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Abstract

The species Saccharomyces cerevisiae includes natural strains, clinical isolates, and a large number of strains used in human
activities. The aim of this work was to investigate how the adaptation to a broad range of ecological niches may have
selectively shaped the yeast metabolic network to generate specific phenotypes. Using 72 S. cerevisiae strains collected from
various sources, we provide, for the first time, a population-scale picture of the fermentative metabolic traits found in the S.
cerevisiae species under wine making conditions. Considerable phenotypic variation was found suggesting that this yeast
employs diverse metabolic strategies to face environmental constraints. Several groups of strains can be distinguished from
the entire population on the basis of specific traits. Strains accustomed to growing in the presence of high sugar
concentrations, such as wine yeasts and strains obtained from fruits, were able to achieve fermentation, whereas natural
yeasts isolated from ‘‘poor-sugar’’ environments, such as oak trees or plants, were not. Commercial wine yeasts clearly
appeared as a subset of vineyard isolates, and were mainly differentiated by their fermentative performances as well as their
low acetate production. Overall, the emergence of the origin-dependent properties of the strains provides evidence for a
phenotypic evolution driven by environmental constraints and/or human selection within S. cerevisiae.
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Introduction

Despite the extensive diversity of S. cerevisiae, most work on this

model organism has been carried out using only a handful of

domesticated laboratory strains. Since the discovery and identifi-

cation of yeast as a fermentative microorganism in the 19th

century, a large number of S. cerevisiae strains have been isolated

from diverse sources all over the world, corresponding to

extremely different living environments. These include natural

habitats of yeast in fruits, soil, cacti and the bark of oak trees, as

well as the facultative infections of immunocompromised patients.

However, S. cerevisiae is found most often in connection with

human activities, which include baking, brewing, winemaking and

fermented beverage production (sake, palm wine). Indeed, this

yeast has been exploited by man for millennia for the fermentation

and preservation of beverages and food [1,2].

Recent advances in genomic tools allow the genetic diversity of S.

cerevisiae to be assessed in unprecedented detail. The overall genetic

variation between strains has been estimated to be between 0.1 and

0.5%, based on approaches using multilocus sequence typing,

multilocus microsatellite analysis, genome sequencing and whole-

genome tiling arrays [3,4,5,6,7]. Specific and large-scale genome

sequencing projects have resulted in a massive amount of genomic

data for S. cerevisiae [8,9,10,11]. Phylogenetic analysis of strains from a

broad-range of ecological niches, revealed that S. cerevisiae originated

in a wild habitat, probably the bark of oak trees, and that a subset of

strains specialized for fermentation were emerged from subsequent

selection and cultivation [4]. In addition, domestication events,

rather than geography, substantially impacted the genetic structure

of the S. cerevisiae population [7,8,12,13,14,15,16]. These domestica-

tion events were followed by human-associated dissemination of

these yeasts throughout the world.

To date, the phenotypic variation of yeast populations originating

from diverse environments has been only partially characterized.

Several studies have focused on identifying the genetic bases for

specific physiological traits, such as high-temperature growth

[17,18], ethanol resistance [19], sporulation efficiency [20][21],

drug responses [22,23] and morphology [24]. These studies

generally concerned growth determinations for a limited number

of laboratory or vineyard strains or clinical isolates. Recently,

extensive phenotypic variation in the mitotic proliferation ability of

strains, was reported following high-throughput stress resistance

analysis or adaptation to diverse environments (carbon and nitrogen

sources, presence of toxins, nutrient limitations) for collections of S.

cerevisiae strains [8,25] [26,27].

The variability between strains for phenotypes other than

growth, particularly for metabolic traits such as glycolytic flux,

metabolite yields, or the ability to use various substrates, has

been poorly investigated despite their considerable industrial

interest. In connection with this, eight strains with diverse genetic

backgrounds (laboratory strains, vineyard and clinical isolates)

were reported to be highly variable for a simple phenotypic trait,

namely the utilization of di/tripeptides as nitrogen source [28].

Similarly, a population of 19 strains assembled from five different
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habitats (industry, forest, laboratory, clinic, fruit) exhibited an

important variability both in life-history traits of yeast growth

and in metabolic traits (glycolytic rate and ethanol production)

[29]. More recently, the diversity between 9 food-processing

strains (brewery, enology, distillery) has been analyzed regarding

their growth and metabolic behaviors in three industrial

processes [30].

In view of the limited information available, the natural genetic

resources of S. cerevisiae and the phenotypic variations between

strains, and particularly those related to metabolism, bear further

systematic exploration. The first aim of this study was to assess

the extensive diversity of S. cerevisiae yeast strains by investigating

a large panel of yeasts with respect to their specific phenotypic

traits. A special attention was paid to phenotypes that have been

directly the target of human selection for industrial purposes such

as fermentation performance and kinetics, production of acetate,

glycerol and aromatic compounds. Strains from diverse sources

and environments (clinical, industrial, laboratory and wild

isolates) were grown under the conditions of wine fermentation.

These conditions are characterized by high sugar and ethanol

concentrations, high acidity, low nitrogen availability, and

anaerobiosis. Since wine fermentation can be regarded as an

extreme environment expected to highlight variations between

strains, it constitutes a model system for studying yeast

phenotypic diversity.

The wide variety of the environments from which these strains

were collected represent an array of conditions and stressors which

likely contributed to the emergence and divergence of different

phenotypes. These arose as the organisms developed distinct

strategies to face the selective pressures of their living environ-

ments. In addition, fermentation yeasts typically have been

specialized for a particular industrial process (e.g., baking,

brewing, winemaking, etc.) through human manipulation. Conse-

quently, both environmental and human selective pressures may

have resulted in specific properties being shared by strains which

live in similar habitats. We also analyzed the resulting phenotypic

dataset to determine whether some traits were specific to a

particular ecological niche. This allowed us to investigate the

relationships between yeasts and their environments and to assess

whether the evolution of certain phenotypes was driven by

environmental and/or human factors.

Results

Strain phenotypes under extreme fermentation
condition

To investigate the phenotypic diversity among the S. cerevisiae

strains, we characterized the fermentation performances of 72

strains obtained from widely different environments and sources

(Table 1). The strains included the reference strain, S288C, and

other lab strains (8), natural strains (19), clinical isolates (13), yeasts

used in fermentative processes (10), yeasts found in vineyards (8) or

in commercial winemaking (9), and several baker’s yeast (5) strains.

Anaerobic fermentations were carried out in synthetic MS

medium containing a high glucose concentration and limited

amounts of nitrogen and lipids. Although anaerobiosis was not

imposed, it occurred rapidly and spontaneously due to the design

of fermentors and the large amount of CO2 produced. Under

these conditions, yeast proliferation was rapidly limited by the low

nitrogen concentration in the medium, so that most of the sugar

was consumed by resting cells during the stationary phase.

Throughout the fermentation process, the CO2 production rate

increased rapidly as the number of cells increased, then

progressively decreased during the stationary phase. To simplify

the analysis of the complex fermentation rate profiles, five

variables were extracted from each fermentation curve. These

included the total amount of released CO2 (CO2F), and four

kinetics variables: the maximal fermentation rate (Vmax), the time

at which 50% and 75% of sugars were consumed, as estimated by

55 and 80 g/L of CO2 produced (T50 and T75, respectively) and

the fermentation rate at T50 (V50). In addition, the phenotypic

description of each strain consisted of two growth features (dry

weight, population size) and 11 metabolic variables (glycerol,

acetate, succinate and eight volatile organoleptic compounds),

measured at T75. This resulted in a data set of 18 variables for

each of the 72 strains.

We tested the reproducibility of our phenotypic analysis by

fermenting several strains at least in duplicate. For each of these

strains, the fermentation profiles were almost identical (Figure S1)

and could be considered as a fingerprint of the strain’s

performance under standardized culture conditions. Moreover,

we detected no substantial variation between the independent

determinations of the fermentation kinetics, growth and metabolic

variables and the intra-class correlation coefficients ranged

between 86% and 99%, with a mean value of 95%. (Table S1).

This reproducibility analysis indicated the feasibility of our

approach for assessing phenotypic diversity in S. cerevisiae.

Phenotypic variations among S. cerevisiae strains
The fermentation profiles of the 72 strains varied substantially

from each other, reflecting their diverse fermentative perfor-

mances (Figure 1). Many of the 72 strains were able to complete

the fermentation of 240 g/L glucose. However, 45% of them

exhibited a stuck profile and stopped fermenting before glucose

was exhausted (i.e., the residual glucose concentration was

above 10 g/L and CO2 production was below 105 g/L). Great

variations in kinetics variables were observed between the

strains. For example, Vmax was between 0.4 and 2.1 g/L/h and

T75 was between 64 and 444 h. Due to the broad diversity in

the origins of the strains, the value ranges for the measured

variables, especially for Vmax, were considerably greater than

what was previously reported for commercial wine yeasts

[31,32] or strains from industry (distillery, wine, bakery) [30].

Nevertheless, for most strains, Vmax, T50, and to a lesser extent,

T75 were very similar and only a few individuals exhibited

extreme behaviors. The values for the V50 variable, which

described the activity of the yeast during the latter stages of

fermentation, were more dispersed than other variables, and

were predominantly between 0.2 and 1.2 g/L/h. This observa-

tion suggested that considerable diversity exists in the abilities of

yeast to face the multiple stresses conditions present at the end

of fermentation (e.g., ethanol toxicity, nitrogen and micro-

nutrient starvation).

Considerable differences between strains, which were between

2- and 15-fold, were also found in the formation of biomass (dry

weight) and in the synthesis of fermentation by-products (except

ethanol). A large part of the variables was symmetrically

distributed about the mean (Figure 2), although a few outliers

existed for strains displaying extreme production levels (such as the

synthesis of 12 g/L glycerol by CBS7960 and NCYC361). Positive

skewed or reverse J-shaped distributions were observed for the

production of acetate esters and some ethyl esters derivatives,

reflecting the null or limited production of these compounds by the

majority of the studied strains. Finally, in contrast to the great

differences found in the formation of other metabolites, the

conversion of glucose to ethanol remained almost constant among

the whole population as usually viewed, with a mean value of

0.4660.01 g ethanol/g glucose.

Selection Drive Yeast Phenotypes
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Table 1. Collection of S. cerevisiae strains from diverse environments and geographical locations.

Environment Strain Geographical origin Comments Collection

Baker

CLIB 324 Saigon, Vietnam Baker strain Washington

CLIB 215 New Zealand Baker strain Washington

YS2 Australia Baker strain Sanger

YS4 Netherlands Baker strain Sanger

YS9 Singapore Baker strain, Le Saffre Sanger

Clinical

YJM280 USA Peritoneal fluid Washington

YJM320 USA Blood Washington

YJM326 USA Patient Washington

YJM421 USA Ascites fluid Washington

YJM653 USA Broncho-alveolar lavage Washington

273614N Newcastle UK Fecal isolate Sanger

322134S Newcastle UK Throat-sputum isolate Sanger

378604X Newcastle UK Sputum isolate Sanger

YJM428 USA Paracentesis fluid Washington

YJM451 Europe Patient Washington

YJM975 Bergamo, Italy Vaginal isolate Sanger

YJM978 Bergamo, Italy Vaginal isolate Sanger

YJM981 Bergamo, Italy Vaginal isolate Sanger

Fermentation processes

Beer

CLIB 382 Beer Washington

NCYC361 Ireland Beer spoilage strain from wort Sanger

Palm wine

Y12 Ivory Coast, Africa Palm wine, Washington

DBVPG1853 Ethiopia White Tecc Sanger

DBVPG6044 West Africa Bili wine Sanger

NCYC110 Nigeria, West Africa Ginger beer from Z. officinale Sanger

PW5 Africa Raphia palm wine Washington

Sake

K11 Japan Shochu sake strain Awamori-1 Sanger

UC5 Japan Sene sake Washington

Y9 Japan Ragi (similar to sake wine) Sanger

Laboratory

FL 100 France Crossing from D2339-17 and S1786 Washington

CEN.PK Germany INSATa

ENY.WA-1A p

S288c California, USA Rotting fig Sanger

SK1 USA Soil Sanger

W303 USA Sanger

W303 p USA

Y55 France Wine Sanger

Natural

Bertam palm

UWOPS03-461.4 Malaysia Nectar, Bertam palm Sanger

UWOPS05-217.3 Malaysia Nectar, Bertam palm Sanger

UWOPS05-227.2 Malaysia Trigona, Bertam palm Sanger

Cactus

UWOPS83-787.3 Bahamas Fruit, Opuntia stricta Sanger

Selection Drive Yeast Phenotypes
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Relationships between the phenotypic traits
Considering the size of the population, we used the Pearson’s

Product Moment method to perform a correlation analysis

between all the phenotypic traits (Tables S2, S3). Most of the

variables varied independently within the population. However, as

expected, T75 and T50 were strongly correlated (r = 0.92,

p,0.001) with each other and both of them were correlated

negatively with V50 (r = 20.81, p,0.001 and r = 20.78, p,0.001,

respectively, Figures 3A & B). The maximal fermentation rate

Vmax and the kinetics variables characterizing the last steps of the

fermentation process (V50 and T75) were moderately but

significantly correlated (r = 0.48, p,0.001 and r = 20.52,

p,0.001, respectively). This strong correlation significance

indicated that Vmax, which measures activity at the beginning of

the process (growth phase), impacted at least partially the behavior

of the strain during the stationary phase (end of fermentation).

However, the fairly weak correlation coefficients, close to 0.5,

suggested a partial decoupling between the first and the last parts

Environment Strain Geographical origin Comments Collection

UWOPS87-2421 Hawaii Cladode, Opuntia megacantha Sanger

Fruit

Y10 Phillipines Coconut Washington

CBS 7960 Sao Paulo, Brazil Produces ethanol from cane-sugar syrup. Washington

DBVPG6040 Netherlands Fermenting fruit juice Sanger

DBVPG6765 Indonesia Lici fruit Sanger

Oak

NC-02 North Carolina, USA Oak tree exudates Washington

T7 Missouri, USA Oak tree exudates Washington

YPS1009 New Jersey, USA Oak tree exudates Washington

YPS128 Pennsylvania, USA Oak tree exudates Sanger

YPS163 Pennsylvania, USA Oak tree exudates Washington

YPS606 Pennsylvania, USA Oak tree exudates Sanger

Soil

DBVPG1373 Netherlands Soil Sanger

DBVPG1788 Finland Soil Sanger

I14 Italy Soil sample Washington

IL-01 Illinois, USA Soil sample Washington

Vineyard

YJM269 Portugal Blauer Portugieser grapes Washington

BC187 Napa Valley, USA Barrel fermentation, haploı̈d derivative UCD2120 Sanger

DBVPG1106 Australia Grapes Sanger

L-1374 Chile Wine Sanger

L-1528 Chile Wine Sanger

M22 Italy Vineyard isolate Washington

YIIc17_E5 France Sauternes wine Sanger

RM 11 California, USA Haploı̈d derivative Bb32 Washington

Wine commercial

59-A France Meiotic spore of strain EC1118

V5p France Meiotic spore of strain CIVC8130

T73 Spain Red wine ( Monastrel) Lalvin

71B Germany Vineyard Lalvin

EC1118 France Champagne fermentation Lalvin

L2226 France Vineyard (Côte du Rhone) Enoferm

WE372 South Africa Wine (Cape Town) Anchor

K1M France Grapes Lalvin

VL1 France Laffort

aProfesseur Jean-Marie François, Laboratoire Ingenierie des Systèmes Biologiques et des Procédés, Institut National des Sciences Appliquées, Toulouse.
According to data on the habitats of yeasts, mainly from Sanger Institute and Washington University databases, strains were first classified into 7 major groups: Baker,
Clinical, Fermentation processes, Laboratory, Vineyard, Natural and Wine commercial. The Fermentation processes and Natural clades were further differentiated into
three and five subgroups, respectively.
doi:10.1371/journal.pone.0025147.t001

Table 1. Cont.
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of fermentation, likely due to the contribution of other parameters

in the control of the stationary phase, as the tolerance of the strains

to inhibitory compounds (ethanol). A correlation (r = 0.71,

p,0.001) was found between the biomass production and the

final amount of CO2 released, indicating that most poorly growing

strains exhibited stuck profiles (Figure 3C). This is consistent with

previous reports citing the inability of commercial yeasts to

complete wine fermentation when nutrient limitations affect their

growth [33,34,35,36]. Regarding the metabolic variables, sub-

stantial correlations were found between the productions of

isoamyl acetate and either its isoamyl alcohol precursor (r = 0.49,

p,0.001) or isobutyl acetate (r = 0.51, p,0.001), which is the

other main acetate ester produced by yeast during alcoholic

fermentation (Figure 3D).

Metabolic traits discriminate strains from different origins
To identify potential relationships between strain origin and

fermentation phenotype, the data set was first analyzed regarding

seven ecological niches: baker, clinical, fermentation processes,

laboratory, vineyard, natural and wine commercial (Figure S2,

Table S4). To obtain a general overview of the data, a principal

component analysis [PCA] and a linear discriminant analysis

[LDA] (with origin as factor) were first performed using all the

traits and all the strains. Only 38% of the variation was explained

by the two first components of the global PCA and the LDA

analysis did not allow to discriminate the origin of strains, due to

the complexity of the dataset (Figure S3). Consequently, an

exploratory study was performed in order to select the variables

that exhibited a significant global effect among the seven groups of

strains (Table 2, Table S5). Univariate analyses of variance

(ANOVA) without multiplicity adjustment identified several

variables relevant to discriminating the strains on the basis of

their origin (p-value,0.05): dry weight, population size, CO2F,

T75, T50, glycerol, acetate and ethyl butyrate. For the other

descriptive variables, variations were mainly attributed to the large

intra-group variability. The analysis of the most selective variables

allowed us to identify specific traits common to all the strains from

the same ecological niche, for three groups: wine commercial,

baker and laboratory. Indeed, a noteworthy characteristic of

laboratory strains was their high level of ethyl butyrate synthesis

compared to strains from other habitats. In addition, we found

that these yeasts produced little biomass, fermented sugars slowly,

produced high amounts of acetate and low amounts of isoamyl

acetate. Conversely, commercial wine strains were able to

completely and rapidly ferment the available sugars, while

producing high biomass and little acetate. Finally, we found that

bakery yeasts were characterized by low acetate, succinate and

glycerol productions but, contrary to wine commercial strains,

exhibited poor growth and fermentative performances.

For the other origins (vineyard, clinical, nature, fermentation

processes), we found a large intra-group variability for all the

phenotypic traits. This may be explained by the intrinsic diversity

within each class. The clinical strains were isolated from human

infections. Since these yeasts are generally considered to originate

from other environments [7,37], substantial phenotypic variability

can be expected in this group. The nature, vineyard and

fermentation processes groups consisted of strains from habitats

with a strong heterogeneity regarding the living conditions. The

nature group also consisted of strains from different environments,

including sugar-rich and sugar-poor ones, which may have likely

affected their cell physiology. Consequently, we redefined these

categories (Table 1) by separating the nature isolates into fruit,

cactus, Bertram palm, oak and soil subgroups and the fermenta-

tion processes group into beer, sake, and palm wine. In this way, a

total of 13 categories were established and analyzed as described

above. This reclassification substantially decreased intra-group

variability for most of the phenotypic traits (Figure S2). The two

most significant variables for discriminating the strains among the

7 groups, namely ethyl butyrate and acetate, as well as the kinetic

variables (T75, T50, V50, Vmax and CO2F), the dry weight and the

production of ethyl hexanoate were identified as contributed

substantially to the variance between the 13 habitats (Table 2).

Palm wine strains consumed sugar at high rates throughout the

fermentation course, resulting in short fermentation times. These

strains were specifically differentiated by their low succinate

production and, to a lesser extent, by their high acetate and

isoamyl acetate production. Yeasts used for sake and beer

fermentation exhibited low fermentation rates (V50) and long

fermentation times. Beer strains were distinguished from sake

strains and all other strains, by their low biomass production and

by their low levels of aromatic compound synthesis, particularly of

the ethyl ester derivatives (ethyl hexanoate). Regarding the nature

group, all the strains isolated from soil and fruits were able to

complete the fermentation of sugar, unlike the strains derived from

cactus, oak and palm habitats. These strains were further

discriminated by biomass production, which was high for cactus

and fruit strains and low for oak and palm strains. Furthermore,

the profile of ethyl ester synthesis during fermentation varied

greatly among these groups. Oak and Bertam-palm strains

produced low levels of ethyl acetate compared to the other strains,

whereas cactus and Bertam-palm strains produced high levels of

ethyl octanoate. Ethyl hexanoate production was high for the soil

and oak strains and low for the Bertam-palm strains.

Phenotypic differentiation of commercial wine from
vineyard yeasts

We compared the specific phenotypic properties of the wine

commercial strains to those of yeasts from other environments,

particularly the vineyard strains. The wine commercial strains, as

well as strains originating from fruits and the majority of those

Figure 1. Comparison of the fermentation profiles for 72 S.
cerevisiae strains fromdiverse geographical locales and envi-
ronments. Fermentations were carried out in synthetic medium
containing 240 g/L glucose, 200 mg/L nitrogen, pH 3.5. The fermenta-
tion profiles are presented as the CO2 production rate vs. the
fermentation progress, which corresponded to the ratio of consumed
glucose to initial glucose. The lines are colored according to the origin
of the strains: vineyard (purple), soil (grey), sake (light grey), palm wine
(pink), oak (brown), laboratory (yellow), fruit (red), wine commercial
(dark green), Bertam-palm (blue), baker (black), beer (dark grey), cactus
(light blue).
doi:10.1371/journal.pone.0025147.g001
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from the soil (3/4) and vineyard (6/8) groups, were able to

completely ferment 240 g/L glucose (Figure 4A). Whereas all the

wine commercial strains had short fermentation times (,270 h),

some individuals in the three other groups of strains having good

fermentative capacities, including the vineyard set, displayed

prolonged fermentation profiles (Figure 4B). More generally, the

variability of wine commercial strains was lower than that of the

vineyard group (Figure S2, Table S4), and substantially lower

standard deviation values than those of the vineyard group were

observed (Table 3). In addition, the wine commercial strains

exhibited extreme values for some specific phenotypic traits

compared to those of vineyard strains. These included production

of acetate (0.660.1 g/L versus 0.960.4 g/L, respectively), of

isoamyl alcohol (and its acetate ester derivative) (242664 g/L

versus 194687 mg/L, respectively) and V50 (0.8 g/L?h60.1

versus 0.7 g/L?h60.2, respectively). All together, these results

showed that wine commercial strains constituted a minimally

diverse subset of yeasts from vineyard, in agreement with the

selection of these strains for their technological traits by man.

Effects of strains origin on phenotypic profiles
Finally, we carried out a comprehensive assessment of the

relationships between their habitats (qualitative variable) and their

quantitative phenotypic traits. A population of 57 strains from 10

different groups was initially considered for this analysis:

laboratory, baker, wine commercial, sake, palm wine, vineyard,

oak, soil, fruit, and Bertam palm. Clinical strains were excluded

from the analysis because of their high intragroup variability, as

well as beer and cactus groups, with only two individuals each. A

linear discriminant analysis (LDA), was applied to the most

discriminant phenotypic traits: dry weight, T75, CO2F, acetate,

and ethyl butyrate. This analysis explained 45% and 22% of the

intergroup variance in the first two discriminant axes, respectively

(Figure 5, Figure S4).

The LDA first showed that the laboratory strains clearly

separated from other individuals according to their high

production of ethyl butyrate and, to a lesser extent, that of

acetate. Moreover, the yeasts from rich-sugar environment,

composed of the wine commercial (8/9), fruit (3/4) and vineyard

(5/8) strains, were close to each other in the LDA representation

on the basis of their high levels of CO2 production, which reflected

their good fermentative capacities, high dry weights, and low levels

of acetate production. Surprisingly, these strains displayed

phenotypic similarities and clustered together with some sake,

baker and soil yeasts. The univariate analysis showed that some of

these groups of strains were discriminated on the basis of other

specific variables (Figure S2), which were not included in the

global LDA analysis.

Finally, two groups consisting of oak isolates on one hand and of

strains from Bertam palm on the other hand, emerged due to their

low dry weight and defective fermentation abilities. Together,

these observations show that these few phenotypic traits, measured

Figure 2. Distribution frequency of the phenotypic variables in the total population (72 strains). Closed circle: mean value; open circle:
median value. Kinetics variables (CO2F, Vmax, V50, T50 and T75) were determined from the fermentation curves. Growth (cell number and dry weight)
and metabolic variables (glycerol, acetate, succinate, two higher alcohols, two acetate esters and four ethyl esters) were measured when 75% of the
sugars were consumed (180 g/L).
doi:10.1371/journal.pone.0025147.g002

Figure 3. Relationships between the phenotypic variables within the total population of strains. Correlations were found between: the
fermentative activity at mid-fermentation V50 and the time necessary to consume 50% or 75% of sugars, T50 (A) and T75 (B), respectively; the final CO2

release and the dry weight (C); and the production of isoamyl acetate and the productions of isoamyl alcohol (&) and isobutyl acetate (#) (D).
doi:10.1371/journal.pone.0025147.g003
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under these extreme fermentation conditions, allowed some strains

to be discriminated based on their origin. However, this did not

include yeasts from the soil and palm wine groups, which were not

clearly distinguishable.

Discussion

Wine fermentation phenotypes reflect a wide diversity in
yeast response to a stressful environment

The large data set of 18 kinetic, metabolic and growth

characters determined during glucose fermentation for 72 S.

cerevisiae strains (1296 distinct measurements) provides a detailed

picture of the extent of metabolic diversity within this species,

which has been poorly explored until now. Wine fermentation

conditions represent a combination of various stresses (osmotic,

ethanol, acidic, nutrient limitation) that accentuate the metabolic

differences between strains. All variables except ethanol produc-

tion varied independently within the population for most strains,

and to a large extent (between 2- and 15-fold, depending on the

variable). This substantial variability highlighted the disparate

strategies used by the strains to cope with the numerous

environmental stresses found in alcoholic fermentation and their

different levels of ability to adapt to this extreme environment.

Moreover, there was little or no correlation between the vast

majority of variables, including metabolic ones, either within the

entire population as a whole or within groups of strains separated

according to their ability to complete fermentation or to their

environmental origin. This suggests great inter-strain diversity in

the metabolic strategies they used to deal with these unfavorable

conditions, which derives from a substantial flexibility of the S.

cerevisiae metabolic network.

A key factor that differentiated the strains was their ability to

complete fermentation: 45% of the strains were unable to entirely

consume the available sugars (240 g/L) and exhibited stuck

fermentation profiles. Two main reasons for these problematic

fermentations were identified in the case of commercial wine

yeasts growing on grape juices. First, a nutrient limitation (e.g.,

nitrogen or lipids) may result in a low fermentation rate as a

consequence of inefficient growth [33,38,39]. Second, the toxicity

of fermentation by-products (e.g., ethanol and fatty acids) during

the latter stages of fermentation may inhibit sugar transport and

alter cellular membrane integrity, leading to reduced metabolic

activity and viability [40,41,42,43]. Consistent with the first

hypothesis, we found that fermentation efficiency was related to

biomass production. Furthermore, for all strains unable to

complete the fermentation, the fermentation rate became

asymptotic toward the end of the culture, which has been

reportedly due to loss of viability [34]. This supports the main role

of biomass production as the factor governing the fermentation

course under stressful conditions. However, contrary to previous

observations from wine commercial strains [34,38] or from

industrial environments [30], we found no correlation between

Vmax and biomass or population size. This is likely due to the use

of highly diverse S. cerevisiae strains from a broader range of

environments.

Adaptation to environment results in emergence of
specific metabolic traits

Shared phenotypes among strains from similar environments

has been reported for yeasts collected from oaks, which exhibit

freeze-thaw resistance crucial for survival in wintry environments,

and for vineyard isolates, which have low sensitivities to copper

sulfate, an anti-microbial agent widely used in European fields

[5,25,44]. Similarly, the profile of resistance of sake-producing

yeasts to various stresses was consistent with their specialized

metabolism for growing under the defined conditions of sake

fermentation [25]. Our study revealed additional specific traits

that characterize strains originating from the same ecological

niche. Examples include the low level production of fermentation

by-products (e.g., glycerol, acetate and succinate) by baker’s yeasts

or the very high production levels of ethyl butyrate and limited

biomass formation exhibited by laboratory strains. Surprisingly, in

addition to wine commercial strains, most of the strains in the

vineyard, fruit and soil groups also displayed good fermentative

properties, whereas strains from oak, plant and brewery

environments exhibited most of the stuck fermentation profiles.

Recently, an exhaustive mapping of the mitotic proliferation

traits of S. cerevisiae growing under a wide-range of environments,

reported a strong effect of population genetic history on trait

variations within this species, suggesting that the relationships

between ecological niche and phenotypes may be fortuitous or due

to a common influence from a shared genetic lineage [27]. Our

analysis, based on a population-scale phenotyping of S. cerevisiae

restricted to only wine fermentation conditions but measuring a

large number of growth, kinetics and metabolic characters allows

to reveal links between source environments and specific

phenotypes of some groups of strains. These relationships between

the origin and the properties of some strain groups likely reflect

phenotypes that evolved in response to environmental constraints.

The stresses and conditions of particular habitats may have shaped

the metabolism and physiology of these strains, resulting in

adaptations and the emergence of environment-specific traits. Two

different S. cerevisiae life-history strategies (grasshopper ant) have

been previously defined on the basis of specific growth

characteristics (rate, cell size, final population size) of strains

Table 2. Univariate analysis of the variance for the
phenotypic variables.

Phenotypic variable
p-value
7 groups

p-value
13 groups

Cell number 0.035 0.15

Dry weight 0.004 0.002

Vmax 0.06 0.004

V50 0.09 0.005

T75 0.02 0.0006

T50 0.01 ,0.0001

CO2F 0.02 0.0005

Glycerol 0.03 0.001

Acetate 0.001 0.04

Succinate 0.65 0.46

Isobutanol 0.12 0.22

Isobutyl acetate 0.34 0.33

Isoamyl alcohol 0.34 0.46

Isoamyl acetate 0.06 0.16

Ethyl acetate 0.08 0.08

Ethyl butyrate ,0.0001 0.0004

Ethyl hexanoate 0.090 0.007

Ethyl octanoate 0.71 0.14

No adjustment of multiplicity.
The phenotypic traits were measured for 72 strains classified into 7 or 13 groups
of origin.
doi:10.1371/journal.pone.0025147.t002
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related to the resources available in their original environment

[29,45].Similarly, the higher fermentative capacities of strains in

the fruit, vineyard and wine commercial groups, may have arisen

through selection in response to the prevalence of high sugar

concentrations in these environments. Adaptations to osmotic

stress and to the toxicity of fermentations products, such as the

ethanol and fatty acids generated in the presence of abundant

sugar, allow strains found in these environments to have selective

advantages which contribute to their prevalence and to their

capacity to efficiently ferment large amounts of sugar. Conversely,

we found that yeasts isolated from ‘‘poor-sugar’’ environments

(e.g. oaks and other plants) do not exhibit these efficient

fermentation features. In the same way, laboratory strains, which

have been propaged for many generations on rich media, optimal

for growth [46], most likely lost their capacity to thrive in harsh

environmental conditions. This might explain why they grew

poorly and exhibited stuck profiles during alcoholic fermentation.

Human selection is another factor that has contributed to the

environment-specific properties of strains used in industrial

processes [13]. The physiologic and metabolic features common

to all the wine commercial strains include low acetate production,

substantial biomass production, aroma production (in the form of

isoamyl alcohol and ester-acetate) and the fast and efficient

fermentation of high sugar concentrations. These traits differen-

tiate the wine commercial strains from strains found in other

environments, including the vineyard strains. These phenotypes

are the consequences of human selection since wine commercial

strains have been intentionally picked out from vineyard

environments and exploited for winemaking due to their

advantageous kinetic and metabolic characteristics. Similarly, the

low production of acetate, glycerol and succinate by-products

exhibited by baker strains likely reflects the human selection of

strains for their high CO2 production rates, which are needed for

bread-making [10,47] and are detrimental to by-product forma-

tion. The clade of laboratory strains, from which most S. cerevisiae

knowledge has been acquired, was significantly differentiated from

the other strain groups for many phenotypic traits, including low

biomass formation, poor fermentation performances and synthesis

of specific metabolites. This may be explained by the fact that most

of the commonly used laboratory strains were derived from the

S288C genetic background [7,48,49]. However, our analysis

included two strains with S288C independent genetic background,

SK1 and Y55. The divergence of all the laboratory strains with the

rest of S. cerevisiae population may also reflect their long-term

domestication under optimal growth conditions which likely

repressed some protective and adaptive mechanisms essential for

survival in natural environments [46].

In contrast to the other groups of strains, the phenotypes of the

clinical strains were broadly distributed compared to those of the

entire population. This may be explained by the opportunistic

colonization of human tissues by S. cerevisiae strains which normally

inhabit different environments, and thus differed considerably in

their physiologic and metabolic traits. Consistent with our

phenotypic observations, the clinical isolates were also highly

diverse genetically and did not form a coherent group [7,25,37].

Overall, the low variability of laboratory strains compared to

the total population highlights the need to continue to study the

genomic and phenotypic diversity of S. cerevisiae. This research will

Figure 4. Abilities of the 72 strains from different environments to efficiently ferment a high concentration of sugar. Strains were
considered able to achieve fermentation of 240 g/L of sugar when their production of CO2 at the end of fermentation (A) was higher than 105 g/L.
These strains were further discriminated by the fermentation time (B). Vineyard: purple symbols; soil: grey symbols; sake: green symbols; palm: pink
symbols, oak: brown symbols; laboratory: yellow symbols; fruit: red symbols; wine commercial: dark green symbols; clinical: tan symbols, cactus: blue
symbols; Bertam –palm wine: dark blue symbols; beer: beige symbols ; baker: black symbols.
doi:10.1371/journal.pone.0025147.g004
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provide new insights on the relationships and interactions between

S. cerevisiae and its highly varied environments, and on the

molecular mechanisms involved as yeasts adapt to their habitats.

Ultimately, this will allow better use of this species ample natural

genetic resources.

Genomic analyses of panels of S. cerevisiae strains identified

distinct subgroups based on the identification of SNPs, which

demonstrated that the S. cerevisiae population structure at least

partly reflected the numerous different environments from which

yeasts were isolated [7,8]. Interestingly, it was recently reported

that the genetic subgroup Wine/European could be differentiated

from other lineages, namely Malaysian, West African and North

American, based on the phenotypes of strains grown in different

environments and in the presence of different drugs [8] [27],

indicating that trait variations in yeasts reflect for an important

part the genetic structure of S. cerevisiae population. Accordingly,

the genetic polymorphism may be a contributor to the particular

abilities of strains to adapt to their environments and consequent-

ly, in the emergence of environment-specific phenotypes, as those

observed in this study. Recently, quantitative genetic studies of

segregating populations from crosses between strains from

divergent lineages, were described as a powerful tool for

investigating the genetic determinants of polygenic phenotypes

[26,50]. These approaches may be further developed, using

parental strains selected from S. cerevisiae population on the basis of

our phenotypic database, to identify the genetic architecture of

particular physiologic and metabolic traits, including those of

technological interest.

Materials and Methods

Yeast strains
Seventy-two S. cerevisiae strains, all prototrophic except S.

cerevisiae W303-1A (MATa leu2-3, 112 ura3-1 trp1-1 his3-11, 15

ade2-1), collected from ecologically and geographically diverse

environments (Table 1) were characterized in this study. Many of

the strains came from Washington University (22) and Sanger

Institute (36), whereas others were obtained from several different

companies or laboratories. The genome sequences of most of these

strains are available. According to their origin and/or existing

classifications in the Sanger Institute and Washington University

databases, our strains were first classified into seven major groups:

baker, clinical, fermentation processes, laboratory, vineyard, natural and wine

commercial. The fermentation processes and natural clades were further

separated into three (beer, palm wine and sake) and five (oak, Bertam

palm, soil, fruit and cactus) sub-groups, respectively. For each strain,

an aliquot of a reference stock, conserved at 280uC, was

transferred to a YPD agar plate (1% Bacto yeast extract, 2%

bactopeptone, 2% glucose, 1.5% agar) 48 h before fermentation.

Fermentation conditions
Initial cultures in YPD medium were grown in 50 mL flasks at

28uC, with shaking, (150 rpm) for 12 h. These cultures were used to

inoculate secondary cultures at a density of 16106 cells/mL.

Fermentations were carried out in synthetic MS medium, which

contained 240 g/L glucose, 6 g/L malic acid, 6 g/L citric acid and

200 mg/L nitrogen in the form of amino acids (148 mg N/L) and

NH4Cl (52 mg N/L), at pH 3.5 (5). Ergosterol (1.875 mg/L), oleic

acid (0.625 mg/L) and Tween 80 (0.05 g/L) were provided as

anaerobic growth factors. Fermentations took place in 1.1 liter

fermentors equipped with fermentation locks to maintain anaero-

biosis, at 28uC, with continuous magnetic stirring (500 rpm). The

CO2 release was followed by automatic measurement of fermentor

weight loss every 20 minutes. The rate of CO2 production (dCO2/

Table 3. Comparison of the phenotypic variables between
strains isolated from the wine commercial and vineyard strain
groups.

Phenotypic variable Wine commercial Vineyard

Mean S.D. Mean S.D.

Cell number, 106 c/mL 119 27 92 22

Dry weight, g/L 3.6 0.5 3.8 0.9

Vmax, g/L/h 1.7 0.2 1.6 0.3

CO2produced g/L 112 3 108 8

T75 hr 88 10 109 27

T50 hr 61 5 67 16

V50 g/L?h 0.8 0.1 0.7 0.2

Succinate g/L 0.62 0.14 0.63 0.29

Glycerol g/L 7.0 0.4 7.1 0.7

Acetate g/L 0.6 0.1 0.9 0.4

Isobutanol g/L 52 7.8 70 48

Isobutyl acetate g/L 0.04 0.04 0.08 0.06

Isoamyl alcohol g/L 242 64 194 87

Isoamyl acetate g/L 1.9 1.2 1.3 0.7

Ethyl acetate g/L 24 3 23 3

Ethyl butyrate g/L 0.18 0.13 0.13 0.04

Ethyl hexanoate g/L 0.2 0.1 0.2 0.1

Ethyl octanoate g/L 0.2 0.2 0.3 0.3

doi:10.1371/journal.pone.0025147.t003

Figure 5. Linear discriminant analysis (LDA) of the population
based on five discriminating phenotypic traits. A linear
discriminant analysis was applied to the most discriminating variables:
dry weight, T75, CO2F, acetate and ethyl butyrate measured for 53
strains representing 10 different groups. Clinical isolates were not
included, due to the large phenotypic variability observed among the
strains in this group. Beer and cactus groups, with only two strains each,
were removed for this analysis. Groups of origin include vineyard
(purple), soil (grey), sake (green), palm wine (pink), oak (brown),
laboratory (yellow), fruit (red), wine commercial (dark green), Bertam-
palm (dark blue), baker (black).
doi:10.1371/journal.pone.0025147.g005
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dt, where t is time) was calculated by polynomial smoothing of the

last ten values of CO2 production. The frequent acquisition of CO2

release values and highly precise bioreactor weighing (610 mg)

allowed accurate CO2 production rates to be calculated, with good

repeatability and a small variation coefficient: (dCO2/dt)max = 0.8%

[31]. For data analysis, five variables were determined from the

entire fermentation rate curve. (1) The total amount of CO2

released, allowed us to estimate the fermentative capacity of the

yeasts and to identify the strains unable to completely ferment the

available glucose (240 g/L) (‘‘stuck’’ profiles). (2 & 3) The times

required to ferment 50% (T50) and 75% (T75) sugars were recorded

because some strains displayed ‘‘stuck’’ fermentation profiles and

were not able to complete the fermentation process. (4 & 5) Finally,

the maximal CO2 production rate (Vmax) and the rate at mid-

fermentation (V50) reflected yeast activity at the beginning of the

process and during the stationary phase.

Analytic methods
Cells were counted using an electronic particle counter (Multi-

sizer 3 Coulter Counter, Beckman Coulter) fitted with a probe

with a 100-mm aperture. The dry weight of the yeast was measured

by filtering 50 mL of culture though a 0.45 mm-pore Millipore

nitrocellulose filter, which was washed twice with 50 mL distilled

water and dried for 24 h at 105uC. These analyses were performed

at T75 (when 75% sugar was consumed).

Glucose and fermentation products (acetate, succinate, glycerol

and ethanol) were analyzed by high-pressure liquid chromatogra-

phy (HPLC 1100, Agilent Technologies) on an HPX-87H Aminex

column (Bio-Rad Laboratories Inc.). Dual detection was per-

formed with a refractometer and a UV detector (Hewlett Packard).

The concentrations of volatile compounds were assayed by gas

chromatography using an Agilent 6890 chromatograph equipped

with an headspace injector and a ZB-WAX column

(60 m60.32 mm60.5 mm) from Phenomenex Inc. The pressure

was held constant (120 kPa) and temperature was progressively

increased. The column temperature was: initially held at 38uC for

3 min, then increased to 65uC at a rate of 3uC/min, then

increased to 160uC at a rate of 6uC/min, then held at 160uC for

5 min, then increased to 230uC at a rate of 8uC/min, and finally

held at 230uC for 5 min. The compounds were detected using a

flame ionization detection (FID) system. The final ethanol

concentration of the samples was adjusted to 11%, to standardize

transfer between the liquid and the headspace.

Statistical analyses
Statistical analyses were performed using the R software,

version 2.9.2.

For each trait, usual descriptive statistics were calculated by

strain origin with mean, standard deviation and coefficient of

variation.

Reproducibility of measurements was evaluated from data of

fermentations achieved at least in duplicate with the same strains

(n = 21 strains) using the intra-class correlation coefficient [51].

Pairwise correlations between variables were calculated using

Pearson’s Product Moment correlation coefficients (r). Since 153

multiple correlations were computed, p-values were corrected for

multiple testing using Benjamini-Hochberg methods [52] by

means of R’s multtest package [53]. As some distributions were

not gaussian, the robustness of the Pearson’s coefficients was

studied comparing this approach with the Spearman’s rank

correlations. Both approaches were consistent and only Pearson’s

correlations were presented.

For a global analysis of phenotypic diversity within S. cerevisiae

population, a principal component analysis [PCA] and a linear

discriminant analysis [LDA] (with origin as factor) were first

performed considering the whole data set using ade4 package [54].

To analyse the diversity regarding the origin of the strains, the

most discriminant variables according to strain origin were

selected. Each variables was tested using a one-way ANOVA in

order to keep the ones having a significant impact on strain origin

(at a p-value threshold of 0.05), without any multiplicity

adjustment. For each trait, normality of residual distributions

and homogeneity of variance were studied using usual diagnostic

graphics. As some traits failed in showing strict homogeneity of

variance, a robustness analysis was done using a Kruskall-Wallis

test (non-parametric test) to assess a global effect of the strain

origin. As the results between the 2 analyses were consistent (Table

S5), the one-way ANOVA has been considered as robust and only

these results were systematically presented.

To reveal the structure of the population according to the origin

of the 72 strains and the chosen phenotypes, a LDA was

performed on the selected subset of phenotypic variables using

the discrimin function of the ade4 package [54].

LDA is a supervised multivariate method that uses the class

information to characterize the structure of the data by

maximizing the ratio of ‘‘between-class’’ variance to ‘‘within-

class’’ variance. The resulting combination was used as a linear

classifier for dimensionality reduction, to separate the strains origin

according to the studied phenotypes.
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