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Abstract
Background  Liquid-liquid phase separation (LLPS) is essential for the formation of membraneless organelles and 
significantly influences cellular compartmentalization, chromatin remodeling, and gene regulation. Previous research 
has highlighted the critical function of liquid-liquid biopolymers in the development of hepatocellular carcinoma 
(HCC).

Methods  This study conducted a comprehensive review of 3,685 liquid-liquid biopolymer regulators, leading to the 
development of a LLPS related Prognostic Risk Score (LPRS) for HCC through bootstrap-based univariate Cox, Random 
Survival Forest (RSF), and LASSO analyses. A prognostic nomogram for HCC patients was developed using LPRS 
and other clinicopathological factors. We utilized SurvSHAP to identify key genes within the LPRS influencing HCC 
prognosis. To validate our findings, we collected 49 HCC cases along with adjacent tissue samples and confirmed the 
correlation between DCAF13 expression and HCC progression through qRT-PCR analysis and in vitro experiments.

Results  LPRS was established with 8 LLPS-related genes (TXN, CBX2, DCAF13, SLC2A1, KPNA2, FTCD, MAPT, and 
SAC3D1). Further research indicated that a high LPRS is closely associated with vascular invasion, histological grade 
(G3-G4), and TNM stage (III-IV) in HCC, concurrently establishing LPRS as an independent risk factor for prognosis. 
A nomogram that integrates LPRS with TNM staging and patient age markedly improves the predictive accuracy of 
survival outcomes for HCC patients. Our findings suggest that increased DCAF13 expression in HCC plays a crucial role 
in cancer progression and angiogenesis. Navitoclax has emerged as a promising treatment for HCC patients with high 
LPRS levels, offering a novel therapeutic direction by targeting LLPS.

Conclusion  We have formulated a novel LPRS model that is capable of accurately predicting the clinical prognosis 
and drug sensitivity of HCC. DCAF13 might play a pivotal role in malignant progression mediated by LLPS.

Keywords  Hepatocellular carcinoma, Liquid–liquid phase separation, DCAF13, Tumor microenvironment, Prognosis

Utilizing liquid-liquid biopolymer regulators 
to predict the prognosis and drug sensitivity 
of hepatocellular carcinoma
Jianhao Li1,2†, Han Chen1,2†, Lang Bai1,2* and Hong Tang1,2*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13062-025-00592-4&domain=pdf&date_stamp=2025-1-6


Page 2 of 16Li et al. Biology Direct            (2025) 20:2 

Introduction
Hepatocellular carcinoma (HCC) ranks third in global 
cancer mortality. Projections indicate that the incidence 
of HCC will exceed one million by 2025 [1–3]. Despite 
this alarming trend, early diagnosis of HCC occurs in 
fewer than 20% of cases, with more than half being diag-
nosed at advanced stages. Moreover, 70% of patients 
face recurrence within five years of initial treatment [4, 
5]. Currently, the mainstays in treating HCC encompass 
surgical resection, percutaneous ethanol injection, and 
targeted therapy. While approximately 30% of patients 
initially exhibit favorable responses to sorafenib therapy, 
resistance typically emerges within six months [5]. In 
the past five years, immune checkpoint inhibitors have 
transformed HCC treatment, benefiting about 15–20% 
of patients [4, 6, 7]. Over the past decade, extensive 
research has been conducted on gene signatures for pre-
dicting the prognosis of HCC [8, 9]. However, these stud-
ies have predominantly focused on constructing models 
for overall patient prognosis, with limited relevance to 
the development of potential therapeutic targets and the 
selection of clinical treatment strategies [10]. In recent 
years, advancements in prognosis prediction for HCC 
have been significantly driven by studies focusing on 
specific biological processes, such as amino acid metabo-
lism, RNA methylation, and cell death, which have also 
advanced the prediction of treatment responses [11–13]. 
Thus, developing HCC-specific prognostic biomarkers 
and identifying potential therapeutic targets based on 
distinct physiological and pathological processes is highly 
needed.

Liquid-liquid phase separation (LLPS) constitutes 
a biophysical process wherein biomolecules undergo 
rapid, reversible concentration to form liquid-phase con-
densates [14]. This process results in the formation of 
membrane-less organelles within cells, facilitating com-
partmentalization. These organelles and compartments 
play pivotal roles in diverse cellular functions, such as 
restructuring chromatin, overseeing gene transcrip-
tion and translation, and more [15, 16]. The dynamism 
of LLPS involves active participation from scaffolds, 
regulators, and clients in this intricate molecular ballet. 
Scaffolds offer structural stability to biomolecular assem-
blies, while regulators guarantee their correct operation. 
Clients, which frequently include elements that bind 
particularly to scaffold elements, are found in conden-
sates under certain conditions [14]. The LLPS status of 
key proteins, such as RNA-binding proteins and tran-
scription factors, is known to influence their biological 
functions and downstream signaling regulation [17, 18]. 
For instance, the biomolecular condensate of the RNA-
binding protein YTHDC1, generated through LLPS, is 
essential for safeguarding target mRNAs from degrada-
tion [19]. Recent studies have highlighted the connection 

between LLPS and various diseases, particularly neuro-
degenerative conditions like amyotrophic lateral scle-
rosis and Alzheimer’s disease [20–24]. In HCC, early 
cancer cells convert absorbed glucose into glycogen for 
storage [25]. Excessive glycogen accumulation triggers 
LLPS, deactivating the tumor-suppressive Hippo signal-
ing pathway and activating the oncogenic protein YAP, 
thereby initiating tumorigenesis [26]. Simultaneously, 
the autophagy substrate protein p62 modulates autoph-
agy via LLPS, degrading damaged or non-membranous 
organelles and influencing HCC progression [27]. There-
fore, we believe that exploring the role of LLPS in HCC 
research represents a valuable direction for enhancing 
our understanding of HCC pathogenesis, facilitating 
prognosis prediction, and guiding the personalized selec-
tion of therapeutic strategies.

In this study, we established a prognostic score for 
HCC and discovered potential treatment agents for 
high-LPRS patients. Concurrently, we screened and 
experimentally validated DCAF13 as a significant tumor 
promoter in HCC (Fig.  1). Initially, we developed an 
LLPS-Related prognostic risk score (LPRS) using differ-
ential analysis, the Random Survival Forest (RSF) method 
and LASSO regression. Extensive evaluations utilizing 
this marker, covering survival, clinical characteristics 
assessment, functional enrichment, tumor microenvi-
ronment analysis, and potential treatment agent screen-
ing, were conducted. We additionally combined the LPRS 
with other clinicopathological variables to create a prog-
nostic nomogram for HCC patients. Using “SurvSHAP”, 
we identified DCAF13 within the LPRS as a key prognos-
tic gene, subsequently validating it through clinical tissue 
samples and in vitro cellular experiments. In conclusion, 
our research provides fresh perspectives on individual-
ized prognosis prediction and the development of tar-
geted therapies and drugs in HCC.

Materials and methods
Data source and preprocessing
Clinical data and gene expression information were 
gathered from public repositories, including The Cancer 
Genome Atlas (TCGA), International Cancer Genome 
Consortium (ICGC) databases and The National Omics 
Data Encyclopedia (NODE). To ensure comparability, all 
datasets underwent TPM normalization. Somatic muta-
tions were scrutinized using the R package ‘maftools’. For 
the HCC scRNA-seq dataset GSE149614, acquisition was 
done from the Gene Expression Omnibus (GEO) data-
base. Cell subpopulation annotations were also obtained 
in this study [28]. Comprehensive details regarding spe-
cific cohorts and the number of clinical samples can be 
found in Table S1.
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Clinical samples
This study collected 49 HCC cases and adjacent tissue 
samples from patients who had liver resection at Western 
China Hospital of Sichuan University (2018–2019). The 
inclusion criteria were as follows: (1) patients who under-
went curative resection for liver cancer, (2) postoperative 
pathological diagnosis confirmed HCC, and (3) no prior 
history of anticancer treatment. The exclusion criteria 
were: (1) patients with concurrent other malignancies 
and (2) patients who received antitumor therapy prior to 
surgery. Ethical guidelines were followed, informed con-
sent was obtained, and the study was approved by the 
Ethics Committee of the hospital (2016–91), adhering to 
the Declaration of Helsinki.

Identification and validation of LPRS
Utilizing the data from the DrLLPS database, we ana-
lyzed gene expression data for 3,585 LLPS-related genes, 
including 85 scaffolds, 355 regulators, and 3,145 clients, 
from the TCGA cohort (Table S2) [29]. In the screening 
process, 652 differentially expressed genes (DEGs) were 
identified. DEGs associated with OS were then identi-
fied through univariate Cox regression analysis, yielding 
330 significant DEGs. The data were subjected to 1000 
rounds of bootstrapping, and 85 DEGs were consistently 

associated with prognosis in over 900 iterations. A Ran-
dom Survival Forest (RSF) method, employing minimal 
depth (MD), was utilized to refine the selection of prog-
nostically relevant genes, isolating 12 genes with the 
highest concordance index (C-index) values from 1,000 
analyses. 12 genes were included in the LASSO Cox 
regression model to eliminate collinearity, and ultimately, 
8 genes were selected for constructing the LPRS. The 
LPRS was computed with the following formula:

	 LPRS =
∑ n

i=1
Coefi*xi

In this context, Coefi represents the coefficient, and xi 
denotes the mRNA expression value of eight regulators. 
This equation was utilized to compute the LPRS for each 
patient across both the training (TCGA) and valida-
tion (ICGC, CHCC) cohorts. The prognostic predictive 
efficacy of the LPRS in patients with HCC was assessed 
through the computation of time-dependent AUC.

Functional enrichment analysis
we employed the “clusterProfiler” package in R for the 
identification of potential biological pathways impli-
cated by DEGs [30]. To further analyze the distinctive 

Fig. 1  Flowchart for comprehensive analysis of LLPS in HCC
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biological functions between the high- and low- LPRS 
groups, we applied Gene Set Variation Analysis (GSVA) 
and Gene Set Enrichment Analysis (GSEA). The “h.all.
v2022.1.Hs.symbols.gmt” database was employed for 
these analyses, facilitated by the R packages “GSVA” and 
“GSEABase.”

Identification of potential therapeutic agents
In this study, patients were divided into LPRS-high and 
LPRS-low groups based on median LPRS scores. Human 
cancer cell line (CCL) data were sourced from the Can-
cer Cell Line Encyclopedia (CCLE) and the Dependency 
Map (DepMap) portal [31]. Drug sensitivity data were 
obtained from the PRISM Repurposing database and 
the Cancer Therapeutics Response Portal (CTRP), with 
a focus on determining drug sensitivity using the AUC. 
Our analysis aimed to find therapeutic agents show-
ing higher sensitivity in LPRS-high groups by compar-
ing AUC values and conducting Spearman correlation 
to identify drugs negatively correlated with LPRS scores. 
We compiled published clinical trial data and experi-
mental evidence to ensure a comprehensive evaluation 
of candidate compounds [32]. This streamlined approach 
combines genomic and drug response data to identify 
potential treatments for HCC, highlighting the utility of 
integrated datasets in therapeutic discovery.

SurvSHAP
The SHAP (Shapley Additive exPlanations) framework, 
devised by Lundberg et al., revolutionizes the inter-
pretability of “black box” machine learning (ML) mod-
els by quantifying individual feature contributions. 
This approach, facilitated by the “SurvSHAP” package, 
advances the field by offering detailed, time-dependent 
insights for survival regression deep learning models, 
thus enhancing the transparency and understanding of 
ML predictions [33, 34].

Cell culture and proliferation experiments
Huh7 and HepG2 HCC cell lines were obtained from 
Procell Life Science & Technology (Wuhan, China), and 
HUVECs from Cellcook (Guangzhou, China). HCC cells 
were cultured in DMEM with FBS at 37 °C and 5% CO2. 
HUVECs were cultured in EGM-2 BulletKit under simi-
lar conditions. Cell proliferation was measured using the 
CCK-8 assay. Briefly, 4000 cells were plated in 96-well 
plates, and viability was measured with a microplate 
reader. For the colony formation assay, 3000 cells were 
seeded and cultured for 10–14 days, then fixed, stained, 
and counted.

Cell transfection
DCAF13 siRNAs and the negative control (NC) 
were obtained from GenePharma (Shanghai, China). 

Transfections were done using Lipofectamine 3000 
(Thermo Fisher, CA, USA) per the manufacturer’s 
instructions. Transfection efficiency was verified 48  h 
later. The scrambled sequence was used as the NC 
siRNA.

Real-time quantitative PCR
Total RNA was extracted with TRIzol reagent (Invit-
rogen, USA) and converted to cDNA using the Prime 
Script™ RT reagent Kit (Takara, Japan). Quantitative PCR 
probes for DCAF13 were from Tsingke Biotechnology 
(Beijing, China). Gene expression was assessed in trip-
licate using the LightCycler96 (Roche, Switzerland) and 
C1000®®™ Thermal Cycler (Bio-Rad, USA), quantified by 
the 2−ΔΔCT method.

Western blotting
Cell lysates were prepared with RIPA buffer (Cell Sig-
naling Technology). Western blotting used primary 
antibodies, including anti-DCAF13 (ab214424) and anti-
HIF-1α (ab51608) from Abcam. Additional antibodies 
targeted HIF-1α, VEGF, NOTCH-1, β-catenin, c-Myc, 
and CCND1. Immune complexes were visualized with 
enhanced chemiluminescence reagents (4  A BIOTECH, 
Beijing, China).

Lumen formation assay
The lumen formation assay used 96-well plates coated 
with growth factor-reduced Matrigel (Corning, NY, 
USA). HUVECs (3 × 10^4 cells/well) were seeded in 
EGM-2 medium. After forming capillary-like structures, 
the medium was replaced with HepG2 or Huh7 cell 
supernatants. After 6 h, lumens were imaged with phase-
contrast microscopy (OLYMPUS CKX53, Olympus, 
Japan) and quantified using Image J.

Statistical analysis
All statistical analyses were conducted using R (version 
4.0.4). Differences between two groups were assessed 
with a two-tailed, unpaired Student’s t-test. Chi-square 
tests examined correlations between LPRS and clinical 
features. Kaplan-Meier analyses for OS used the median 
LPRS, with significance by log-rank test. Univariate and 
multivariate Cox regression analyses identified relation-
ships between variables and outcomes, with significance 
set at P < 0.05.

Results
Variability in the genetic landscape of LLPS-related genes 
in HCC
In the TCGA-LIHC cohort analysis, we identified 652 
DEGs (P-value and FDR < 0.05, and |log2FC| > 1). Among 
these, 519 genes were upregulated, and 133 genes were 
downregulated in HCC (Fig.  2A, B). These DEGs are 
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detailed in Table S3. Functional enrichment analyses 
revealed that DEGs are involved in processes such as 
nuclear division, organelle fission, the cell cycle, and the 
MAPK signaling pathway (Fig.  2C, D). Univariate Cox 
analysis was initially conducted, identifying 330 DEGs 
closely associated with OS. Using bootstrapping, we 
identified 85 DEGs consistently correlated with prog-
nosis. A minimal depth-based random survival forest 

(RSF) method selected the key features. After 1,000 RSF 
iterations, 12 genes with the highest C-index values were 
retained for further study. Figure 2E shows a forest plot 
representing the univariate Cox analysis of 12 genes in 
the TCGA-LIHC dataset. Additionally, CNV (copy num-
ber variation) status analysis showed frequent altera-
tions in these 12 genes. It was noted that DCAF13 had 
the most CNV amplifications in pan-cancer and HCC, 

Fig. 2  The variation and prognostic value of LLPS in HCC. (A) Heatmap of the LLPS-related DEGs between HCC and normal tissues. (B) Volcano plot of the 
LLPS-related DEGs. (C) GO enrichment analyses based on the DEGs. (D) KEGG enrichment analyses based on the DEGs. (E) Univariate Cox analysis of OS 
in HCC. (F) CNV values of LLPS prognosis related genes in the TCGA cohort

 



Page 6 of 16Li et al. Biology Direct            (2025) 20:2 

whereas SLC2A1, FTCD, and SAC3D1 possessed the 
most significant copy number deletions in HCC (Fig. 2F 
and Fig. S1 A). The chromosomal locations of the 12 
genes are shown in Fig. S1 B. The somatic mutation anal-
ysis indicated that the mutation rate of 12 genes in HCC 
patients was relatively low, at 4.35% (16/368) (Fig. S1 C). 
These results indicated that LLPS-related genes were 
dysregulated in HCC and had potential prognostic value.

Construction of LLPS-related prognostic risk score 
(LPRS) and its clinical value and pathway characteristic 
assessment
To determine the prognostic value of LLPS-related 
genes in HCC, we computed the LPRS incorporat-
ing TXN, CBX2, DCAF13, SLC2A1, KPNA2, FTCD, 
MAPT, and SAC3D1. The LPRS was derived using a 
LASSO Cox regression model based on the minimum 
criterion (Fig. 3A, B). The LPRS formula employed is as 
follows: LPRS = (0. 136× expression of TXN) + (0. 137× 
expression of CBX2) + (0. 080× expression of DCAF13) 
+ (0. 114× expression of SLC2A1) + (0. 114× expression 
of KPNA2) + (-0.136 × expression of FTCD) + (0. 078× 
expression of MAPT) + (0. 164× expression of SAC3D1) 
in the training and validation cohorts. Stratifying HCC 
patients by median LPRS showed that high LPRS is sig-
nificantly associated with reduced OS (Fig.  3C-E). In 
comparison with other LLPS-related models, the time-
dependent AUC analysis revealed that the LPRS outper-
formed the Lai and Wang models in the training cohort 
(TCGA-LIHC) as well as in the two external validation 
cohorts (ICGC-LIRI and CHCC) (Fig. S2 A-C). Further 
analysis revealed that high LPRS was significantly cor-
related with high histologic grade (G3-G4), advanced 
TNM stage, vascular invasion, and poor five-year prog-
nosis (Fig. 4A-E and Table S4). GSVA was used to iden-
tify differences in biological processes between high- and 
low-LPRS groups using data from the TCGA, ICGC, 
and CHCC datasets (Fig. 4F). This investigation revealed 
significant variations in eight distinct pathways across 
all datasets (Table S5). Subsequent validation via GSEA 
underscored a marked enrichment of pathways, including 
the unfolded protein response, MYC targets, E2F targets, 
G2M checkpoint, DNA repair, PI3K-AKT-MTOR signal-
ing, and MTORC1 signaling, in samples exhibiting high 
LPRS levels, as determined by the TCGA-LIHC database 
(Fig. 4G-I and Fig. S3 A-C). Overall, LPRS shows prom-
ising clinical prognostic potential, likely associated with 
the regulation of the cell cycle and the PI3K-AKT path-
way in HCC.

Creation and evaluation of the nomogram survival model
In subsequent analyses, both univariate and multivari-
ate Cox regression analyses identified LPRS and TNM 
stage as independent prognostic factors in HCC (Fig. 

S3 D). Using the TCGA cohort, a nomogram model 
was developed through multivariate Cox and stepwise 
regression analyses to evaluate 1-, 3-, and 5-year OS, 
incorporating age, TNM stage, and LPRS as significant 
variables (Fig.  5A and Table S4). The model’s accuracy 
was validated via calibration curves (Fig.  5B). Decision 
curve analysis (DCA) demonstrated that the nomogram 
model outperformed other clinical features (Fig.  5C). A 
significant divergence in survival between the high-LPRS 
and low-LPRS groups was evident based on the nomo-
gram score (Fig. 5D). Additionally, the evaluation of AUC 
values for the public cohorts demonstrated the remark-
able precision of the nomogram in forecasting 1-, 3-, and 
5-year survival in HCC patients (Fig. 5E-G). In summary, 
our prognostic nomogram for OS prediction, based 
on these results, is considered reliable and suitable for 
implementation in HCC patient care.

Tumor microenvironment dissection based on LPRS
We further investigated the detailed distribution of the 
LPRS in HCC using scRNA data. By annotating the major 
cell types in GSE149614, we found that the LPRS in T/NK 
and hepatocyte cells differed from that in other cell types 
(Fig.  6A, B). The violin plot clearly demonstrated the 
variations in LPRS across cell types, consistently indicat-
ing higher LPRS in hepatocyte cells (Fig. 6C). Given the 
significant variation in LPRS within hepatocyte cells, we 
further annotated them into pro-metastatic, pro-tumori-
genic, and non-malignant subgroups (Fig. 6D). We found 
that most pro-metastatic cells exhibited high LPRS, and 
pro-tumorigenic cells had significantly higher LPRS 
than non-malignant cells (Fig.  6E, F). Subsequently, the 
heatmap demonstrated that CBX2, SAC3D1, DCAF13, 
MAPT, and TXN were highly expressed in hepatocytes, 
particularly in pro-metastatic cells (Fig.  6G, H). These 
findings collectively suggest a close association between 
LPRS and the formation and metastasis of tumors.

Identification of potential therapeutic agents for high LPRS 
HCCs
To uncover potential drugs for treating high-LPRS 
HCC patients, our analysis began with an examination 
of CTRP and PRISM data. Initially, we conducted a dif-
ferential drug response analysis comparing the top and 
bottom decile groups with the highest and lowest LPRS 
scores. Subsequently, analyzing the correlation of AUC 
values of drugs and LPRS was conducted, selecting drugs 
with a correlation coefficient less than − 0.3. These analy-
ses identified four CTRP-derived compounds (including 
Fluvastatin, Lovastatin, ABT-737, and MLN2238) and six 
PRISM-derived compounds (including KI-16425, Indip-
lon, Dofetilide, Dabrafenib, Puromycin, and LY2183240) 
(Fig.  7A, B). The results were further validated in HCC 
patients. The fold-change values, indicating increased 



Page 7 of 16Li et al. Biology Direct            (2025) 20:2 

Fig. 3  Construction and validation of the LPRS signature. (A) Selection of the optimal parameter (lambda) in the LASSO model. (B). LASSO coefficients 
of the 12 LLPS-prognosis related genes in TCGA cohort. (C, D and E) Overall survival analysis for high-LPRS and low- LPRS groups in the training (TCGA) 
cohort and validation (ICGC, CHCC) cohort, respectively
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Fig. 4  LPRS Clinical Value and Pathway Characteristic Assessment. (A) Heatmap of eight LLPS prognosis related genes expression and corresponding 
clinicopathological features of low- and high- LPRS group. (B-E) The relationships between the LPRS and clinical characteristics including histologic grade, 
TNM stage, vascular invasion and survival status. (F) Venn diagram derived from Gene Set Variation Analysis (GSVA). (G-I) Gene Set Enrichment Analysis 
(GSEA) enrichment results based on the TCGA database
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expression of drug target genes in tumor tissue compared 
to normal tissue, suggest these drug candidates are more 
likely to treat HCC effectively. Additionally, an exten-
sive search of the PubMed database and ​h​t​t​​p​s​:​/​​/​w​w​​w​.​​c​l​
i​n​i​c​a​l​t​r​i​a​l​s​.​g​o​v​/​​​​ was conducted to find studies and clini-
cal trials supporting the efficacy of these drug candidates 
(Fig. 7C). Navitoclax shows promising results for treating 

high-LPRS score HCC, owing to its outstanding in silico 
and in vitro performance.

Model interpretation and important molecular screening 
based on SurvSHAP
SurvSHAP, the pioneering method in providing time-
dependent explanations for survival regression DL mod-
els, represents a significant advancement in the field. In 

Fig. 5  Establishment and assessment of the nomogram survival model. (A) A nomogram was established to predict the prognostic of HCC patients. (B) 
Calibration plots showing the probability of 1-, 3-, and 5-year overall survival in TCGA cohort. (C) Decision curve analysis (DCA) of nomogram predicting 
overall survival. (D) Kaplan-Meier analyses for the two HCC groups based on the nomogram score. (E-G) Receiver operator characteristic (ROC) analysis of 
nomogram predicting 1-, 3-, and 5-year overall survival in TCGA-LIHC, ICGC-LIRI and CHCC cohort

 

https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/
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Fig.  8A and B, we depict the aggregation of the seven 
most crucial variables, sorted by their aggregated Shap-
ley values, across 500 observations. The horizontal bars 
illustrate the frequency of observations where a variable’s 
importance, indicated by a specific color, ranked first, 
second, and so on. Significantly, CBX2 emerged as the 
paramount variable, with subsequent importance attrib-
uted to DCAF13 and SAC3D1.

DCAF13 is a key player in the LPRS and a tumor promoter 
in HCC
After a comprehensive analysis of all findings, we iden-
tified DCAF13 as the key gene linked to the LPRS sig-
nature, conducting further experiments. Employing 
qRT-PCR experiments, we quantified the mRNA levels 
of DCAF13 in HCC and adjacent tissue samples from 
the HX-cohort. Differential analysis disclosed a notable 
increase in DCAF13 expression in HCC tissue samples 
(Fig.  9A). Further analysis of clinical characteristics 

Fig. 6  Analysis of the Tumor Microenvironment Utilizing the LPRS Signature. (A) UMAP plot visualization of cell subtypes across 21 HCC patients. (B) 
UMAP plot depicting the density of LPRS. (C) Violin plots representing the LPRS value across different cell types. (D) UMAP plot illustrating the annota-
tions of hepatocyte cells in an HCC patient. (E) UMAP plot showing the density of LPRS in hepatocyte subgroups. (F) Violin plots of LPRS values in vari-
ous hepatocyte subgroups. (G-H) Heatmaps displaying the distribution of genes from the 8-gene LPRS model within the cellular subtypes of the HCC 
microenvironment

 



Page 11 of 16Li et al. Biology Direct            (2025) 20:2 

Fig. 7  Identifying Potential Therapeutics with Enhanced Sensitivity in High LPRS Patients. (A) Spearman’s correlation and differential response analysis for 
four CTRP-derived compounds, with lower y-axis values indicating higher drug sensitivity. (B) Analysis of seven PRISM-derived compounds using Spear-
man’s correlation and differential response, where lower y-axis values denote increased sensitivity. (C) Pinpointing the most effective therapeutic agents 
for high LPRS patients, supported by multi-source evidence
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revealed markedly higher expression of DCAF13 in 
BCLC stage (stage C and D) tissues, with survival analysis 
indicating a strong correlation between elevated DCAF13 
expression and an unfavorable prognosis in HCC patients 
(Fig. 9B; Table S6). Subsequently, we conducted in vitro 
cell experiments. Through siRNA-mediated knockdown, 
DCAF13 protein levels were diminished in Huh7 and 
HepG2 cells. Additionally, we assessed the protein levels 
of HCC progression markers in siRNA-transfected cells 
to validate whether DCAF13 alteration induced changes 
in HCC progression marker genes. As expected, DCAF13 
silencing suppressed the protein expression of HIF-1α, 
VEGF, NOTCH-1, β-catenin, c-Myc, and CCND1 
(Fig.  9C). Both the CCK8 cell proliferation assays and 
clonal experiments demonstrated significant growth inhi-
bition in both Huh7 and HepG2 cell lines with DCAF13 
reduction (Fig. 9D and E). Subsequent evaluation of the 
effects of DCAF13 silencing on tube formation in Huh7 
and HepG2 cells revealed a significant inhibitory effect 
on HCC cell tube junctions and length (Fig.  9F). Up to 
this point, our data substantiates the pivotal role of 
DCAF13 in the proliferation and metastasis of HCC.

Discussion
Recent advancements in LLPS have significantly 
impacted our comprehension of how tumors develop 
malignant characteristics [35–37]. Therefore, we 
embarked on investigating the clinical relevance and 
molecular mechanisms of LLPS-related genes in HCC. 
Within this study, LLPS genes exhibiting varied expres-
sion patterns and prognostic significance in HCC were 
identified as potential prognostic biomarkers for the 
disease. These genes include CBX2, DCAF13, SAC3D1, 
TXN, SLC2A1, KPNA2, MAPT, and FTCD. Their 

respective roles in the LLPS process are meticulously 
delineated in Table S7.

Previous studies have demonstrated that CBX2 pro-
motes the phase separation of DNA and nucleosomes, 
leading to the formation of condensates that regulate 
chromatin compaction, modulate downstream gene 
expression, and ultimately influence tumor function 
[38]. In HCC, CBX2 has been identified as an oncogene. 
Silencing CBX2 has been shown to enhance YAP phos-
phorylation, which in turn suppresses HCC cell prolifera-
tion and promotes apoptosis [39]. This is consistent with 
our research, where CBX2 ranks highest in SHAP values 
for the prognosis of HCC. Subsequently, SAC3D1 was 
found to be associated with centrosome replication and 
spindle formation during the cell cycle [40]. Furthermore, 
SAC3D1 has been identified as a potential prognostic 
biomarker for HCC Moreover, single-cell data indicate 
specific high expression of SAC3D1 in HCC stem cells 
[41, 42]. However, there is still a lack of relevant in vitro 
and in vivo experiments. TXN regulates the formation of 
stress granules through phase separation, thereby affect-
ing the proliferation and apoptosis of tumor cells [43]. In 
addition, in vitro and in vivo experiments have confirmed 
that TXN promotes hepatocarcinogenesis, proliferation, 
and metastasis of HCC [44]. Its mechanism is associated 
with increased stability of BACH1 and activation of the 
AKT/mTOR pathway [45]. SLC2A1 has been shown to be 
associated with the formation of the postsynaptic density 
[46]. SLC2A1 has been proven to be a promoter molecule 
of HCC, associated with the metastasis, drug resistance, 
and immune escape of HCC. Its mechanism is related to 
the Warburg effect of tumors, making it a potential ther-
apeutic target for HCC [47]. KPNA2 is a nuclear trans-
port protein responsible for transporting proteins from 
the cytoplasm to the cell nucleus, and it is associated 

Fig. 8  Model interpretation based on SurvSHAP. (A) Time dependent SurvSHAP(t) value. (B) The rank of eight LPRS related genes according to the SHAP 
value
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with the formation of structures such as the nucleolus 
[48]. In HCC, KPNA2 plays a pivotal role in promoting 
tumor proliferation and migration by regulating DNA 
replication and the cell cycle [49]. Meanwhile, microtu-
bule-associated protein tau (MAPT) has been identi-
fied to undergo LLPS through homotypic interaction 
via self-coacervation or heterotypic association through 
complex-coacervation with binding partners such as 
RNA [50]. MAPT has been implicated as an oncogene in 
various cancers, including breast cancer, gastric cancer, 
prostate cancer, and brain cancer. In the context of HCC, 
the overexpression of MAPT significantly enhances the 
proliferation and migration capabilities of HCC cells [51]. 
Furthermore, FTCD is involved in the formation of the 
centrosome. In HCC, there is a notable downregulation 
in the expression of FTCD. This loss of FTCD expres-
sion leads to the upregulation of PPAR-γ and SREBP2 
by modulating the PTEN/Akt/mTOR signaling axis [52]. 

Consequently, this dysregulation results in lipid accumu-
lation and contributes to hepatocarcinogenesis. DCAF13 
function as a component of the E3 ubiquitin ligase com-
plex, participating in various biological processes such as 
cell cycle regulation, DNA repair, and immune response 
[53]. These intricate roles underscore the multifaceted 
nature of DCAF13 in cellular homeostasis and disease 
pathogenesis, including its potential involvement in 
hepatocellular carcinoma progression. The phase separa-
tion of NPM1/DCAF13 plays a crucial regulatory role in 
ribosome maturation [54]. The dysregulation of DCAF13 
expression in HCC is prognostically relevant and clini-
cally significant. While the oncogenic role of DCAF13 
has been confirmed in breast cancer and lung adenocar-
cinoma, its role in HCC is yet to be explored [55–57]. 
Further investigation revealed that elevated DCAF13 
expression is associated with adverse clinical outcomes 
and BCLA grading (C-D), and in vitro experiments 

Fig. 9  Clinical significance, prognostic value, and biological function of DCAF13 in HCC. (A) The mRNA levels of the DCAF13 were determined in HCC tis-
sues and adjacent normal samples. (B) Kaplan–Meier survival curves according to DCAF13 expression in HCC specimens. (C) Western blot analysis of HIF-
1α, VEGF, NOTCH-1, β-catenin, c-Myc, and CCND1 in Huh7 and HepG2 cells. (D) CCK-8 assay was used to evaluate the cell proliferation of Huh7 and HepG2 
cells. (E) Colony formation assay was used to evaluate the cell proliferation of Huh7 and HepG2 cells. (F) Representative pictures of lumen formation assay
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confirmed that decreased DCAF13 expression inhibits 
the proliferation and angiogenesis of HCC cells. There-
fore, DCAF13 may play a crucial role in HCC through 
LLPS, but further molecular mechanisms require in-
depth exploration.

Based on the eight potential LLPS prognosis-related 
genes, we formulated the LPRS and explored its prog-
nostic and predictive significance, alongside its robust 
correlations with HCC. Our findings reveal a distinct 
segregation in survival trends between cohorts exhibiting 
high versus low LPRS levels. Notably, our investigation 
indicates that individuals with high LPRS exhibit inferior 
clinical status and survival outcomes compared to those 
harboring lower LPRS levels. Moreover, we identified sig-
nificant enrichment of genes related to the unfolded pro-
tein response, cell cycle, and PI3K-AKT-MTOR pathways 
in high-LPRS samples through GSVA and GSEA analyses. 
Previous studies have linked unfolded protein accumula-
tion in the endoplasmic reticulum (ER) lumen to HCC 
progression, metastasis, and drug resistance [58, 59]. 
Furthermore, the crosstalk between the unfolded protein 
response and the PI3K/AKT/mTOR pathway is critical in 
shaping cancer cell fate [60]. Therefore, LLPS may drive 
hepatocellular carcinoma progression through the inter-
play of the unfolded protein response, PI3K/AKT signal-
ing, and cell cycle-related pathways. Subsequently, we 
devised a prognostic nomogram by amalgamating LPRS, 
TNM stage, and age, which demonstrated commendable 
performance in prognosticating and enhancing the preci-
sion of survival estimations.

The related research shows that alterations in phase 
separation form the basis of many cancer phenotypes. 
Mutations in a few genes can alter the ability of macro-
molecules to form biomolecular condensates, indirectly 
affecting their activity. This provides a non-genetic expla-
nation for tumor heterogeneity and drug resistance. 
Therefore, in this study, we evaluated the impact of 
LPRS on the HCC microenvironment based on single-
cell sequencing data. It is noteworthy that in HCC, LLPS 
may primarily affect the metastasis of HCC cells through 
CBX2, SAC3D1, DCAF13, MAPT, and TXN, thereby 
influencing the prognosis of HCC. Systematic drug 
screening revealed that navitoclax is a potential thera-
peutic drug for patients with high-LPRS HCC patients. 
Its mechanism of action involves targeting and inhibit-
ing specific Bcl-2 family proteins to promote apoptosis of 
cancer cells, thereby inhibiting tumor growth [61]. Due 
to the poor solubility and low bioavailability of ABT-
737, a clinical formulation of ABT-737, navitoclax, has 
been developed. Preliminary in vitro and in vivo experi-
ments have confirmed the therapeutic effect of navi-
toclax on HCC, and related clinical trials are underway 
[62]. However, this research primarily relies on bioinfor-
matics analyses, which, while robust, necessitate further 

validation in multicenter clinical cohorts to comprehen-
sively evaluate the prognostic value of the LPRS model in 
HCC. Additionally, the molecular mechanism by which 
DCAF13 participates in HCC progression through LLPS 
remains to be fully elucidated. The association between 
LLPS and navitoclax sensitivity in HCC also requires fur-
ther mechanistic exploration.

Conclusions
Essentially, we devised an innovative LPRS model capa-
ble of accurately forecasting the clinical prognosis and 
drug sensitivity of HCC. LLPS potentially influences the 
prognosis of HCC by modulating its metastatic behav-
ior. Furthermore, there is suggestive evidence implicating 
DCAF13 as a key player in the LLPS-mediated malignant 
progression of HCC.
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