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SUMMARY

The central step in the initiation of eukaryotic DNA replication is the loading of
the minichromosome maintenance 2–7 (MCM2-7) complex, the core of the repli-
cative DNA helicase, onto chromatin at replication origin. Here, we reported the
cryo-EM structure of endogenous human single hexamericMCM2-7 complexwith
a resolution at 4.4 Å, typically an open-ring hexamer with a gap between Mcm2
and Mcm5. Strikingly, further analysis revealed that human MCM2-7 can self-
associate to form a loose double hexamer which potentially implies a novel mech-
anism underlying the MCM2-7 loading in eukaryote. The high-resolution cryo-EM
structure of human MCM2-7 is critical for understanding the molecular mecha-
nisms governing human DNA replication, especially the MCM2-7 chromatin
loading and pre-replicative complex assembly.

INTRODUCTION

DNA replication is the heart of cell proliferation and has been the subject of intense investigations over

many years. In eukaryotes, DNA replication starts with ATP-dependent association of the origin recognition

complex (ORC) consisting of Orc1-6 subunits and binding with DNA at a particular position in chromo-

somes called ‘‘origin’’ (Bell and Stillman, 1992). In G1 phase, ORC binding to replication origin serves as

an origin marker and recruits the initiation factor Cdc6 and Cdt1 to origin for the chromatin loading of

the minichromosome maintenance 2–7 (MCM2-7) heterohexamer onto double-stranded DNA to form

the ORC/Cdc6/Cdt1/MCM2-7 (OCCM) complex (Feng et al., 2021; Fernandez-Cid et al., 2013; Li et al.,

2018; Sun et al., 2013; Yuan et al., 2017) (Figures 1A, 1B, and 1C). Subsequently, an ordered release of

Cdc6 and Cdt1 results in the formation of an MCM2-7/ORC (MO) intermediate (Miller et al., 2019; Ticau

et al., 2015) (Figure 1D). Following the recruitment of a second Cdc6, the formation of the ORC/Cdc6/

MCM2-7 (OCM) intermediate rapidly recruits a second MCM2-7 hexamer in a Cdt1-dependent manner

yielding a salt-stable, head-to-head MCM2-7 double hexamer (DH) that encircles dsDNA (Evrin et al.,

2009, 2013; Fernandez-Cid et al., 2013; Miller et al., 2019; Remus et al., 2009; Ticau et al., 2015) (Figure 1E).

The double hexamer loading to form the pre-replication complex (pre-RC) is also known as DNA licensing.

The resultant double hexamer lacks helicase activity until the cell enters S phase. At the G1-S transition of a

yeast cell, Dbf4-dependent kinase and S-phase-specific cyclin-dependent kinase coordinating with a large

number of activation factors including Sld3, Cdc45, Sld2, Dpb11, polymerase ε, and Mcm10 transform the

inactive double hexamer into two active Cdc45/MCM2-7/GINS (CMG) helicases (Cheng et al., 2022; Geor-

gescu et al., 2017; Heller et al., 2011; Labib, 2010; Saleh et al., 2022; Sheu and Stillman, 2006; Yeeles et al.,

2017) (Figures 1F and 1G). The CMG complex is thought to serve in S phase as the replicative helicase

component of the replisome for daughter-strand synthesis.

The central complex of DNA replication is MCM2-7 which includes six homologous proteins, Mcm2, 3, 4, 5,

6, and 7, to form a heterohexamer (Bochman and Schwacha, 2009; Forsburg, 2004). Recently, with the tech-

nical evolution of cryo-electron microscopy (cryo-EM), a few of critical components of pre-RC containing

MCM2-7, such as OCCM, MO, and DH involved in DNA replication of Saccharomyces cerevisiae, became

available at sub-nanometer resolution (Riera et al., 2017; Zhai et al., 2017b). All of these structures provide a

series of snapshots showing a glimpse of the conformational changes of MCM2-7 during DNA replication

licensing in yeast. Although structural studies of eukaryotic-isolated MCM2-7 complexes including Ence-

phalitozoon cuniculi MCM2-7 (Lyubimov et al., 2012), S. cerevisiae MCM2-7 (Li et al., 2015; Remus et al.,

2009; Samel et al., 2014), and Homo sapiens MCM2-7 (Boskovic et al., 2016; Hesketh et al., 2015) have

been reported, until now, the high-resolution structure of eukaryotic-isolated MCM2-7 complex remains
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elusive. In this study, we purified endogenous humanMCM2-7 complex and determined the cryo-EM struc-

ture of human single hexameric MCM2-7 complex with a resolution at 4.4 Å, which shows a similar architec-

ture with yeast MCM2-7 stabilized by Cdt1, typically an open-ring hexamer with a gap between Mcm2 and

Mcm5. Strikingly, further biochemistry and EM analysis revealed that human MCM2-7 can self-associate to

form a loose double hexamer when compared with the loaded yeast MCM2-7 DH. The high-resolution

cryo-EM structure of humanMCM2-7 is critical for the understanding of the molecular mechanisms govern-

ing human DNA replication and may ultimately contribute to facilitate the structure-based drug design for

cancer treatments.

RESULTS

Purification of the endogenous human MCM2-7 complex

To obtain the endogenous human MCM2-7 complex, a Twin-Strep-Tag II tag was fused to Mcm4 by using

CRISPR-Cas9 technique as described in STAR Methods. The strep-tagged protein was purified by affinity

column and analyzed by SDS-PAGE (Figure 2A), which showed four groups of protein bands with similar

intensity. The further mass spectrometer analysis showed that these bands correspond to Mcm4 together

with Mcm2, 3, 5, 6, and 7 indicating we have successfully obtained the endogenous human MCM2-7 com-

plex (Figures 2A and S1).

Endogenous humanMCM2-7 complex shows the co-existence of single and double hexamers

Subsequently, the gradient fixation was performed using the purified MCM2-7 complex by affinity column.

Interestingly, two separated bands were observed on native PAGE gel indicating two types of conforma-

tion are adopted by human MCM2-7 complexes (Figure 2B). Interestingly, the subsequent negative stain-

ing examination reveals that the band with slow migration rate corresponds to MCM2-7 double hexamer

(DH) and the other band corresponds to MCM2-7 single hexamer (SH) (Figures 2C and S1). Notably, the

band position corresponding to MCM2-7 DH migrated between 720 and 1,048 kDa on native PAGE, which

is smaller than the theoretic molecular weight �1,200 kDa, potentially caused by its particular shape (non-

globular shape) and/or dynamic property such as conformational equilibrium.

Figure 1. Eukaryotic initiation of DNA replication

The known complexes in yeast that have been solved by Cryo-EM are shown in surface view.

(A) ORC is first bound to DNA (PDB: 5ZR1).

(B) Cdc6 is loaded onto ORC to form the landing platform for Cdt1/MCM2-7 (PDB: 7MCA 5381).

(C) The association of Cdt1/MCM2-7 (PDB: 5XF8) with ORC/Cdc6 results in the OCCM (PDB: 5V8F) formation.

(D) With the release of Cdt1 and Cdc6 from the OCCM, MO is an essential intermediate for the recruitment of a second

Cdt1/MCM2-7 heptamer (PDB: 6RQC).

(E) In cooperation of the Cdc6, a MCM2-7 DH is formed which is activated in S phase (PDB: 6F0L).

(F) In S phase, relying on Dbf4-Cdc7 kinase (PDB: 7V3V) and coordinating with other activation factors such as Cdc45, Sld2,

Dpb11 etc. to form the active Cdc45/MCM2-7/GINS (CMG) complex (PDB: 5U8S).
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Overall cryo-EM structures of the endogenous human MCM2-7 complex

The image acquisition was carried out on a Titan Krios microscope equipped with a K3 camera operating at 300

keV (Figure S2A and Table S1). The subsequent 2D and 3D classifications and refinements rendered a 4.4 Å map

ofMCM2-7 from a set of 1,135,993 particles (Figures S2B–S2D and S3). The excellent quality and high resolution

of the map allowed us to assign and build models for each component of MCM2-7 (Figure 3).

The six-subunit assembly of the human MCM2-7 shows a left-handed spiral configuration, proceeding

Mcm5/Mcm3/Mcm7/Mcm4/Mcm6/Mcm2, with a gate between Mcm2 and Mcm5 (Figure 3).

This hexameric open-ring structure shares similar structure with the cryo-EM structure of yeast MCM2-7

in complex with Cdt1 (Cdt1/MCM2-7 complex), with RMSD value �2.22 Å (Figure S4) (Zhai et al., 2017a).

When compared to the active state of human MCM2-7 in the Cdc45/MCM2-7/GINS (CMG) complex and

the inactive state of MCM2-7 in yeast double hexamer, the corresponding RMSD values of structural align-

ments are 7.29 and 6.01 Å, indicating the conformational changes of human MCM2-7 in the process of

loading and activation (Figure S4). Additionally, the distance of the gap between Mcm2 and Mcm5 is

�10–15 Å, which is similar to the gap observed in yeast Cdt1/MCM2-7 complex.

Structure of the endogenous human hexameric MCM2-7 complex

The six homologous subunits making up MCM2-7 are very well conserved from yeast to human (Zhai et al.,

2017b). The MCM2-7 proteins are composed of two domains: (1) the N-terminal domain which comprises

Figure 2. Purification of human MCM2-7 complex

(A) Analysis of human MCM2-7 complex by SDS-PAGE.

(B) MCM2-7 was grafixed and analyzed by native gel. DH, MCM2-7 double hexamer. SH, MCM2-7 single hexamer.

(C) Negative staining of MCM2-7 complex. The Fraction 6 in (B) was collected for negative staining test and the DH and SH

are shown in red and blue circle, respectively.
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N-terminal extension (NTE), N-terminal domain A (NTD-A), oligonucleotide-binding fold (OB), and zinc

finger (ZF) contributing to assembly and DNA binding and (2) the C-terminal domain containing the highly

conserved AAA + ATPase domain (CTD) and C-terminal extension (CTE) which is composed of wing helix

domain (WHD) (Figure 4A). The length of NTE varies among the six subunits. The NTEs of Mcm2 andMcm4

include 191 and 163 amino acids, most of which are not visible in our structure indicating these regions are

flexible (Figure 4B). Although the length of NTE in other four subunits is less than 25 amino acids, several

residues of these regions can be observed except Mcm5. The NTD-A, OB, and ZF of each subunit are well

resolved except Mcm5 (Figures 4B and S5A). The N-terminal domain of Mcm5 is not well resolved possibly

due to its high flexibility as one of the gate-forming subunits. As shown in Figure 4, the CTD of all six sub-

units are well resolved based on the excellent quality of the map (Figures 4B and S5B). A domain-swapped

helix in each CTD tethers eachMCM to its neighboring subunit (Figure S5C). In addition to CTD, eachMCM

subunit contains a CTE composed of a WHD. However, only the WHDs of Mcm2, Mcm5, and Mcm6 were

well resolved in electron density map and could bemodeled (Figure 3B). TheWHD of Mcm5 could be iden-

tified and deposited in central channel of MCM2-7 and the WHD of Mcm6 sits on the rim of CTD (Fig-

ure S5D) which is involved in the binding to Cdt1 from our previous NMR structure studies (Liu et al.,

2012; Wei et al., 2010).

The double hexamer of endogenous human MCM2-7 complex

Surprisingly, in addition to the expected fully assembled human MCM2-7 single hexamer, we found an

additional complex which was a MCM2-7 double hexamer (DH) with a �30% of population. As shown in

Figure 5A, particles containing four layers, corresponding to DH, have been observed in the 2D class av-

erages of cryo-EM data. The raw image data of DH particles allowed a 3D EM reconstruction at 16 Å res-

olution (Figures S2 and S3). The 3Dmap reveals that theMCM2-7 DH has an approximately cylindrical struc-

ture with 260 Å long and 150 Å wide (Figure S6). The two hexamers slightly tilt from the cylindrical axis

similar to the observation in EM structure of yeast DH (Figure 5B). Interestingly, the DH displays C1 sym-

metry in our model, while the yeast DH shows C2 symmetry. However, the quality and resolution of the

map did not permit us to build a model at atomic resolution of the DH of MCM2-7. Specifically, the EM im-

ages revealed that the DHs did not further interact to form higher-order oligomers indicating the existence

SH-DH equilibrium of MCM2-7 in solution. Interestingly, the sparse electron density of inter-hexamer inter-

face indicated that the head-to-head stacking is weaker than that in the yeast DH loaded onto DNA, as the

length of human DH is�45 Å longer than that of yeast DH (Figure S6). This result further demonstrated that

Figure 3. Overall structure of the human MCM2-7 single hexamer

(A–C) The cryo-EM map of the MCM2-7 single hexamer shown in surface representation, with subunits color-coded as

indicated by the labels. Shown are the top, side, and bottom views (A–C).

(D–F) The atomic model of human MCM2-7 single hexamer shown in cartoon mode. Mcm2 blue, Mcm3 yellow, Mcm4

purple, Mcm5 red, Mcm6 green, and Mcm7 cyan.
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DH of human MC2-7 observed in this study is potentially a transient state of the SH which may be a relative

stable form in vivo.

DISCUSSION

Here, we reported the cryo-EM structure of endogenous human MCM2-7 single hexamer at an atomic res-

olution. This structure indicates that the endogenous human MCM2-7 single hexamer is almost identical to

that of yeast MCM2-7 in complex with Cdt1 (Zhai et al., 2017a), typically an open-ring hexamer with a gap

between Mcm2 and Mcm5 (all atom RMSD � 2.22 Å based on structural alignment, Figure S4).

Until recently, four complexes, the Cdt1/MCM2-7 (CM) heptamer (7.1 Å) (Zhai et al., 2017a), the ORC/Cdc6/

Cdt1/MCM2-7 (OCCM) intermediate (3.9 Å) (Yuan et al., 2017), the MCM2-7 double hexamer (MCM-DH)

(3.8 Å) (Li et al., 2015), and the MCM2-7/ORC (MO) intermediate (4.4 Å) (Miller et al., 2019), representing

prominent stages of DNA replication in yeast, have been structurally characterized by cryo-EM at high res-

olution. The conformations of MCM2-7 in these complexes are different, revealing the distinct functional

states (Riera et al., 2017; Zhai et al., 2017b). Comparing with MCM2-7 in these yeast complexes, no changes

are observed in structural core/fold of eachMCM subunit in our humanMCM2-7 complex (Figure S7). How-

ever, the NTDs of human MCM2-7 SH in our study are not well resolved due to the high flexibility in com-

parison with the NTDs in the yeast Cdt1/MCM2-7 (CM) heptamer (Figures S7 and S8), indicating the NTDs

of Mcm2, Mcm4, and Mcm6 are stabilized through the interaction with Cdt1 in the yeast Cdt1/MCM2-7

(CM) heptamer (Zhai et al., 2017a). Especially, the NTD of human Mcm5 is poorly resolved and almost

non-discernible potentially due to the lack of other components for stabilizing the conformation (Figure S8).

Although there are no direct interactions between Mcm5 and Cdt1 in the yeast Cdt1/MCM2-7 (CM)

Figure 4. The conformation of each MCM2-7 subunit

(A) Schematic illustration of domain organization and subunit-specific features of MCM2-7 subunits. NTE, N-terminal

extension; NTD-A, N-terminal domain A; OB, oligonucleotide-binding fold; ZF, zinc finger; CTD, C-terminal domain; CTE,

C-terminal extension which contains the WHD, wing helix domain.

(B) Individual MCM subunits.
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heptamer, the network of interactions induced by Cdt1 potentially plays a major role in stabilization of the

NTD of Mcm5 (Figure S8).

The previous biochemical experiments have shown the important role of the CTE of MCM subunits in pre-

RC formation (Fernandez-Cid et al., 2013; Frigola et al., 2013). In this structure, the CTEs of human Mcm5

and Mcm6 are well resolved. The CTE of Mcm5 occludes in the central channel in which other subunits fix

the position of CTE making it visible. In the previous study, the CTE of Mcm6 shows to interact with Cdt1

(Liu et al., 2012; Wei et al., 2010) and displays an auto-inhibitory function preventing MCM2-7 interaction

with ORC-Cdc6 in the absence of Cdt1 (Fernandez-Cid et al., 2013). Although no interaction between

CTE of Mcm6 and Cdt1 is observed in the yeast Cdt1-MCM2-7 (CM) (Zhai et al., 2017a), the CTE of

Mcm6 is observable in our human MCM2-7 indicating potentially an unknown functional state. Further-

more, in order to visualize the differences of the human MCM2-7 single hexamer in apo form and CMG,

a structural alignment was performed separately for the CTDs and NTDs of each MCM subunit

(Figures S9 and S10 and Videos S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, and S12). This analysis revealed

that the NTDs and CTDs of MCM2-7 hexamer in the CMG twisted in the same direction in comparison with

the ones in the single hexamer reported here.

Until now, only two human MCM2-7 structures at an atomic level are reported, human MCM2-7 single hex-

amer (termed apo form in this work) and Cdc45/MCM2-7/GINS complex (CMG) (Rzechorzek et al., 2020).

Because of the highly structural similarity between the human and yeast MCM2-7 single hexamer, poten-

tially the conformational changes and functional states of MCM2-7 in different stages of DNA replication

are similar and conserved from yeast to human.

The previous studies by EMmethod showed that MCM2-7 appears to exist as a mixture of open and closed

rings (Costa et al., 2011; Frigola et al., 2017) and only closed rings were detected after the treatment of

ATPgS (Frigola et al., 2017). Although it was reported that the interaction of yeast MCM2-7 with ATPgS pro-

motes closure of Mcm2-Mcm5 gate and subsequently Cdt1 stabilizes the Mcm2-Mcm5 gate, only the open

ring form of human MCM2-7 is observed after treatment of ATPgS in the absence of Cdt1 (Figure 3).

Recently, it was reported that the MCM-binding protein (MCMBP) binds to Mcm3 through its N-terminal

domain, which results in promoting the assembly of MCM2-7 complex in human cells (Saito et al., 2022).

Figure 5. The double hexamer exists with single hexamer

(A) 2D class averages of cryo-EM data. The red arrows indicate the four layers in DH.

(B) The left panel is cryo-EM map of human double hexamer, the right panel is the map fit with human single hexamer,

produced by Chimera, with subunits color-coded as indicated by the labels.
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However, we did not observe both MCMBP and Cdt1 during the preparation of MCM2-7 complex, indi-

cating that the MCM2-7 hexamer is very stable once the six subunits assembled together.

Strikingly, our EM analysis reveals an MCM-DH structure with 16 Å resolution (Figure 4) indicating the hu-

man MCM2-7 hexamer may self-associate to form a double hexamer in solution. Interestingly, it is reminis-

cent of the Archaeal MCM proteins which form a tight double hexamer without loading in comparison with

the yeast MCM proteins (Kelman et al., 2020). By docking the cryo-EM structure of the humanMCM2-7 hex-

amer solved here into the DH density, we found the self-associated DH is not compact in comparison with

the yeast DH loaded onto DNA (Abid Ali et al., 2017; Li et al., 2015) indicating a weaker interaction at the

inter-hexamer interface (Figure 4). Currently, there are three different models that have been proposed for

description of MCM2-7 loading onto the replication origin based on the biochemical and structural studies

(Kyei Barffour and Acheampong, 2021). In each model, the MCM2-7 complex is loaded onto DNA through

the cooperation with ORC, Cdc6, and Cdt1 in a single hexameric form. The self-assembly of human

MCM2-7 observed here could then be recruited by a single ORC complex, revealing a potential different

model for the initiation of DNA replication.

Limitations of the study

In this study, we determined the high-resolution cryo-EM structure of humanMCM2-7 SH and revealed that

the endogenous human MCM2-7 can self-associate to form a well-defined hexameric structure and a loose

double hexamer (DH). However, the resolution of human MCM2-7 DH reported here was not sufficient to

provide detailed packing interactions of the two human MCM2-7 complexes, which is important for under-

standing the mechanism of the self-assembly of human MCM2-7 complex.
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Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Guang Zhu (gzhu@ust.hk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data: The cryo-EMmap and structure coordinates of the single MCM2-7 hexamer produced in this study

have been deposited at EMDB (https://www.emdataresource.org/) and PDB (https://www.rcsb.org/)

with the accession codes of EMD-32326 and 7W68, respectively.

d Code: This paper does not report original code.

d Additional information: Any additional information required to reanalyze the data reported in this paper

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

293T cells were maintained in DMEM media with 1% penicillin-streptomycin and 10% fetal bovine serum

(Life Technologies) and cultured in a humidified incubator at 37�C with 5% CO2. HEK293T Mcm4-

2xStrepII cells were maintained in Union293 media (Union-biotech) and shaken at 120 rpm in a humidified

orbital shaker at 37�C with 8% CO2.

METHOD DETAILS

Generation of stable cell line expressing Mcm4-2xStrepII

The Twin-Strep-Tag II (2xStrepII, WSHPQFEKGGGSGGGSGGSAWSHPQFEK) was knocked into the

C-terminus of Mcm4 by using CRISPR-Cas9 technique. Briefly, sgRNA was designed to target 55-bp-region

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The single MCM2-7 hexamer This paper EMDV: EMD-32326 PDB: 7W68

Experimental models: Cell lines

HEK293T Mcm4-2xStrepII This paper N/A

Software and algorithms

MotionCorr2 Li et al. (2013) https://emcore.ucsf.edu/ucsf-software

CTFFIND4 Rohou and Grigorieff (2015) http://grigoriefflab.janelia.org/ctf

Gautomatch https://www.mrc-lmb.cam.ac.uk/kzhang/Gautomatch/.

RELION 3.0.8 Zivanov et al. (2018) https://www3.mrc-lmb.cam.ac.uk/relion//index.php/Main_Page

deepEMhancer Sanchez-Garcia et al. (2021) https://github.com/rsanchezgarc/deepEMhancer

ResMap Kucukelbir et al. (2014) http://resmap.sourceforge.net

RosettaCM Song et al. (2013) https://www.rosettacommons.org/docs/latest/application_documentation/

structure_prediction/RosettaCM

COOT Emsley et al. (2010) https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/

PHENIX Adams et al. (2010) http://www.phenix-online.org

Chimera UCSF Pettersen et al. (2004) https://www.cgl.ucsf.edu/chimera/

ChimeraX Goddard et al. (2018) https://www.cgl.ucsf.edu/chimerax/
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immediate after the stop codon of Mcm4. In the template donor plasmid, the C-terminus of Mcm4 was in-

framed fused with mVenus and 2xStrepII. The sgRNA-targeted sequence (55 bp) was deleted from the tem-

plate donor plasmid. The sgRNA together with the template donor plasmid were co-transfected into 293T

cells by using Lipofectamine 3000 (ThermoFisher). One day after transfection, 293T cells were diluted into

96-well plate at the density of 0.5 cell/well. Two weeks later, the mVenus-positive colonies were selected.

The insertion of mVenus and 2xStrepII sequences was verified by PCR and sequencing. Finally, one Mcm4-

2xStrepII stable cell line was chosen for MCM2-7 complex purification.

Purification of Mcm4-2xStrepII

The Mcm4-2xStrepII stable cell line was adapted to suspension culture. One-liter stable cell culture was

centrifuged, collected, lysed and sonicated with 50 mL lysis buffer (Tris 10 mM pH7.4, 150 mM NaCl,

5 mM MgCl2, 0.25% Triton X-100, and protease and phosphatase inhibitors). The resultant cell lysate

was treated with Benzonase and incubated with Strep-Tactin Superflow resin. After washing with lysis

buffer, the protein was eluted with 30 mM biotin. The final purified proteins range from 200 to 300 mg

per liter culture. ATPgS was added in the buffer during the preparation for negative staining and cryo-EM.

Negative staining

MCM2-7 sample was diluted to 0.01 mg/mL with PBS. Aliquot of 7 mL was applied to glow-discharged car-

bon-coated copper grids. After incubation for 1 min, excess sample solution was removed by filter paper.

The grid was stained with 7 mL 2% uranyl acetate for 30 s for 3 times. The stained grid was examined using an

FEI Tecnai T20 electron microscope operated at 120 kV.

Gradient fixation

The concentrated sample then applied to the top of a 20–40% glycerol gradient in buffer (20 mM HEPES,

pH 7.5, 150 mM NaCl), which contains 0.3% glutaraldehyde in the denser solution. The gradients were

centrifuged in a TLS-55 rotor (Beckman Optima TLX ultracentrifuge) at 250,000g for 5 h. The fractions

were collected and the fixation reactions were stopped by 50 mM Tris at the terminal concentration.

Grids preparation and data collection

To prepare cryo-EM grids, the glycerol was removed by buffer exchange through centrifugation with

20 mM HEPES at pH 7.5 and 150 mM NaCl. Aliquots of 3 mL sample at concentration of 0.3 mg/mL were

applied to glow discharged holey carbon grids (Quantifoil, Cu 200 mesh, R2/2). The grids were blotted

for 2.5 s in 100% humidity at 8�C and were then immediately plunged into liquid ethane by using a Vitrobot

Mark IV (Thermo Fisher). The grids were examined on a Titan Krios microscope G3i (Thermo Fisher) oper-

ated at 300 kV equipped with Gatan BioQuantum energy filter and K3 direct electron detector (Gatan). Mi-

crographs were collected in electron counting mode, at a nominal magnification of 1,050,00x, which

yielded a pixel size of 1.06 Å at objective scale. Defocus values were set in a range from �1.5 to �2.5 mm.

Image processing

The original image stacks for drift and beam-induced motion at the micrograph level were corrected by

using MotionCorr2 (Li et al., 2013). Contrast-transfer-function parameters were estimated with

CTFFIND4 (Rohou and Grigorieff, 2015). Particles were automatically selected using the Gautomatch pro-

gram (http://www.mrc-lmb.cam.ac.uk/kzhang/). Particles extraction, 2D and 3D classification and refine-

ment were done with RELION 3.0.8 (Zivanov et al., 2018). A total of 1,261,069 raw particles (with a binning

factor of four) from 12,196 micrographs were subjected to reference-free 2D classification. After the 2D-

classification-based particle screening, 1,135,993 particles were subjected to 3D classification. It shown

that 30% was double hexamer, and 70% was single hexamer. For single hexamer, the reference for 3D clas-

sification was converted from the MCM2-7 model (PDB 5XF8) and filtered to 60 Å. After 3D classification,

four out of nine models were selected to produce the multi-reference models to perform 3D classification

and the models were not filtered. Subsequently, the most reasonable model was selected to perform 3D

classification further. Finally, 186,918 particles were assigned to the hexamer complex. These particles were

then subjected to reference-based refinement. The maps were further processed with the post-processing

options of RELION with a negative B-factor of 104 Å2, and the modulation transfer function of the detector

was also corrected. The final resolutions of the hexamer complex were 4.4 Å (gold-standard FSC 0.143

criteria). The map for model building was further processed by deepEMhancer (Sanchez-Garcia et al.,

2021). For double hexamer, the reference for 3D classification was converted from the map (EMD_6338)
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and filtered to 60 Å. Finally, 68,909 particles were subjected to reference-based refinement. Subsequent

post-processing, the final resolution of double hexamer was 16 Å. Local resolution variations were esti-

mated using ResMap (Kucukelbir et al., 2014).

Model building

The MCM2-7 in Saccharomyces cerevisiae Cdt1/MCM2–7 structure (PDB 5XF8) was used for homologous

modeling through the SWISS-MODEL server (Bertoni et al., 2017). The generated models were initially

fitted into the human MCM2-7 density map using UCSF Chimera (Pettersen et al., 2004), respectively. After

that, the fitted model was rebuilt using RosettaCM (Song Y, 2013) and the best output model was selected

according to the energy and fitness of the model to the EM density map. To build the density map

completely, Chimera UCSF was used to select and save the C terminal domain of Mcm2 (aa857 - 904)

and Mcm6 (aa719 – 770) from the human CMG model (PDB 6XTX), then these domains were merged

into the corresponding monomers by COOT (Emsley P, 2010). The merged model was rebuilt by

RosettaCM. Finally, the generated model was selected and refined by the PHENIX cryoEM Real-space

Refinement tool (Adams et al., 2010), with rotamer restraints, Ramachandran plot restraints enabled. The

superposition of models and RMSD values were calculated by COOT and figures were prepared using

Chimera UCSF (Pettersen et al., 2004) and ChimeraX (Goddard et al., 2018). Statistics for data collection,

processing and refinement are reported in Table S1.

QUANTIFICATION AND STATISTICAL ANALYSIS

This study does not include quantification or statistical analysis.
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