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Identifying cancer-related miRNAs (or microRNAs) that precisely target mRNAs is
important for diagnosis and treatment of cancer. Creating novel methods to identify
candidate miRNAs becomes an imminent Frontier of researches in the field. One major
obstacle lies in the integration of the state-of-the-art databases. Here, we introduce a novel
method, MIMRDA, which incorporates the miRNA and mRNA expression profiles for
predicting miRNA-disease associations to identify key miRNAs. As a proof-of-principle
study, we use the MIMRDA method to analyze TCGA datasets of 20 types (BLCA, BRCA,
CESE, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PAAD,
PRAD, READ, SKCM, STAD, THCA and UCEC) of cancer, which identified hundreds of
top-ranked miRNAs. Some (as Category 1) of them are endorsed by public databases
including TCGA, miRTarBase, miR2Disease, HMDD, MISIM, ncDR and mTD; others (as
Category 2) are supported by literature evidences. miR-21 (representing Category 1) and
miR-1258 (representing Category 2) display the excellent characteristics of biomarkers in
multi-dimensional assessments focusing on the function similarity analysis, overall survival
analysis, and anti-cancer drugs’ sensitivity or resistance analysis. We compare the
performance of the MIMRDA method over the Limma and SPIA packages, and
estimate the accuracy of the MIMRDA method in classifying top-ranked miRNAs via
the Random Forest simulation test. Our results indicate the superiority and effectiveness of
the MIMRDA method, and recommend some top-ranked key miRNAs be potential
biomarkers that warrant experimental validations.
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INTRODUCTION

Cancer-related microRNAs (miRNAs) targeting mRNAs affect
cell differentiation, proliferation, migration and apoptosis,
leading to initiation or prevention of cancer (Evan and
Vousden 2001; Bartel 2004; Esquela-Kerscher and Slack 2006).
Identifying cancer-related miRNAs to be biomarkers roots in the
promising diagnosis and treatment of cancer (Rupaimoole and
Slack, 2017; Chen et al., 2019; Zhao, Chen, and Yin 2019).
Methods and databases have been developed over decades,
including but not limited to miRGen (Megraw et al., 2007),
miR2Disease (Jiang, et al., 2009), MiRCancer (Xie et al., 2013),
HMDD (Li L. et al., 2014), HMDD 3.0 (Huang, et al., 2019),
miRWalk (Dweep and Gretz 2015), dbDEMC (Yang et al., 2017),
ncDR (Dai et al., 2017), mTD (Chen et al., 2017a), MISIM (Li
et al., 2019), miRbase (Kozomara et al., 2019), DBMDA (Zheng
et al., 2020) and miRTarBase (Huang et al., 2020). Creating novel
methods to identify candidate miRNAs has become an imminent
Frontier of researches in the field.

There are two approaches: the complex network-based
methods and the machine learning-based methods (Chen,
et al., 2019). The former approach relies on the complex
network that integrated miRNA similarity network, disease
similarity network and known miRNA-disease relationship
network to predict miRNA-disease connections (Jiang et al.,
2010). This family includes WBSMDA (Chen et al., 2016a),
RWRMDA (Chen et al., 2012), HGIMDA (Chen et al., 2016b)
and PBMDA (You et al., 2017). These methods constructed local
networks of the miRNA and disease similarity to infer global
networks; but the prediction with limited information is of poor
quality. The hypergeometric distribution or binomial distribution
was fundamentally assumed in most methods, similar to that of
the Limma package (Ritchie et al., 2015) and the SPIA package
(Tarca et al., 2009). The latter approach applies machine learning
(supervised or semi-supervised) techniques to predict miRNA-
disease connections. Some examples are the SVM classifier (Xu
et al., 2011), HDMP (Xuan et al., 2013), RLSMDA (Chen and Yan
2014), RBMMDA (Chen et al., 2015), MCMDA (Li C. et al., 2017)
and RKNNMDA (Chen et al., 2017b). These methods performed
better in some cases. Yet, the need for fine-tuning parameters
inevitably hinders applications in complex biological systems.

Three works pioneered a new direction through incorporating
the miRNA and mRNA expression profiles. One was to construct
a relationship network between miRNAs and their target mRNAs
(disease-genes) by utilizing the limited miRNA and mRNA
expression profiles (Xu et al., 2014). Another was to construct
a subnetwork between the disease similarity and the miRNA
similarity derived from multiple data-sources (Liu et al., 2017).
The third was to construct an mRNA-miRNA-lncRNA network
prognostic for triple-negative breast cancer (Huang et al., 2021).
However, problems remain challenging due to insufficient
relationships between miRNAs and mRNAs (disease-genes) in
databases.

The major gap in the field is how to integrate sophisticated
databases to identify key miRNAs associated with diseases. This
article introduces a novel method, MIMRDA, which incorporates
the miRNA and mRNA expression profiles for predicting

miRNA-disease associations to identify key miRNAs. As a
proof-of-principle study, we use the MIMRDA method to
analyze TCGA datasets of 20 types of cancer (comprising
10,449 samples), followed by functional cross-verification
through utilizing multiple sophisticated databases including
miR2Disease (Jiang, et al., 2009), HMDD 3.0 (Huang, et al.,
2019), ncDR (Dai et al., 2017), mTD (Chen et al., 2017a), MISIM
2.0 (Li et al., 2019) and miRTarBase (Huang et al., 2020). We
evaluate the superiority of the MIMRDA method to the Limma
and SPIA packages (Tarca et al., 2009; Ritchie et al., 2015). We
estimate the accuracy of the MIMRDAmethod in classifying top-
ranked miRNAs via the Random Forest simulation test. We
discuss some top-ranked key miRNAs with experimental
evidences drawn from literature, suggesting their potential to
be biomarkers for clinical applications.

MATERIALS AND METHODS

Design and Implementation of the MIMRDA
Method
The miRNA-disease association prediction method (MIMRDA)
incorporated the expression profiles of both miRNAs and
mRNAs to identify key miRNAs. The demo R code was freely
available at https://github.com/eshinesimida/MIMRDA. The
datasets from TCGA (https://portal.gdc.cancer.gov/) and
miRTarBase (Huang et al., 2020) were used as starting-points,
followed by multiple steps for predicting and verifying the key
miRNAs that were significantly related to at least one type of
cancer (Figure 1, top-box). Key miRNAs were predicted at the
significance level of global probability PG, for which the
Differentially Expressed miRNAs (DE_miRNAs) and their
target mRNAs (DE_mRNAs) were essentially measured
(Figure 1, bottom-box). The sequential procedures were
outlined below.

Firstly, we counted the total number of DE_mRNAs (N) that
were identified from a TCGA dataset by using the Limma package
(Ritchie et al., 2015) at the significance level of BH-adj. Pval
<0.01. Secondly, we estimated the probability PmiRNA based on
DE_miRNAs in the TCGA dataset by using the Limma package
(Ritchie et al., 2015) at the significance level of BH-adj. Pval
<0.01. Thirdly, we extracted the miRNAs and their target
mRNAs, whose associations had been experimentally pre-
validated in the miRTarBase database (Chou et al., 2018;
Huang et al., 2020), while counting the total number of
mRNAs (M) and the total number of DE_mRNAs (k), as well
as the number of DE_mRNAs (m) that were precisely targeted by
the ith miRNA (i being the current step in the iteration) from the
miRTarBase database. Fourthly, we estimated the probability
PNDE_miRNA with an over-representation analysis (ORA) via the
SPIA package (Tarca et al., 2009), assuming that the number of
DE_miRNAs (that precisely targeted DE_mRNAs) followed a
hypergeometric distribution with three parameters (N,M and k).
These parameters included the total number of DE_mRNAs (N)
observed in a given TCGA dataset, the total number of mRNAs
(M) plus the number of DE_mRNAs (k) observed in the
miRTarBase database, and the number of mRNAs (m) that
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FIGURE 1 | Workflow of the MIMRDA method. Multiple steps for predicting and verifying key miRNAs (top-box). Sequential procedures for calculating a global
probability PG value (bottom-box). The probability PmiRNA is estimated by using the Limma package for DE_miRNAs from a TCGA dataset. The probability PNDE_miRNA is
estimated with the formula, which incorporates the expression profiles of miRNAs and their target mRNAs from both TCGA dataset and miRTarBase database. The
global probabilityPG is adjusted by the Fisher’s product of PNDE_miRNA andPmiRNA. Symbols: Total number of DE_mRNAs (N) present in a given TCGAdataset; Total
number of mRNAs (M) and the number of DE_mRNAs (k), as well as the number of mRNAs (m) that are precisely targeted by the ith miRNA (i being the current step in the
iteration) present in the miRTarBase database. See the main text for details.
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were precisely targeted by the ith miRNA (i being the current step
in the iteration) observed in the miRTarBase database.
Statistically, the probability PNDE_miRNA value represented the
probability of observing the DE_miRNAs for a given number of
times or higher, just by chance. Finally, we generated the global
probability (PG) by adjusting the Fisher’s product of PNDE_miRNA

and PmiRNA. The global probability PG value was used not only to
rank DE_miRNAs, but also to choose a desired level of type I
error. Small PG values could occur by chance when multiple
testing were simultaneously performed. The FDR-adjusted PG
value was used for controlling the false discovery rate (FDR).

Case Studies: Evaluating the MIMRDA
Method
As a proof-of-principle study, we employed the MIMRDA
method to analyze TCGA datasets of 20 types of cancer,
comprising 10,499 samples (Table 1). The miRNAs and
mRNAs expression profiles along with clinical information
were downloaded at the TCGA data portal (https://portal.gdc.
cancer.gov/) (as of April 30, 2020). The Limma package (Ritchie
et al., 2015) was deployed to extract differentially expressed
mRNAs (DE_mRNAs) and miRNAs (DE_miRNAs),
respectively, from each dataset. The Benjamini–Hochberg
adjusted p-value (BH-adj.p-value) < 0.01 was used to select
significantly, differentially expressed entities (DE_mRNAs and
DE_miRNAs).

Cross-Verification of key miRNAs Against
the miRNA-Disease Association Databases
(miR2Disease and HMDD)
The miR2Disease database (http://www.miR2Disease.org) was
manually curated, containing miRNAs related to human diseases
(Jiang, et al., 2009). Each entry contained information about the

miRNA-disease association, including miRNA ID, disease name,
brief description of the relationship, miRNA expression pattern,
miRNA expression detection method, target genes that were
experimentally pre-verified in literature. This database currently
comprised 3,273 entries, involving 349 miRNAs related to 163
human diseases (as of April 30, 2021). The HMDD 3.0 database
(Huang, et al., 2019) currently contained 5,430 types of relationship
between 495 miRNAs and 383 diseases (as of April 30, 2021), which
was employed to infer the miRNA-disease associations. The
miRNA-disease pairs were downloaded (as of April 30, 2021) at
http://www.cuilab.cn/hmdd for analysis.

Cross-Verification of key miRNAs Against
the Function Similarity Database (MISIM)
The MISIM 2.0 database (http://www.lirmed.com/misim/) (Li
et al., 2019) integrated the co-expression similarity, GO
function similarity and disease similarity. It was applied to
manifest the functional similarity of miRNAs as a tool for
the miRNA function analysis (Wang et al., 2010). We
deployed the known miRNA-disease interactions to
evaluate the functional similarity of miRNAs because
miRNAs with similar functions should tentatively associate
with similar diseases (Chen D. et al., 2018; Che et al., 2019;
Zheng et al., 2020).

Cross-Verification of key miRNAs via the
Kaplan-Meier (KM) Survival Analysis Based
on TCGA Database
The Kaplan-Meier (KM) method (Saluja et al., 2019) was used to
evaluate the prognostic survival rate of key miRNAs. The median
values of miRNAs expression were calculated. miRNAs with
expression values higher than the median value were
considered to be highly expressed, and vice versa. The TCGA

TABLE 1 | Datasets of 20 types of cancer downloaded from TCGA.

Cancer Total Tumor Normal Details

BLCA 453 416 37 Bladder Urothelial Carcinoma
BRCA 1,282 1,120 162 Breast invasive carcinoma
CESE 317 309 8 Cervical squamous cell carcinoma
CHOL 71 51 20 Cholangiocarcinoma
COAD 570 477 93 Colon adenocarcinoma
ESCA 251 186 65 Esophageal carcinoma
HNSC 612 530 82 Head and Neck squamous cell carcinoma
KICH 190 113 71 Kidney Chromophobe
KIRC 985 543 442 Kidney renal clear cell carcinoma
KIRP 380 292 88 Kidney renal papillary cell carcinoma
LIHC 469 380 89 Liver hepatocellular carcinoma
LUAD 877 603 274 Lung adenocarcinoma
LUSC 765 511 254 Lung squamous cell carcinoma
PAAD 221 185 36 Pancreatic adenocarcinoma
PRAD 623 505 118 Prostate adenocarcinoma
READ 192 173 19 Rectum adenocarcinoma
SKCM 477 474 3 Skin Cutaneous Melanoma
STAD 544 443 101 Stomach adenocarcinoma
THCA 615 515 100 Thyroid carcinoma
UCEC 605 553 52 Uterine Corpus Endometrial Carcinoma
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database (with clinical information of patients) was employed to
screen the significantly, differentially expressed miRNAs
(DE_miRNAs) and determine whether such miRNAs were
related to the overall survival (OS). The hazard ratio (HR) and
p-value were estimated to evaluate the direct relationship between
miRNA and prognostic survival. A p-value < 0.05 was considered
statistically significant.

Cross-Verification of key miRNAs Against
the miRNA-Drug Association Databases
(ncDR and mTD)
An miRNA targeting mRNAs caused sensitivity or resistance to
anti-cancer drugs. We applied top-20 ranked miRNAs to search
against two databases, ncDR (Dai et al., 2017) and mTD (Chen
et al., 2017b), looking for candidate matches, thus predicted
possible resistance or sensitivity to anti-cancer drugs. These
two databases currently contained 5,661 and 3,669 miRNAs-
drugs interactions for all diseases (as of October 2021),
respectively, which provided information about the
dysfunctions of non-coding RNAs (ncRNAs), leading to
resistance or sensitivity to anti-cancer drugs.

Comparison on the Performance of the
MIMRDA Method Over Existing Methods
No similar methods was available for side-by-side comparisons.
We compared the number distribution of top-ranked miRNAs
identified by the MIMRDA method (PG), the Limma package
(PmiRNA) and the SPIA package (PNDE_miRNA), respectively, at the
significance level of adj. Pval <0.01 since the MIMRDA method
rooted in the usage of the Limma package (Ritchie et al., 2015)
and the SPIA package (Tarca et al., 2009) (see Figure 1). For
simplicity, we focused on comparing the number distribution of
top-100 ranked miRNAs obtained by these three methods from
each dataset of each type of cancer. The more the identified
disease-related miRNAs were flagged, the better the method
performed.

Evaluating the Performance of MIMRDA via
the Random Forest Simulation Test
To evaluate the accuracy of the MIMRDA method in
classifying top-ranked miRNAs, we employed a machine
learning method, i.e., the five-fold cross-validation Random
Forest (RF), for simulation test (Speiser et al., 2019). Samples
of each dataset from each type of cancer were divided (at a ratio
of 4:1) into the training and testing sets, respectively. The
five-fold cross-validation RF simulation generated a predicted
value. We obtained an AUC value by comparing the predicted
value with an actual value, and thus compared the MIMRDA
method top-ranked (top_5, top_10, top_15, top_20) miRNAs
with the randomly selected (random_5, random_10,
random_15, random_20) miRNAs, both after the RF
simulations. These processes were repeated 1,000 times in
order to get a set of AUC values. We then used the AUC-
based statistics analysis to evaluate the accuracy of the

MIMRDA method in classifying the top-ranked miRNAs.
The larger the AUC value was, the better the accuracy of
the method classified. The difference was considered
statistically significant at p-value < 0.001.

RESULTS

Identification of miRNAs and Their Target
mRNAs
The miRNAs and their target mRNAs were extracted from the
miRTarBase database (Huang et al., 2020) with the
experimentally pre-validated miRNA-target associations.
The number distribution of miRNAs and mRNAs,
respectively, indicates that the majority of miRNAs have
200–300 target mRNAs (Figure 2A), while the majority of
target mRNAs have 20–50 miRNAs (Figure 2B); Top-10
ranked miRNAs have more than 1,000 target mRNAs
(Figure 2C), while top-10 ranked target mRNAs have more
than 250 miRNAs (Figure 2D). These data suggest that such
diverse samples are appropriate for subsequent analysis.

Identification of the Differentially Expressed
miRNAs and mRNAs
We screened the differentially expressed miRNAs
(DE_miRNAs) and target mRNAs (DE_mRNAs) from each
dataset by using the Limma package (Ritchie et al., 2015) at the
significance level of BH-adj. Pval <0.01. The percentage
distribution of top-ranked (top-10, 20, 30, 40, 50) miRNAs
indicates that most miRNAs are significantly essential in
biology (Figure 3). Note that the percentage of top-ranked
miRNAs is a proportion of the top-ranked miRNAs out of the
total cancer-related miRNAs that were identified from the
given datasets of a cancer type. For instance, surveyed
against the HMDD database, we obtained the top-10 ranked
miRNAs from the BLCA datasets, of which only nine miRNAs
were identified to be truly associated with BLCA, thus yielding
a percentage of 90%. The percentage distribution of such top-
50 ranked miRNAs suggests an accuracy greater than 70% in
BLCA, BRCA, LIHC, LUAD, LUSC, PRAD and STAD
datasets, and an accuracy less than 40% in CHOL, KICH,
KIRP, PAAD, SKCM and THCA datasets. Similar surveys with
the top-10 ranked miRNAs suggest an accuracy greater than
60% in the majority of datasets. These data indicate the
effectiveness of the MIMRDA method in identifying key
miRNAs that were significantly, differentially expressed in
the datasets from 20 types of known cancer, suggesting that
they are closely related to the 20 types of known cancer (see
Table 1).

The Impacts of key miRNAs on Multiple
Types of Cancer
We extracted top-20 ranked miRNAs from each dataset and
searched them against the miRNA-disease association databases
(miR2Disease and HMDD) whose biological functions had been
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pre-verified clinically or experimentally. The results (Figure 4)
indicated that more than 50% of the top-20 ranked miRNAs were
related to 14 types of cancer (BLCA, BRCA, CESC, COAD, ESCA,
HNSC, LIHC, LUAD, LUSC, PRAD, STAD, THCA and UCEC),
despite that certain top-20 ranked miRNAs were not related to
any cancer type at all. We identified perfect matches (defined as
Category 1), including 1) 18 miRNAs were from BRCA, LIHC,
LUAD, LUSC and STAD; 2) 17, 16, 15, 14, 13, 12, 11, 11, 10
miRNAs separately were from BLCA, PRAD, UCEC, CESC,
COAD, THCA, ESCA, HNSC, READ; and 3) less than 10
miRNAs were from CHOL, KICH, KIRC, KIRP, PAAD and
SKCM. Strikingly, the MIMRDA method suggested that certain
top-20 ranked miRNAs (e.g., miR-1258 and miR-4686) were
related to cancer, but they were beyond (i.e., they were not
matched with) the current version of miR2Disease and
HMDD databases. We defined these candidate miRNAs as
Category 2, which warrant validations in future experiments.

Among the 198 miRNAs out of the top-20 ranked miRNAs
screened from the 20 types of cancer, 85 miRNAs were related to
multiple types of cancer whereas the rest 113 miRNAs were
related to one cancer type (Figure 4). Those key miRNAs related
to multiple types of cancer will be discussed (in Discussion) later
with accumulated experimental evidences drawn from literature.

Here, we highlight certain cases that were related to single type of
cancer. 1) Four (miR-148b, miR-185, miR-671 and miR-18a)
were related to BLCA, and ranked 5th, 7th, 9th and 14th,
respectively. 2) Five (miR-145, miR-125b01, miR-99a, miR-
6507 and miR-100) were related to BRCA, and ranked 8th,
15th, 16th, 17th and 20th, respectively. 3) One (miR-215) was
related to CESC, and ranked 6th. 4) Two (miR-218-1 and miR-
218-2) ranked 15th and 16th were related to CHOL. 5) Eight
(miR-74a, miR-6803, miR-6887, miR-6749, miR-542, miR-125a,
miR-6756 and miR-197) were related to COAD, and ranked 6th,
11th, 12th, 15th, 16th, 17th, 18th and 19th, respectively. 6) Three
(miR-30c-2, miR-30c-1 and miR-877) were related to ESCA, and
ranked 18th, 19th and 20th, respectively. 7) Four (miR-5089,
miR-4510, miR-503 and miR-195) were related to HNSC, and
ranked 3rd, 8th, 14th and 15th, respectively. 8) Seven (miR-135b,
miR-874, miR-130a, miR-124-2, miR-124-3, miR-3065 and miR-
22) were related to KICH, and ranked 4th, 6th, 8th, 12th, 17th,
18th and 19th, respectively. 9) Five (miR-2355, miR-584, miR-
362, miR-629 and miR-20) were related to KIRC, and ranked
11th, 13th, 14th, 17th and 20th, respectively. 10) Seven (miR-
216b, miR-4508, miR-891a, miR-489, miR-124-1, miR-377 and
miR-6863) were related to KIRP, and ranked 6th, 7th, 8th, 10th,
13th, 16th and 19th, respectively. 11) Two (miR-4686 and let-7c)

FIGURE 2 | The number distribution of miRNAs and their target mRNAs. (A) miRNAs (B) Target mRNAs (C) Top-10 ranked miRNAs. (D) Top-10 ranked target
mRNAs.
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were related to LIHC, and ranked 3rd and 9th, respectively. (xii)
Six (miR-7-1, let-7a-2, let-7a-1, let-7a-3, miR-4529 and miR-
310a) were related to LUAD, and ranked 8th, 12th, 14th, 15th,
18th and 19th, respectively. (xiii) Three (miR-205, miR-30d and
miR-944) were related to LUSC, and ranked 2nd, 3rd and 11th,
respectively. (xiv) Nine (miR-6788, miR-5196, miR-574, let-7d,
miR-346, miR-6726, miR-6849, miR-1224 and miR-766) were
related to READ, and ranked 2nd, 6th, 7th, 9th, 13th, 15th, 16th,
18th and 19th. (xv) One (miR-98) was related to STAD, and
ranked 13th. (xvi) Remarkably, no miRNAs was related to UCEC
at all. Taken together, these data suggest that the MIMRDA
method is effective in identifying key miRNAs from specific type
of cancer.

Verification of keymiRNAs via the Biological
Function Similarity Analysis
We applied MISIM 2.0 database to annotate the top-20 ranked
miRNAs from each dataset of the 20 types of cancer
(Figure 5). The findings revealed that the majority of top-
20 ranked miRNAs were annotated, including 19 in CHOL
and STAD; 18 in CESC, ESCA, KIRC, LUSC and PRAD; 17 in
BLCA, KICH, THCA and UCEC; 16 in KIRP, LIHC and
LUAD; 15 in BRCA and HNSC; and 14 in COAD and
READ. However, none of the top-20 ranked miRNAs was
annotated in PAAD and SKCM. Meanwhile, the function
similarity network of the top-20 ranked miRNAs indicated
that the majority of miRNAs were highly related to one
another in biological functions, as the red line represents
that the correlation coefficient is greater than 0.5
(Figure 5). For instance, the top-10 ranked miRNAs are

corresponding to the enriched biological functions (FDR
<0.05), which are mainly involved in cell cycle,
proliferation, inflammation, death and apoptosis
(Figure 5). And these functions have been experimentally
pre-verified to be closely associated with various types of
cancer (Evan and Vousden 2001; Taniguchi and Karin
2018). These results suggest that such key miRNAs possess
highly coupled linkages, which drive the essential biological
functions at the system-level, thereby enhancing their
potential of clinical applications.

Verification of key miRNAs via the
Kaplan-Meier (KM) Survival Analysis
The top-3 ranked miRNAs demonstrated drastic variations on
the survival of patients (Figure 6), which impacted the
prognostic survival of patients in BLCA, BRCA, CESC,
ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC,
PAAD, READ, STAD, THCA and UCEC. Two categories
have strongly functioned in a positive or negative manner,
respectively. 1) with strong POSITIVE impacts: miR-21 (HR
= 0.43, log_rank p = 0.0063 in KIRP; HR = 0.62, log_rank p =
0.0048 in BLCA); miR-92a (HR = 0.58, log_rank p = 2e-04 in
BLCA); miR-148b (HR = 0.63, log_rank p = 0.0043 in BLCA);
miR-182 (HR = 0.51, log_rank p = 0.0021 in UCEC); miR-206
(HR = 0.47, log_rank p = 1.4e-06 in KICH); miR-490 (HR =
0.34, log_rank p = 3.6e-10 in LIHC); miR-934 (HR = 0.37,
log_rank p = 2.1e-11 in KIRC);miR-1258 (HR = 0.44, log_rank
p = 2.6e-06 in LIHC);miR-4686 (HR = 0.35, log_rank p = 7.8e-
10 in LIHC); and miR-4709 (HR = 0.24, log_rank p = 0.0026 in
THCA). 2) with strong NEGATIVE impacts: miR-21 (HR =

FIGURE 3 | The percentage distribution of top-ranked miRNAs screened from the datasets of 20 types of cancer.
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1.63, log_rank p = 0.004 in BRCA; HR = 1.59, log_rank p =
0.0028 in LUAD); miR-92a (HR = 2.65, log_rank p = 0071 in
ESCA); miR-139 (HR = 1.80, log_rank p = 0.0021 in BRCA);

miR-200c (HR = 1.66, log_rank p = 0.0066 in KIRC); miR-221
(HR = 2.32, log_rank p = 3e-08 in KICH);miR-222 (HR = 2.09,
log_rank p = 1.4e-06 in KICH); miR-617 (HR = 2.27, log_rank

FIGURE 4 | Top-20 ranked miRNAs on the lists of priorities (squares in light red or red color) for 20 types of cancer when searched against the miR2Disease and
HMDD databases, respectively.
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p = 0.0018 in PADD); miR-3184 (HR = 2.27, log_rank p =
0.0018 in PADD); miR-3622a (HR = 1.82, log_rank p = 0.13 in
READ); miR-4678 (HR = 2.27, log_rank p = 0.0018 in PADD);

and miR-6788 (HR = 1.70, log_rank p = 0.18 in READ).
Remarkably, these key miRNAs have been pre-verified by
clinical information of patients in the TCGA database and

FIGURE 5 | Biological function similarity analysis of the top-20 ranked miRNAs.
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the miRNA-disease association databases (miR2Disease and
HMDD); some of them are in line with the accumulated
evidences drawn from literature as discussed (in Discussion)

later, which enhance their potential of clinical applications. To
our knowledge, most of them are uncovered for the first time,
thus deserving to be exploited through future experiments.

FIGURE 5 | (Continued).
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FIGURE 6 | The Kaplan-Meier survival analysis of top-3 ranked miRNAs extracted from the datasets of 20 types of cancer.
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FIGURE 6 | (Continued).
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Verification of key miRNAs via the Analysis
of Sensitivity or Resistance to Anti-Cancer
Drugs
We submitted the top-20 ranked miRNAs to ncDR and mTD,
respectively, searching for candidate matches. The results are
outlined (Figure 7) below. 1) 14, 9, 11, 7, 11, 7, 7, 9 miRNAs
impacted drug resistance or sensitivity in BRCA, COAD, LUAD,
LIHC, LUSC, PRAD, READ and STAD, respectively; 2) 5, 5, 3 and 3
miRNAs impacted drug sensitivity or resistance in BLCA, ESCA,
HNSC and PAAD, respectively; but 3) none of the miRNAs
impacted drug resistance or sensitivity in CESC, CHOL, KICH,

KIRC, SKCM, THCA and UCEC.We remind that a possible reason
for these fewermatches probably lies in that there are relatively fewer
records on these cases in the current version of two databases.

Our data suggest that the abnormal expression of key miRNAs
impacted the sensitivity or resistance to anti-cancer drugs; some
miRNAs promoted drug sensitivity whereas others increased drug
resistance (Figure 7).We highlighted certain cases as follows. 1) One
miRNA impacted a number of drugs, which produced different
sensitivity or resistance; and vice versa. It was reported that the
overexpression of miR-182 in breast cancer caused resistance to
Olaparib, Verapamil, Tamoxifen and Cisplatin, but increased
sensitivity to Doxorubicin (Kovalchuk et al., 2008). Here, we

FIGURE 7 | Sensitivity or resistance to anti-cancer drugs by the top-20 ranked miRNAs extracted from the TCGA datasets of 20 types of cancer.
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found more cases. All overexpressed miRNAs in bladder cancer
promoted resistance to Gemcitabine. Low expression of miR-129 in
colon cancer induced resistance to Oxaliplatin, but increased
sensitivity to 5-Fluorouracil. Overexpression of miR-193b in
esophageal cancer promoted resistance to 5-Fluorouracil, but
increased sensitivity to Cisplatin. Overexpression of miR-200c in
prostate cancer promoted sensitivity to Docetaxel, but increased
resistance to Cyclopamine and Paclitaxel. Overexpression of miR-7
in lung adenocarcinoma weakened resistance to 6 drugs.
Overexpression of miR-130, but low expression of miR-101,
promoted sensitivity; while low expression of miR-139, miR-133a,
miR-133b, but overexpression of miR-205, increased resistance to
Paciltaxel. Overexpression of most miRNAs in gastric cancer was
associated with drug sensitivity or resistance. Low expression ofmost

miRNAs in liver cancer was associated with sensitivity or resistance.
Low expression of miR-101 and miR-195 increased resistance to
Docetaxel, but overexpression of miR-21 promoted sensitivity to
Cisplatin in the cancer of head and neck. Low expression of miR-424
in pancreatic cancer promoted sensitivity to Gemcitabine, but
increased resistance to 5-Fluorouraci. 2) Strikingly, miR-21
appeared frequently in multiple datasets. Abnormal expression of
miR-21 impacted sensitivity or resistance to multiple drugs in
BRCA, BLCA, PRAD, LUAD, STAD, HNSC, LIHC and READ.
The mechanisms underlying these candidates remained elusive.
Collectively, these key miRNAs have complex impacts on the
above anti-cancer drugs, which not only illustrate their potential
roles in tumorigenesis, but also provide a new perspective for
precision medicine.

FIGURE 8 | The performance comparison of the MIMRDA method over other methods. (A) The number distribution of top-20 ranked cancer-related miRNAs. (B)
The survival analysis of miR-1258 in LIHC. (C) The survival analysis of miR-4686 in LIHC. (D) The performance comparison among the MIMRDAmethod (PG), the Limma
package (PmiRNA) and the SPIA package (PNDE_miRNA) based on the top-100 ranked miRNAs identified from the TCGA datasets of 20 types of cancer.
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Comparison on the Performance of the
MIMRDA Method Over Existing Methods
To illustrate the superiority of the MIMRDA method, we
compared the miRNAs that were identified by the
MIMRDA method, the Limma package (Ritchie et al., 2015)
and the SPIA package (Tarca et al., 2009), respectively. For
simplicity, we focused on the top-100 ranked miRNAs that
were extracted from each dataset of each type of cancer
(Figure 8). Note that since the classical approaches utilized
the known disease-related miRNAs to establish training sets to
prioritize miRNAs (Ritchie et al., 2015), it is impossible to use
those prioritization methods based on the expression values of
genes (or miRNAs), or an overall performance metrics. Hence,
we compared the number distribution of candidate miRNAs
(i.e., the known disease-related miRNAs). A method performs

better if more disease-related miRNAs are found. Obviously,
the MIMRDA method identified more miRNAs related to the
known types of cancer, which solidifies the superiority of the
MIMRDAmethod to the counterpart methods. Remarkably, as
representatives in the second category, who are not matched
with the aforementioned two databases, miR-1258 (Figure 8B)
and miR-4686 (Figure 8C) have shown perfect survival rates,
which warrant future experimental validations.

Evaluation on the Performance of the
MIMRDA Method via the Random Forest
Simulation Test
The five-fold cross-validation Random Forest simulation test (see
Materials and Methods) was applied to evaluate the accuracy of

FIGURE 9 | Evaluation on the performance of the MIMRDAmethod via the Random Forest simulation test. The top-ranked miRNAs identified by the MIMRDAmethod are
comparedwith the randomly selectedmiRNAs, both after the five-fold cross-validation Random Forest simulations. (A) Top_5 rankedmiRNAs vs random_5miRNAs. (B) Top_10
ranked miRNAs vs random_10 miRNAs. (C) Top_15 ranked miRNAs vs random_15 miRNAs. (D) Top_20 ranked miRNAs vs random_20 miRNAs. p-value < 0.001***.
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the MIMRDA method in classifying top-ranked miRNAs. The
results indicate that the MIMRDA method is significantly
(p-value < 0.001) better than the random selection in terms of
the overall AUC values (Figure 9), suggesting the effectiveness
and reliable ability of the MIMRDA method in classifying the
top-ranked miRNAs.

DISCUSSION

The proposed MIMRDA method identified hundreds of top-
ranked miRNAs from TCGA datasets of 20 types of cancer, and
recommended them warrant further validations. We employed
miR2Disease (Jiang, et al., 2009) and HMDD 3.0 (Huang, et al.,
2019) to infer the miRNA-disease associations based on the pre-
verified evidences. We deployed MISIM 2.0 (Li et al., 2019) to
infer the function similarity of key miRNAs based on the pre-
verified function similarities. We applied ncDR (Dai et al., 2017)
and mTD (Chen et al., 2017a) to infer the sensitivity or resistance
to anti-cancer drugs based on the pre-verified miRNAs-drug
associations. Such that our findings were cross-verified to one
another. We conclude that most of the top-ranked key miRNAs
are the cancer-related miRNAs deposited in miRTarBase (Huang
et al., 2020) and TCGA (https://portal.gdc.cancer.gov/) databases,
while some are supported by literature evidences. We highlight
some key miRNAs that are well supported by the accumulated
experimental evidences recaptured from literature, thus
highlighting their potential to be biomarkers, which should be
valuable to the community.

Firstly, the majority of top-ranked miRNAs (as Category 1,
e.g., miR-21) are endorsed by the pre-verified relationship of
miRNAs-cancer in the state-of-the-art databases (Figures 4–7),
suggesting that they are truly cancer-related miRNAs and have
high potentials to be biomarkers. Here are some examples
highlighted with the experimental evidences drawn from
literature. 1) miR-16 inhibited the proliferation and migration
of gastric cancer cells by targeting SALL4 (Jiang andWang 2018).
2)miR-21 was up-regulated in gastric cancer, and its dysfunction
had a critical role in gastric cancer growth and dissemination by
regulating PTEN and PDCD4, plus by modulating the pathways
involved in mediating cell growth, migration, invasion and
apoptosis (Li Y. et al., 2014). miR-21 and miR-155 promoted
the development of non-small cells by down-regulating SOCS1,
SOCS6 and PTEN (Xue et al., 2016). miR-21 significantly
reduced or increased epithelial-mesenchymal transition (Dai
et al., 2019). Overexpression of miR-21 in non-small cell lung
cancer up-regulated the expression of cyclin D1 and cyclin E1,
respectively (Dai et al., 2019). 3)miR-34a was overexpressed and
used as a potential target for thyroid cancer (Shabani et al., 2018).
4)miR-182 targeted CTTN in non-small cell carcinoma to inhibit
the formation of aggressive pseudopodia in lung cancer,
inhibiting the metastasis of lung cancer (Li et al., 2018). 5)
miR-192-5p was down-regulated in gastric cancer, as a
potential diagnostic target (Tavakolian et al., 2020). 6) miR-
210 promoted the development of lung cancer by targeting LOXL
since down-regulation of LOXL4 significantly inhibited the
proliferation, migration and invasion of lung cancer cells in

A549 and H1650 cell lines (Xie et al., 2019). 7) miR-335
exhibited a tumor suppressor effect by inhibiting Twsit1 in
colorectal cancer (Wang et al., 2017), whereas miR-3065-3p
promoted stemness and metastasis by targeting CRLF1 in
colorectal cancer (Li et al., 2021). 8) miR-490-5p was related
to tumor size, tumor metastasis stage and survival rate of HCC
patients because miR-490-5p inhibited HCC cell metastasis by
regulating E2F2 and ECT2 (Fang et al., 2018). Therefore, such
experimental evidences in literature are in line with our findings
of some top-ranked key miRNAs.

Secondly, some top-ranked key miRNAs (as Category 2, e.g.,
miR-1258) are not matched with the above databases, but they
were well supported by the experimental evidences drawn from
literature. For instance, among the top-20 ranked miRNAs, two
(miR-1258 and miR-4686) were not matched with miR2Disease
and HMDD, respectively, despite that the rest 18 related to LIHC
did match. However, we found that miR-1258 and miR-4686
were down-regulated in tumor samples when comparing 375
samples of liver cancer with 50 normal samples (data not shown).
We performed the KM survival analysis of miR-1258 and miR-
4686 (Figures 7B,C), respectively, based on the miRNA
expression profiles in 375 samples of primary liver cancer
alongside clinical information from TCGA database, and
found the significant (p-value < 0.001) survival. Our data
suggest that miR-1258 and miR-4686 are likely the potential
prognosis factors in LIHC. In fact, miR-1258 was reported
significantly down-regulated in liver cancer samples that
closely related to the poor survival of patients (Hu et al.,
2016), which is consistent with our data. Moreover, loss of
miR-1258 led to the initiation and development of liver cancer
by targeting CKS1B (Hu et al., 2016); while overexpression of
miR-1258 inhibited the growth, proliferation and tumorigenicity
of liver cancer cells by increasing G0/G1 cell cycle arrest and
promoting cell apoptosis (Hu et al., 2016); and miR-1258 exerted
anti-cancer function by targeting TMPRSS4 in thyroid cancer
(Wang and Cai 2020). Taken together, our findings coincide with
the experimental evidences drawn from literature, and suggest
that miR-1258 has the potential to be developed as an
independent prognosis factor in liver cancer.

Thirdly, some top-ranked key miRNAs are related to multiple
types of cancer, whereas others are related to a single type of
cancer (Figure 4). For instance, miR-16-1, miR-21, miR-93,
miR-141, miR-183 and miR-193b present in 7, 12, 8, 7, 7 and
8 types of cancer, respectively, thus impacting the carcinogenesis
of multiple types of cancer. Here are examples highlighted. 1)
miR-21 is related to 12 types of cancer (BLCA, BRCA, CESC,
CODA, HNSC, KIRC, KIRP, LIHC, LUAD, PRAD, READ and
STAD). In fact, miR-21 was experimentally verified to be highly
correlated with cancer initiation and metastasis (Liu H. et al.,
2018; Wang et al., 2019). 2)miR-93 is related to 8 types of cancer
(BLCA, CHOL, ESCA, KIRP, LIHC, PRAD, STAD and UCEC).
In fact, miR-93 was reported to be closely associated with lung
cancer (Li J.-Q. et al., 2017), prostate cancer (Liu J.-J. et al., 2018)
and liver cancer (Xu et al., 2018). 3)miR-183 is related to 7 types
of cancer (BLCA, BRCA, CESC, LUAD, LUSC, PRAD and
UCEC). In fact, the abnormal expression of miR-183 initiated
multiple types of cancer (Chen X. et al., 2018; Trinh et al., 2019; Li
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et al., 2020). 4) miR-193b is related to 8 types of cancer (BLCA,
CESC, CHOL, ESCA, HNSC, LIHC, LUAD and STAD). In fact,
miR-193b was reported to be closely associated with breast cancer
(Hulin et al., 2017), liver cancer (Yin et al., 2018) and gastric
cancer (Song et al., 2018). Besides, some top-ranked key miRNAs
were recaptured in details earlier (see Results) to be uniquely
related to a single type of cancer. Taken together, we conclude
that some top-ranked key miRNAs are either poly- or mono-
valence against multiple types or single type of cancer,
respectively.

Finally, the majority of top-ranked key miRNAs are positively
or negatively involved in the overall prognostic survival, in the
context of specific type of cancer (Figure 6). The mechanisms
underlying such survival rates remained elusive, but are partly
supported by the accumulated experimental evidences drawn
from literature. Here are examples highlighted. 1) Abnormal
expression of miR-16 inhibited cell apoptosis by regulating the
expression of RECK and SOX6, promoted cell growth and
ultimately led to the occurrence of esophageal cancer (Zhu
et al., 2014). 2) miR-21 regulated cell proliferation and
sensitivity to Adriamycin in bladder cancer cells (Tao et al.,
2011). Overexpression of miR-21 was highly correlated with
poor prognosis of breast cancer (Yan et al., 2008).
Overexpression of miR-21 in T24 cells promoted cell
proliferation and resistance to Adriamycin, and resulted in the
up-regulation of BLC2, which prevented the apoptosis of T24
cells induced by Adriamycin, favoring the carcinogenic effect of
miR-21 in bladder cell carcinoma (Tao et al., 2011). miR-21 and
PTEN expression had negative correlation in vivo in T24 cells
(Tao et al., 2011). Low expression ofmiR-21 was correlated with
poor prognosis of bladder cancer (Zhang et al., 2015).
Overexpression of miR-21 was highly related to the initiation
and development of cancer of head and neck (Arantes et al.,
2017). miR-21 promoted the proliferation and metastasis of
breast cancer cells by targeting LZTFL1 (Wang et al., 2019). 3)
miR-92a might be a target for the clinical diagnosis of bladder
cancer. Low expression of miR-92a was correlated with the poor
prognosis of bladder cancer (Motawi et al., 2016). miR-92a
inhibited the expression of tumor suppressor CDH1.
Overexpression of miR-92a restored the metastatic activity of
miR-92a, suggesting that miR-92a promoted the migration of
esophageal cancer cells by partly inhibiting CDH1. Patients with
up-regulated miR-92a were prone to lymph-node metastasis and
had a poor prognosis (Chen et al., 2011). 4)miR-139-3p exerted a
tumor suppressor effect in breast cancer by targeting RAB1A, and
might serve as a potential biomarker for prognosis of breast
cancer (Zhang et al., 2019). 5) Overexpression of miR-141 led to
the occurrence of cervical cancer (Gómez-Gómez et al., 2013). 6)
The serum miR-148b markers might have a clinical value in the
diagnosis of bladder cancer (Jiang et al., 2015). 7) miR-183 was
dysregulated in breast cancer, related to the expression of
estrogen receptor and HER2/neu receptor (Lowery et al.,
2010). 8) miR-193b/KRAS was expressed in a stage-dependent
manner; KRAS was regarded as a direct target of miR-193b; and
the upregulation of miR-193b increased the percentage of
apoptosis. miR-193b was a biomarker for the treatment of
esophageal cancer (Kang et al., 2019). 9) miR-196a and

miR-196b produced cell-specific responses to target genes and
downstream pathways, which significantly impacted the cell
proliferation, migration and invasion (Álvarez-Teijeiro et al.,
2017). Abnormal expression of miR-196b presented in the
initiation of head and neck cancer. miR-196b was a biomarker
for early diagnosis of head and neck cancer. 10) miR-200a was
down-regulated in cervical cancer (Bozgeyik et al., 2020). miR-
200c inhibited the metastasis and growth of cervical cancer cells
via targetingMAP4K4 (Mei et al., 2018).miR-200c controlled cell
cycle progression and cell growth by down-regulating the G1-S
regulator CDK2, and had anti-cancer impacts in ccRCC (Wang
et al., 2015). 11) miR-206 was one of the most critical tumor
suppressor miRNAs in ccRCC, which induced cell cycle arrest
and inhibited the proliferation of ccRCC cells via targeting CDK4,
CDK9 and CCND1 (Xiao et al., 2016). 12)miR-221 andmiR-222
discriminated the renal cell carcinoma subtypes and tumor cell
(Di Meo et al., 2018). 13) miR-934 was a diagnostic and
prognostic biomarker of clear renal cell carcinoma (Liang
et al., 2017). Taken together, we conclude that the candidacy
of certain key miRNAs identified in this study are supported by
experimental evidences recaptured from literature, which provide
informative cues for future validations to develop them to be
biomarkers ultimately used for the diagnosis and treatment of
multiple types of cancer.

We would like to mention possible limitations of our method.
We incorporated the mRNA and miRNA expression profiles
from the TCGA datasets to identify key miRNAs (microRNAs),
rather than utilized other kinds of ncRNAs datasets, such as
lncRNAs (Ou-Yang et al., 2019; Lan et al., 2020; Wu et al., 2021)
and circRNAs (Liu et al., 2021). Utilizing lncRNAs and circRNAs
will be another possible direction of identifying the cancer-related
ncRNAs by integrating complex network-based and machine
learning-based methods in the future work.

CONCLUSION

We introduced the MIMRDA method, which incorporated the
expression profiles of miRNAs and target mRNAs for predicting
the miRNA-disease association to identified key miRNAs
(microRNAs). As a proof-of-principle study, we deployed the
MIMRDA method to analyze 10,499 samples from TCGA
datasets of 20 types of cancer, and identified hundreds of key
miRNAs. Most of them were significantly related to at least one
type of cancer under study, which were supported by the pre-
verified miRNA-disease/drug association databases. We indicated
the superiority of the MIMRDA method to the Limma and SPIA
packages, and the accuracy of the method in classifying top-ranked
miRNAs. Our results recommended some top-ranked key
miRNAs be experimentally validated as biomarkers in the future.
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