) see below]. 345-352

Experimental Production of Anti-B
DNA Antibodies
Over the years, attempts to induce anti-B DNA antibodies have
mostly failed [see e.g. (61, 76), reviewed in (13)]. Anti-DNA
antibodies have been induced by other DNA structures like
chemically modified DNA and synthetic polydeoxyribo-
nucleotides that differ from native DNA [discussed in (70)]. After
a period where B DNA was regarded as non-immunogenic, clear
exceptions from these negative results have appeared.

The current contemporary view is that experimental
induction of anti-B DNA operates according to mechanisms
described above linked to autoimmunity or immunity against
mammalian dsDNA. The early experiments were performed
using new hapten-carrier principles: To engage T helper cells, a
DNA binding peptide, Fus 1derived from Trypanosoma cruzii,
induced in complex with mammalian B DNA strong anti-B
DNA antibodies in non-autoimmune mice (14, 145).
Immunoglobulin analyses demonstrated that the IgG heavy
chain variable regions were structurally similar to those
produced spontaneously in autoimmune (NZBxNZW)F1 mice
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(63, 145). An analogous approach was independently developed
using the DNA-binding polyomavirus BK large T antigen as
carrier protein for the hapten-analogous B DNA. The in vivo
generation of this hapten-carrier complex promoted production
of lupus-like autoantibodies to mammalian dsDNA and to
chromatin-associated proteins [(73, 84), and references herein].
Experimental induction of antibodies recognizing the kinetoplast
DNA of Crithidia luciliae along with elongated B DNA in ELISA
were observed in both the Fus 1-DNA and the T antigen-
DNA models.

The T antigen model was principally confirmed in another
experimental system. Dong et al. induced antibodies to p53 by
immunizing non-autoimmune mice with purified p53-T antigen
complex (146). These results demonstrate that infections,
commonly encountered in SLE (32) and in cancers (77, 78)
may be involved in systemic autoimmunity, and explain why
anti-dsDNA antibodies principally cannot serve as a unique
biomarker for SLE.

Pathogenic Impact of Anti-B DNA
Antibodies
There is an international consensus that antibodies to dsDNA and
to chromatin antigens have pathogenic potentials. There is,
however, no consensus as to how and why these antibodies may
be pathogenic (65). Two main directions in international science
dominate the discussions: i. In context of lupus nephritis,
antibodies bind chromatin fragments exposed in the mesangial
matrix and in GBM [(147–150), discussed in (65)], or ii.
Antibodies bind inherent matrix and GBM structures through
cross-reactions [discussed in (151, 152)]. Antibodies against
chromatin ligands and intrinsic glomerular constituents have
been eluted from nephritic kidneys (153, 154). The main
problem with those studies is that each of them claim to explain
the nephritic potential of anti-dsDNA antibodies [discussed in
depth in (33, 65)]. These contradictory results have not promoted
critical, comparative studies. Before such studies are performed
and interpreted, we will not reach consensus on which model(s) is
(are) correct and which strategy for causal therapy may be
developed (principally discussed below).
SSDNA

Structure and Biology of ssDNA
The ssDNA structure appears in two different contexts: i. as
intended/not-intended denatured ssDNA in analytical contexts,
or ii. related to stabilize transcriptionally active DNA (121, 122).

The ssDNA structure is not stable. Single-stranded DNA-
binding proteins (SSB) hold the ssDNA intact and exposed
during the course of its function: DNA transcription,
recombination and repair (155), and to serve as template for
opposite strand DNA synthesis [(156), for further reading, see
e.g. (157, 158)]. Thus, ssDNA regions may be present in total
cellular DNA at considerable amount, which may point at an
immunogenic impact of ssDNA and a pathogenic impact of anti-
ssDNA antibodies.
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Immunity of ssDNA Regions
Anti-ssDNA antibodies may be induced in vivo when functional
chromatin-associated ssDNA is presented to the immune system
(13). Therefore, anti-ssDNA antibodies may bind ssDNA regions in
chromatin fragments also when they are exposed in e.g. GBM and
thereby promote renal antibody-mediated inflammatory events.
This is substantiated, but not seriously considered, by the fact that
anti-ssDNA antibodies can be detected in sera and renal eluates
from SLE patients with lupus nephritis (153, 159, 160).

Spontaneous and Experimental Production
of Anti-ssDNA Antibodies and Their
Pathogenic Impact
Autoantibodies against ssDNA has been known for decades (13).
They have been detected in SLE and other conditions (161), and
they are readily induced experimentally (162–166). In one study
from 1989, Vaishnav and Antony injected ssDNA in complex
with a carrier protein (mBSA) and observed, as the first ever,
appearance of anti-dsDNA antibodies (163). This study was at
that time important and challenged the concept of non-
immunogenicity of DNA including B DNA, but was not
considered important. In later studies and discussions their
results were regrettably neglected.

In my training, I was stressed to treat DNA as target in anti-
dsDNA antibody assays with S1 nuclease to avoid detection of
anti-ssDNA antibodies in clinical contexts (167). Therefore,
antibodies against ssDNA regions have been disregarded in
clinical contexts, although they have been detected in nephritic
kidneys (153). Thus, also anti-ssDNA antibodies may affinity
maturate and form high avidity antibodies with potential to
promote lupus nephritis and dermatitis when chromatin
fragments are exposed in situ.
Z DNA

Structure and Biology of Z-DNA
Z DNA is structurally and functionally integrated in the human
genome (168) and is involved in various human diseases (see
(169, 170) and references therein). Z-DNA is a left-handed, high
energy supercoiled double helix, as opposed to the right-handed
B-DNA helix. Physiologically, Z DNA forms in vivo and in cell
cultures during transcription (171) as a result of torsional strain
that depends on interaction of mobile polymerases and other
proteins (172, 173). Since the placement of nucleosomes
influences the binding of transcription factors, Z-DNA is
thought to directly regulate the rate of transcription.

Z-DNA is reported to be formed in elongated B DNA and
not associated with the core nucleosome unit, which are
normally located after Z-DNA structures (174). Concerns
have, however, been expressed by Mulholland et al. (175),
who have demonstrated that Z DNA may also be formed
in the core nucleosomal complex. This indicates that Z DNA
may be more abundant in chromatin with an increased
probability for immunogenicity and a pathogenic potential
of anti-Z DNA antibodies. A pathogenic potential of anti-Z
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DNA antibodies has not been proven by firm descriptive or
experimental studies.

Spontaneous Production of Anti-Z
DNA Antibodies
Specific anti-Z-DNA antibodies are associated with SLE (176,
177). Significant amounts of anti Z-DNA antibodies were found
in SLE patients but not in other rheumatic diseases – analyses in
infections or malignancies are, however, not reported. Highest
levels of antibodies were associated with the most active stages
of SLE.

Experimentally Induced Anti-Z
DNA Antibodies
In the period when immunogenicity of DNA was a major
problematic focus in clinically related immunology, B DNA
was regarded as non-immunogenic (76, 178). In contrast, anti-
Z DNA antibodies were readily induced by conventional
immunization protocols (87, 179). These contrasting results
were insightfully discussed (61), and subsequent experiments
revealed that mBSA as carrier protein was functional for Z DNA,
but not for B DNA although other carrier proteins had the
potential to render B DNA immunogenic [see e.g. (14, 180)].

Anti-Z DNA Antibodies: Potential
Pathogenic Impact
IgG antibodies to Z DNA are found in SLE, and they have been
experimentally induced in non-autoimmune mice (see above).
This confers to affinity maturated antibodies with potentially
high avidity. When we consider the fact that Z DNA is involved
in transcription and recombination, Z DNA may be abundantly
exposed in chromatin, and also in chromatin fragments released
and exposed in situ in e.g. GBM. This may open for a pathogenic
potential for these antibodies (see a theoretical model discussed
in Figure 4). If anti-Z DNA antibodies indeed are pathogenic
has, however, not been investigated.
CRUCIFORM DSDNA

Structure and Biology of Cruciform DNA
Cruciform DNA is structurally different from B and Z DNA. Its
formation requires that inverted sequences (palindromes)
present in one strand is repeated on the other strand in
opposite direction, thus allowing formation of hairpin or
cruciform DNA structures. There is a minimum limit of the
number of nucleotides in the inverted repeats to form a stable
cruciform structure by negative DNA supercoiling. The
cruciform structures are, like Z DNA, higher energy DNA
structures [for details see (123, 181)].

Cruciform DNA structures are central in a wide range of
biological processes, including replication, regulation of gene
expression, nucleosome structure and recombination. Several
regulatory proteins bind preferentially, but not exclusively to
cruciform structures, and regulate homeostasis of the biological
functions of DNA (123, 182, 183).
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Spontaneously Produced Anti-Cruciform
DNA Autoantibodies: Still Not Analyzed
Cruciform DNA-specific antibodies have not been reported in a
clinical context, and no attempts to detect these antibodies in
context of rheumatology or infectivity have been published.

Experimental Anti-Cruciform DNA
Antibodies
Antibodies were induced experimentally in 1987 by Frappier et al.
against a cruciform structure presented by a heteroduplex DNA
molecule (184). Their well characterized monoclonal antibodies
have later been used to study expression and biology of cruciform
DNA (182, 185). Notably, also antibodies towards another complex
form of DNA, quadruplex DNA, was generated from non-
immunized motheaten mice (182, 185). This may indicate that
anti-cruciform/anti-quadruplex antibodies may be formed in
autoimmune phenotypes., although not investigated yet.

Possible Pathogenic Impact of Anti-
Cruciform Autoantibodies—A Hypothesis
Pathogenic impact of anti-cruciform DNA antibodies has not been
investigated. This is a consequence of the fact that there are no
published reports on true autoimmune anti-cruciform antibodies
linked to autoimmune diseases. However, when we consider the
central functions of cruciform DNA in biology, and that cruciform
DNA structures are abundant in chromatin, these structures are
expected to be recognized by the cognate immune system.
UNIQUE DNA STRUCTURES AS
STIMULATORS AND TARGETS FOR
ANTIBODIES—A CONCLUSION

In this theoretical study, available information linked to immune
responses to various structural forms of DNA is contemplated and
interpreted: i. the role of infection in initiation of anti-DNA
production, ii. the possible influence of microbiota that turns out to
be unbalanced in lupus (186), iii. the molecular and structural
properties of ssDNA/dsDNA in chromatin and their interaction
with B cells (afferent immunogenic stimulus) and anti-DNA
antibodies (efferent pathogenic stimulus) (12, 13).

DNA as a native structure is immunogenic and auto-
immunogenic in vivo. The emerging antibodies do not care what
initiates them but their existence is undeniable. Their clinical impact
is, however, tremendous. In this picture chromatin exposed in situ is
a common denominator as target for the whole specter of induced
anti-DNA/anti-chromatin antibodies. Cross-reactions with
membrane ligands play assumedly an inferior pathogenic role,
because it is unlikely that the whole universe of DNA/chromatin-
specific autoantibodies cross-react with the small repertoire of
protein ligands that make up matrices and membranes.
WHICH ANTI-CHROMATIN ANTIBODIES
ARE NEPHRITOGENIC—A HYPOTHESIS
In this section anti-DNA antibodies as principal initiators of
lupus nephritis will be discussed. Secondary inflammatory
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mediators and processes will not be emphasized here. Anti-
dsDNA antibodies (in the contexts discussed above) are among
several anti-chromatin antibodies involved in lupus nephritis.
We still, however, do not agree on the nature of inducers and
glomerular targets of the anti-dsDNA antibodies - whether
dsDNA (11, 149, 150, 187), nucleosomes or apoptotic
chromatin (147, 148, 188–190) or non-dsDNA cross-reactive
structures [see e.g. (13, 65, 103–108)]. This signifies that we today
are not able to explain the nephritic process. We can, however,
deduce some basic principles and propose some data-
based paradigms.

If autoantibodies bind directly to intrinsic ligands in the
matrix or GBM, then this mode is equivalent to a Type II
antibody-dependent inflammation. If autoantibodies form
immune complexes with chromatin fragments in situ or in
circulation prior to deposition in e.g. GBM, this mode is
consistent with a Type III immune complex-mediated
inflammation [for review, see (191)].

The chromatin model is complex, and involve a spectrum of
chromatin-specific antibodies as indicated in Figures 4 and 5.
Immunogenic chromatin stimulates production of different anti-
chromatin antibodies. The model in Figure 4 informs about how
immunogenic DNA structures may stimulate production of
cognate DNA-specific anti-DNA autoantibodies. On the other
hand, immunogenic chromatin has the potential to promote
production of a spectrum of anti-chromatin antibodies, like
DNA, histones, transcription factors ((84, 180), Figure 5).
Collectively. these antibodies have not been seriously
considered as individual promoters of lupus nephritis, with the
exception of “The anti-dsDNA antibody”. Since all these
antibodies, with the exception of anti-cruciform antibodies
(not analyzed yet), are induced in SLE (57, 58, 176), the DNA
structures must have been accessible to B cells. Then it is likely
that the antibodies recognize the same universe of DNA
structures and chromatin-associated proteins (Figures 4 and 5)
when chromatin fragments are exposed in e.g. glomeruli.

Although the spectrum of chromatin autoantibodies may
bind chromatin in situ, this does not necessarily imply that
each specificity is individually nephritogenic since the density of
each target molecule may be too low to initiate e.g. complement
activation. However, they may all contribute to the nephritogenic
process in concert with other chromatin-specific antibodies. This
hypothesis is consistent with the fact that non-anti-DNA IgG
antibodies are eluted from lupus nephritic kidneys [(153),
discussed in (153, 159, 160)].

This process is also consistent with previous data
demonstrating that in vivo-bound IgG antibodies co-localize
with electron-dense chromatin fragments in the mesangial
matrix and in GBM [discussed in (65, 148, 188, 192, 193)]. In
addition, antibodies in glomerular eluates demonstrated higher
intrinsic affinity for DNA compared to autologous serum
antibodies (194).

Data that emerge from these analyses were not consistent
with antibody-binding to membrane constituents, as e.g. laminin
antibodies added to the sections bound normal GBM and not
electron-dense chromatin fragments [see Figure 3 in reference
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(65)]. Collectively, these data favor a Type III inflammatory
model involved in lupus nephritis, although autoimmune T cells
may also be involved (195).

The arguments favoring Type II and Type III nephritis derive
from studies over decades, preliminary conclusions and from a
lack of international consensus (see e.g. contrasting viewpoints in
(13, 33, 34, 65, 149, 196). The two models have their advocates,
but still a comparative study is awaited.

Serologically Active, Clinically Quiescent
Patients—Why Are Not Anti-DNA
Antibodies Always Pathogenic?
This question relates to the statement that describes
“serologically active, clinically quiescent” patients (197, 198).
The term describes patients that have long-lasting high levels of
anti-DNA antibodies without experiencing any inflammatory
flare of their disease. This is in fact a core problem aimed to
understand the complexity of the pathogenic impact of anti-
DNA antibodies: When and how is the anti-dsDNA
antibody pathogenic?

Two explanations may allow an understanding of this
apparent paradox. Either, the antibodies do not possess an a
priori nephritogenic potential just because of their presence. This
implies that the target(s) for the anti-DNA antibodies is not
constitutively expressed and exposed in vivo, i.e. they are not an
intrinsic part of e.g. GBM. Only in situations where e.g.
chromatin accumulate extra-cellularly, the antibodies find their
partner and upon binding promote inflammation (188, 199,
200). The loss of DNase 1 endonuclease activity in kidneys but
not in other organs (201) may also explain why kidneys are more
affected by anti-DNA antibodies as DNase 1 deficiency promotes
glomerular exposure of chromatin fragments (202).

The alternative explanation could be that the antibodies
account for inflammation if they cross-react with intrinsic
membrane constituents like laminin, collagen or entactin.
Without cross-reactive potential the anti-DNA antibodies
behave as a clinical epiphenomenon [see above, discussed in
detail in (13, 65)]. These two models have one perspective in
common: They both provide a fair explanation as to why anti-
DNA antibodies are not always pathogenic and why patients may
be “serologically active, clinically quiescent”. A comparative
research initiative to solve the real process is an important
challenge to us.

Pathogenicity of Anti-DNA Antibodies—
Does Immunoglobulin Class Matter?
A potentially important pathogenic aspect of anti-DNA
antibodies adheres to the impact of their immunoglobulin class
(203). Although IgM antibodies possess low intrinsic affinity
their avidity is generally high. This, and the fact that a single IgM
molecule is a potent complement activator (204, 205), whereas
single IgG molecule hardly activate complement (206), could
indicate that IgM anti-DNA antibodies are more pathogenic
than IgG. The opposite seems to be true (203). In their study,
Wang and Xia conclude that IgG but not IgM correlate with
activity of human lupus nephritis (203). Most pathogenic
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antibodies are of the IgG class in SLE patients (207). According
to e.g. Gronwall et al., IgM antibodies correlated with enhanced
removal of apoptotic material and reduced activity of lupus
erythematosus (208). These observations implicate that IgG
anti-dsDNA antibodies exert a stronger pathogenic impact
than IgM antibodies with corresponding DNA specificity.
CONCLUDING REMARKS

In current criteria to classify SLE, “The anti-dsDNA antibody”
possesses an archaic position. “The anti-dsDNA antibody”-
terminology is neither founded on current knowledge, nor on
established insight into unique DNA structures related to distinct
DNA-associated operations. In that sense, any structure-specific
anti-dsDNA antibody, detected in any assay using any DNA
molecule is valid as a criterium for SLE. A simple hypothesis - not
examined yet - may be quite obvious: The more readily an antibody
is induced, the less specific is the antibody for SLE, but may appear
in divergent conditions. In other words, antibodies against ssDNA
or Z DNA may be less specific for SLE than anti-bent B DNA
(extrapolated from data discussed above and in Figure 2).

Anti-DNA antibodies are essential in clinical medicine, and
particularly in SLE. The autoantibodies are, although as an interim
measure, used to diagnose SLE and to classify SLE patients. The
antibodies are a central pathogenic factor, and they promote lupus
nephritis alone or in combination with other anti-chromatin
antibodies. What we need to comprehend from this enormous
Frontiers in Immunology | www.frontiersin.org 14
amount of data and knowledge is to understand what makes the
anti-DNA antibody pathogenic - and in which context.
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