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We tested the effect of daytime indoor light exposure with varying melanopic strength

on cognitive performance in college-aged students who maintained an enforced

nightly sleep opportunity of 7 h (i.e., nightly sleep duration no longer than 7 h) for 1

week immediately preceding the day of light exposure. Participants (n = 39; mean

age ± SD = 24.5 ± 3.2 years; 21 F) were randomized to an 8 h daytime exposure to

one of four white light conditions of equal photopic illuminance (∼50 lux at eye level in

the vertical plane) but different melanopic illuminance [24–45 melanopic-EDI lux (melEDI)]

generated by varying correlated color temperatures [3000K (low-melEDI) or 5000K

(high-melEDI)] and spectra [conventional or daylight-like]. Accuracy on a 2-min addition

task was 5% better in the daylight-like high-melEDI condition (highest melEDI) compared

to the conventional low-melEDI condition (lowest melEDI; p < 0.01). Performance speed

on the motor sequence learning task was 3.2 times faster (p < 0.05) during the

daylight-like high-melEDI condition compared to the conventional low-melEDI. Subjective

sleepiness was 1.5 times lower in the conventional high-melEDI condition compared

to the conventional low-melEDI condition, but levels were similar between conventional

low- and daylight-like high-melEDI conditions. These results demonstrate that exposure

to high-melanopic (short wavelength-enriched) white light improves processing speed,

working memory, and procedural learning on a motor sequence task in modestly sleep

restricted young adults, and have important implications for optimizing lighting conditions

in schools, colleges, and other built environments.
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INTRODUCTION

The physiological (non-visual) effects of light in humans range from changes in gene expression (1)
to overt behavior (2–4). One of the characteristic non-visual responses to light is the stimulation of
alertness and cognitive performance. These responses are mediated by intrinsically photosensitive
retinal ganglion cells (ipRGCs), primarily through stimulation of the photopigment melanopsin
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that is most sensitive to higher intensity ∼480-nm light (5).
Therefore, high intensity and short wavelength (blue)-enriched
light with greater melanopic content is typically more effective in
inducing physiologic responses relative to dimmer blue-depleted
light with lower melanopic content (6–8).

The spectral sensitivity of non-visual responses to
light, including alertness and cognitive performance, has
predominantly been examined during evening and nighttime
exposures (3, 4, 9–13). Relatively few studies have examined
the effects of short-wavelength light on daytime alertness
and performance. While comparison of monochromatic or
narrow-bandwidth sources of different wavelengths have
shown that short-wavelength light preferentially improves
daytime alertness and performance (14–16), studies examining
the effects of white light with different correlated color
temperatures (CCT) have shown mixed results (17–19).
As these differences may be a result of methodological
inconsistencies, particularly with regard to differences in
the duration of exposure (1–16 h) and photopic illuminance,
more studies are needed to determine whether blue-enriched
white light during the day has a beneficial effect on alertness
and cognition.

While there is evidence for the benefits of blue-enriched light
on alertness and cognitive performance, there is considerably
less understanding of the effect of light spectra on learning and
memory. A small number of studies suggest that declarative
memory (9, 20), and procedural learning (21) are better under
blue-enriched light in the evening, and one study has shown
improved verbal memory recall under blue-enriched light during
the day (20).

In the current study we aimed to examine the effects of an
8-h daytime light exposure (LE) to one of four polychromatic
light emitting diode (LED) light sources with the same photopic
(visual) illuminance but different spectral compositions, and
therefore different melanopic content estimated by melanopic
Equivalent Daylight Illuminance (melEDI) on cognition. It
was hypothesized that learning and memory, sleepiness and
alertness, and vigilance and concentration would improve with
exposure to light with higher melEDI. Additionally, given
recent evidence suggesting that daytime alertness is higher with
exposure to light with daylight-like spectra compared to light
with conventional LED spectra (17), we also compared the effects
of conventional and daylight-like spectra within the high- and
low-melEDI conditions.

MATERIALS AND METHODS

Participants
Thirty-nine healthy college-aged (18–30 years) participants [21
females; mean age (±SD): 24.5 ± 3.2 years)] were studied in the
Intensive Physiological Monitoring (IPM) Unit in the Center for
Clinical Investigation (CCI) at Brigham and Women’s Hospital.
The study was approved by the Partners Human Research
Committee (IRB# 2019-P-000900), and participants provided
written informed consent prior to study. All participants reported
being free from medical and psychological conditions and had a
negative Ishihara Color Blindness Test. Participants were either

currently enrolled in college or had a college degree. For at least
1 week prior to entering the IPM Unit, participants maintained
a consistent sleep/wake schedule that limited time in bed to 7 h
(e.g., 23:00–06:00). Participants selected for themselves the 7-h
interval for time in bed at the start of the study based on their
own preference and schedule, but the same 7-h time in bed was
then maintained every night for 7 consecutive nights leading up
to the in-lab study. Adherence to the sleep/wake schedule was
confirmed with (1) calls to a time- and date-stamped voicemail
at bedtime and wake time, and (2) wrist actigraphy (Actiwatch,
MiniMitter Company, Inc., Sunriver, OR, USA). The 7-h time
in bed was selected based on the average sleep duration of
college students being less than 7 h (22, 23). Participants were
asked to refrain from use of any prescription or nonprescription
medications, supplements, recreational drugs, caffeine, alcohol,
or nicotine. Compliance was verified by urine toxicology upon
entry to the IPM Unit. At the time of study, approximately half
(11/21) of the women were using hormonal contraception (oral
birth control n= 4; intrauterine device n= 5; Nexplanon implant
n = 2). Of the naturally cycling women not using contraception
(n = 10), six were in the follicular phase of their menstrual
cycle, and they were approximately evenly distributed between
the LE conditions.

Study Protocol
Participants were studied using a 2-day laboratory protocol
(Figure 1A) in an environment free of time cues (no access to
windows, clocks, watches, live TV, radio, internet, telephones,
and newspapers and continually supervised by staff trained not
to reveal information about the time of day). Participants were
admitted to the Unit ∼4 h prior to bedtime and were oriented
to their suite following examination by the clinical staff. A 7-h
sleep opportunity (time in bed) was scheduled according to the
centered average of sleep reported daily for 7 days immediately
prior to admission. Upon waking, participants began a constant
posture 25min after wake until the end of the light exposure. Two
hours after wake, participants began their experimental LE, which
continued for 8 h followed by discharge from the Unit.

Light Exposure Conditions
On Day 1 (admission), maximum ambient light during
scheduled wake was 48 µW/cm2 (∼150 lux) when measured
in the horizontal plane at a height of 187 cm and 23 µW/cm2

or (∼89 lux) when measured in the vertical plane at a height
of 137 cm. During the sleep episode, ambient lighting was
switched off (0 lux). Following sleep, maximum ambient light
was decreased to 0.05 µW/cm2 (∼15 lux) in the horizontal
plane at a height of 187 cm and 4.8 µW/cm2 (∼3 lux) when
measured in the vertical plane at a height of 137 cm, and
maintained at that level until the beginning of the experimental
light exposure (Supplemental Table 1). Ambient room lighting
was generated using ceiling-mounted 4100K fluorescent
lamps (F96T12/41U/HO/EW, 95W; F32T8/ADV841/A, 32W;
F25T8/TL841, 25W; Philips Lighting, The Netherlands) with
digital ballasts (Hi-Lume 1% and Eco-10 ballasts, Lutron
Electronics Co., Inc., Coopersburg, PA) transmitted through a
UV-stable filter (Lexan 9030 with prismatic lens, GE Plastics,
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FIGURE 1 | Study protocol and light source spectral characteristics and experimental configuration. The study protocol (A) consisted of one night in the laboratory

where participants were admitted in the evening and maintained their pre-admit sleep-wake cycle including a 7-h sleep opportunity. On Day 2, participants underwent

an 8-h light exposure where they were exposed to ∼50 lux of experimental light with differing spectra (B) 3000K or 5000K of standard (conventional) or full-spectrum

(daylight-like) LED light. During the light exposure, two lamps were configured on either side of the testing station monitor at which participants maintained a constant

posture (C). α-opic EDI and DER values for each light source (D) were derived from the CIE S 026:2018 Toolbox V1.049. ADM, admission; CCT, correlated color

temperature; Con, Conventional; D/C, discharge; DER, daylight (D65) efficacy ratio; DL, Daylight-like; EDI, equivalent daylight (D65) illuminance.

Pittsfield, MA). Routine illuminance and irradiance measures
were conducted using an IL1400 radiometer/powermeter
with an SEL-033/Y/W or SEL-033/F/W detector, respectively
(International Light, Inc., Newburyport, MA).

Participants were randomized to one of four LE conditions
with equal photopic illuminance (∼50 lux in the vertical plane
at the level of the eye, and ∼150 lux in the horizontal plane
at the level of the desk) but different melanopic illuminance
(25–45 melEDI) generated using LED luminaires with either
5000K (high-melEDI) or 3000K (low-melEDI) CCT, and then
further differentiated based on having a conventional or
daylight-like spectra (Figures 1B,C). Luminaires were provided
by Seoul Semiconductor Co., Ltd. (Ansan-si, Gyeonggi-do,

Korea). During the 8-h LE, participants maintained a constant
posture while seated at a testing station (Figure 1D), which
maintained exposure of ∼50 lux in the vertical plane at the level
of the eye, and ∼150 lux in the horizontal plane at level of the
desk (Table 1). All light sources besides the experimental LED
lamps remained turned off throughout the 8-h LE. The spectral
profiles, CIE α-opic equivalent daylight (D65) illuminance (EDI)
and melanopic daylight (D65) efficacy ratio (DER) (24) for
each experimental light sources are shown in Figures 1B,C,
and for the ambient lighting in Supplemental Table 1. Spectral
measurements were conducted using a PR-650 SpectraScan
Colorimeter with CR-650 cosine receptor (Photo Research Inc.,
Chatsworth, CA, USA).
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TABLE 1 | Participant demographic and photopic illuminance and irradiance measures for each condition*.

Light condition Age,

years

Sex female

(n, %)

Bedtime,

hh:mm

Time in bed,

hh:mm

Vertical plane Horizontal plane

Photopic lux Irradiance,

µW/cm2

Photopic lux Irradiance,

µW/cm2

Conventional

low-melEDI

24.20

(3.35)

5

(55.56)

23:25

(0:44)

07:00

(0:01)

50.13

(0.86)

15.11

(1.54)

150.97

(3.51)

47.81

(3.02)

Daylight-like

low-melEDI

24.44

(3.94)

5

(55.56)

23:23

(1:13)

07:04

(0:04)

50.09

(0.71)

17.35

(4.36)

150.03

(2.05)

51.23

(3.09)

Conventional

high-melEDI

25.30

(3.47)

5

(50)

23:50

(1:07)

07:07

(0:11)

50.35

(2.11)

18.06

(2.12)

151.19

(4.27)

49.92

(2.24)

Daylight-like

high-melEDI

23.56

(1.8)

5

(55.56)

23:58

(0:52)

07:03

(0:02)

50.27

(0.74)

19.03

(2.15)

147.40

(5.55)

52.55

(2.48)

*Age, bedtime, time in bed, photopic lux, and irradiance are reported as mean ± SD. Sex is reported as number and percent of female participants. Light measurements in the vertical

and horizontal planes were taken at the level of the eye and desk, respectively. Time-in-bed was derived from call-ins at bed and wake times.

Sleepiness, Wellbeing, Performance, and
Learning Assessments
The timing of assessments throughout the light exposure are
shown in Figure 1A. The Performance Battery, which included
the Psychomotor Vigilance Task [PVT (25)], Addition Task
(26), Karolinska Sleepiness Scale [KSS (27)], and Visual Analog
Scales [VAS, (26)], was administered once during dim light
and then hourly throughout the light exposure. The battery
assessed sustained attention (PVT), working memory and
processing speed (Addition Task), subjective sleepiness (KSS),
and alertness, health andwellbeing (VAS). A brief practice session
to familiarize participants with the battery was administered
at admit (Figure 1A). Approximately 1 h before lights on,
participants completed the d-2 (28) and Word Pairs (29)
tasks, which assessed concentration and declarative memory,
respectively. These tasks were then repeated 7 h later, 6 h into
the light exposure (Figure 1A). Approximately 30min after
lights on, participants completed the Motor Sequence Task
[MST, (30)] to assess procedural learning and the Headache
and Eye Strain Scale (31). These assessments were repeated
7 h later, 30min before the end of the LE (Figure 1A).
Detailed descriptions of the assessments are provided in the
Supplemental Materials and Methods.

Data Analysis
Data from one female and one male participant (3906V, 3907V;
neither reported in Table 1) were excluded from all analyses
due to technical failure during the LE. For tests administered
hourly during the LE, the median of each outcome measure was
calculated across the LE for each individual. For the d-2 test,
only the second session, which was performed during the LE, was
included in the analysis comparing the different LE conditions.
Data from the d-2 task was excluded for one participant (3923V)
in the daylight-like low-melEDI condition as they did not adhere
to testing instructions. MST task performance was analyzed
across the LE such that the average of each trial across both
sessions was used in the analysis. Errors on the MST task
were square-root transformed (

√
x +

√
x+1) prior to analysis.

Headache and Eye Strain Scale responses were dichotomized as

None/Mild symptoms (scores of 0 and 1), and Moderate/Severe
Symptoms (scores of 3 and 4).

The Shapiro–Wilk test was used to assess normal distribution
of the data within each LE condition. Data points that were
located more than ±1.5 times the interquartile range were
considered outliers and removed from analyses (32). No more
than one participant was removed from any LE condition
(see Table 2). The effect of LE condition on each outcome
variable was assessed by one-way ANOVA or the Kruskal–Wallis
test, as appropriate. If a main effect was detected, post-hoc
tests were performed to compare between the (1) conventional
low-melEDI to daylight-like low-melEDI, conventional high-
melEDI and daylight-like high-melEDI; and (2) conventional
low- and high-melEDI to daylight-like low- and high-melEDI,
respectively. Holm-Sidak and Dunn corrections for multiple
comparisons were used for the ANOVA andKruskal–Wallis tests,
respectively. Dichotomized data from the Headache and Eye
Strain Scale were analyzed using Fisher’s Exact test for Session
1 (start of LE) and Session 2 (end of LE). All statistical analyses
were conducted in GraphPad Prism (Version 8.4.0 for Windows,
GraphPad Software, San Diego CA, USA).

RESULTS

There were no significant differences in age, bedtime, or
pre-admission time-in-bed between the light condition groups
(p > 0.05 for all; Table 1). Group mean (±SEM) and statistical
test results for objective and subjective measures collected during
the LE are presented in Table 2. There were no differences
between light conditions in baseline performance for those tests
and subjective ratings assessed under dim-light conditions prior
to the LE, including the PVT, Addition Task, and d-2, and
subjective sleepiness, alertness and general health and wellbeing
(p > 0.05 for all; Supplemental Table 2).

Working Memory, Sustained Attention, and
Concentration
The percentage correct responses on the Addition Task was
significantly different between LE conditions (Kruskal–Wallis;
H = 13.36, p < 0.01), such that participants exposed to
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TABLE 2 | Mean ± SEM and ANOVA results for each test outcome*.

Test outcome Conventional Daylight-like Conventional Daylight-like F

(p-value)low-melEDI low-melEDI high-melEDI high-melEDI

M

(SEM)

N M

(SEM)

N M

(SEM)

N M

(SEM)

N

OBJECTIVE MEASURES

PVT reaction time (ms) 270.70

(6.54)

9 256.40

(8.69)

9 264.00

(12.23)

10 266.10

(10.28)

8 0.37

(0.78)

PVT attentional failures 1.33

(0.29)

9 1.11

(0.41)

9 2.25

(0.78)

10 0.81

(0.31)

8 2.84†

(0.42)

Additions % correct 93.98

(1.02)

9 94.53

(1.09)

9 96.57

(1.11)

10 98.89

(0.42)

8 13.36†

(0.004)

Additions # attempted 25.00

(2.26)

8 30.06

(3.74)

9 23.95

(2.34)

10 24.00

(2.77)

9 1.06

(0.38)

d-2 CP 255.9

(11.66)

9 262.0

(13.13)

8 264.6

(8.51)

10 254.9

(11.54)

9 0.19

(0.91)

d-2 % errors 1.49

(0.26)

9 1.81

(0.42)

8 1.95

(0.34)

10 2.24

(0.50)

9 0.65

(0.59)

MST % change speed 22.32

(9.6)

8 55.08

(14.03)

9 44.83

(7.32)

10 71.16

(9.59)

9 3.68

(0.02)

MST % change errors 54.70

(14.21)

9 3.09

(16.69)

9 15.45

(17.96)

10 −8.33

(14.0)

9 7.20†

(0.06)

Word pairs % recall 94.42

(2.57)

9 95.12

(1.60)

9 92.00

(2.25)

10 93.17

(1.70)

9 0.84†

(0.84)

SUBJECTIVE MEASURES

KSS 5.00

(0.53)

9 3.72

(0.37)

9 3.35

(0.21)

10 5.22

(0.60)

9 11.30†

(0.01)

Sleepy—Alert 60.37

(5.08)

9 76.04

(4.98)

9 71.16

(5.33)

10 63.84

(6.97)

9 4.60†

(0.20)

Calm—Stressed 25.48

(4.02)

9 12.89

(3.91)

9 13.50

(3.96)

9 12.84

(3.32)

9 2.66

(0.07)

Sad—Happy 74.43

(5.30)

9 73.93

(5.33)

9 83.63

(4.95)

10 79.96

(3.86)

9 0.92

(0.44)

Healthy—Sick 16.49

(2.48)

9 7.78

(2.50)

9 6.11

(1.42)

9 23.32

(8.05)

9 3.25

(0.03)

Energetic—Exhausted 49.59

(4.52)

9 34.32

(6.22)

9 32.04

(5.14)

10 42.15

(8.02)

9 1.74

(0.18)

Exhausted—Sharp 56.12

(6.52)

9 67.52

(7.05)

9 66.37

(6.38)

10 67.37

(7.65)

9 0.62

(0.60)

Tired—Fresh 54.25

(5.81)

9 71.42

(7.17)

9 66.80

(5.51)

10 62.32

(6.10)

9 1.39

(0.26)

Motivated—Unmotivated 31.64

(2.01)

9 26.74

(6.46)

9 29.57

(5.76)

10 16.97

(4.89)

9 1.50

(0.23)

*M, mean; N, the number of participants in each group that were included in the analysis following removal of outliers; CP, concentration performance; † denotes Kruskal–Wallis statistic

where data were not normally distributed.

the daylight-like high-melEDI light performed better than
participants exposed to the conventional low-melEDI light
(z = 3.3, p < 0.01). Although there appeared to be a
monotonic improvement in the percentage of correct responses
with increasing melanopic illuminance, we did not detect
a statistically significant difference between the intermediate
melEDI conditions (daylight-like low-melEDI and conventional
high-melEDI) and the conventional low-melEDI condition
(Figure 2B). There were no significant differences between LE
conditions in reaction time and attentional failures on the
PVT, the number of attempted responses on the Addition

task, or accuracy and percentage of errors on the d-2
task (Table 2).

Procedural Learning and Declarative
Memory
Improvement in performance speed across trials (trials 10–
12 relative to trial 1) on the MST task was significantly
different between the groups (ANOVA; F = 3.68, p < 0.05;
Table 2, Figure 2C). Post-hoc analyses showed that improvement
in performance speed across trials was significantly greater
in the daylight-like high-melEDI condition compared to the
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FIGURE 2 | Performance on the PVT, addition task, and motor sequence task

for each light exposure condition. Mean ± SEM of PVT reaction time

(Continued)

FIGURE 2 | (A), addition task percent correct (B), Motor Sequence Task

percent change in the number of correct sequences (C), and Motor Sequence

Task percent change in the number of errors (D) for each light exposure

condition. Individual participant data are shown for conventional low-melEDI

(•), daylight-like low-melEDI (N), conventional high-melEDI (◦), and daylight-like

high-melEDI (1) light conditions. PVT, psychomotor vigilance task; MST, Motor

Sequence Task; Con, Conventional; DL, Daylight-like. *denotes a significant

difference between light conditions.

conventional low-melEDI condition (t = 3.24, p < 0.05), but
not for the intermediate conditions. Accuracy on the MST
task increased with increasing melEDI exposure although this
difference only approached statistical significance (p = 0.06,
Figure 2D). There was no significant effect of light condition on
percent recall on the word pairs task (Table 2).

Subjective Sleepiness, Health, and
Wellbeing
There was a significant effect of light condition on KSS scores
(Kruskal–Wallis; H = 11.3, p < 0.05; Table 2; Figure 3A).
Participants in the conventional high-melEDI condition had
lower KSS scores, indicating lower subjective sleepiness,
compared to participants in the conventional low-melEDI
condition (z = 2.56, p < 0.05). Conversely, participants in
the daylight-like high-melEDI condition reported significantly
greater subjective sleepiness than participants in the conventional
high-melEDI condition (z = 2.75, p = 0.02). Additional post-
hoc contrasts were not statistically significant (Figure 3A). In
contrast to KSS ratings of sleepiness, the VAS for “sleepy-alert”
was not different between conditions (Figure 3B).

There was a significant effect of LE condition on VAS ratings
for “healthy-sick” (ANOVA; F = 3.25, p < 0.05). Participants
in the daylight-like high-melEDI condition reported feeling
significantly more sick than participants in the conventional
low-melEDI condition (t = 2.74, p < 0.05); however, one
participant in the daylight-like high-melEDI group, while not
a statistical outlier, rated themselves consistently as more sick
compared to other participants, and was clinically documented
as displaying “Common Cold” symptoms during the LE, which
were absent at admission to the laboratory. Additional sensitivity
analysis with removal of this participant from the “healthy-sick”
scale data showed that the post-hoc comparison was no longer
significant (p = 0.1). VAS ratings on the “calm-stressed” scale
trended toward being lower in all LE conditions compared to the
conventional low-melEDI condition (Figure 3C) although this
difference did not reach statistical significance (p = 0.07). There
was no statistical difference between the LE conditions on any
other VAS scales.

Headache and Eye Strain
There was no difference between any of the lighting conditions
in irritability, headache, eye strain, eye discomfort, eye fatigue, or
blurred vision assessed during the light exposure (p > 0.3 for all;
Supplemental Table 3).
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FIGURE 3 | Subjective sleepiness, alertness, and stress for each light

exposure condition. Mean ± SEM of KSS sleepiness scores (A), VAS alertness

ratings (B), and VAS stress ratings (C). Individual participant data are shown

for conventional low-melEDI (•), daylight-like high-melEDI (N), conventional

high-melEDI (◦), and daylight-like melEDI (1) light conditions. KSS, Karolinska

sleepiness scale; Con, Conventional; DL, Daylight-like. *denotes a significant

difference between light conditions.

DISCUSSION

Our results show that compared to being exposed to lower
melEDI light, exposure to short-wavelength enriched higher
melEDI light during the daytime is associated with significantly
less sleepiness, better working memory, processing speed, and
procedural learning in moderately sleep-restricted college-aged
adults. We did not, however, find a statistically significant

difference between lighting conditions in vigilant attention,
concentration, or declarative memory. These results provide
preliminary evidence supporting the incorporation of short-
wavelength (blue) enriched, higher melEDI lighting in the built
environment to facilitate learning and task performance in young
adults following modest sleep restriction.

To our knowledge, this is the first study in moderately
sleep-restricted young healthy adults to find a robust
improvement in procedural learning on a motor task, both
in performance and accuracy, induced by higher melEDI light
exposure during the day. Consistent with our findings, high
melEDI light exposure (6500K) during the evening improved
procedural learning in older adults (mean age > 60 years)
who had UV-blocking (0% light transmission between 300
and 360 nm) intraocular lens (IOL) replacement compared to
older adults with blue-blocking IOLs (0% of light transmission
between 300 and 400 nm and ∼50% transmission between 410
and 480 nm) (21). Together, these results demonstrate that
short-wavelength light exposure facilitates procedural learning,
suggesting that the melanopic system is mediating the direct
effects of light on learning, as has been shown previously for
other cognitive domains [e.g., vigilance (3, 5, 14)].

Working memory and cognitive processing speed, as assessed
by the Addition Task (26), was also better under higher
melEDI light, exhibiting a clear linear dose-response relationship
with melanopic illuminance. These results are consistent
with previous studies showing improved working memory
during exposure to short-wavelength enriched light (9, 33–
35). Studies in similar age groups, but with shorter duration
(≤30min) and monochromatic exposures have also shown
that short-wavelength light exposure activates the brain regions
associated with working memory (35), including the prefrontal
cortex [PFC (33)] whose activation is positively correlated with
processing speed and accuracy on a working memory task. Our
results extend these findings to show observed improvement in
working memory and cognitive processing speed with short-
wavelength light exposure in individuals following moderate
sleep restriction, and under naturalistic long-duration exposures
during the day.

Importantly, our results show that not all cognitive domains
are responsive to short-wavelength enriched light to the same
extent. In the current study, improvements were not observed
in tests of vigilance and reaction time in these modestly sleep-
restricted participants. While these findings are in contrast to
previous reports of positive effects of short wavelength-enriched
light exposure on sustained attention (3, 4, 9–13, 36), not all
studies have shown positive effects, especially during daytime
exposures (17, 37–40). The inconsistent findings may be due
to differences in exposure characteristics including exposure
duration and timing, and differences in spectra and intensity
between experimental groups. Moreover, other factors such as
prior sleep deficiency (40), light history (36), and pupillary
constriction due to differences in light spectra and subsequently
differences in retinal exposure (8) may have contributed to the
differences in performance observed in our study compared to
prior studies, especially given that the effects of light exposure on
performance during the day are smaller compared to exposure
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at night (14). Despite these differences, our results are internally
consistent in that the two associated cognitive domains, namely
sustained attention and concentration (PVT and d-2 tasks,
respectively) were not different between lighting conditions.
Importantly, while short wavelength-enriched light exposure did
not improve all cognitive domains that were assessed, there was
no evidence that light with lower melanopic illuminance was
better. Future studies with higher statistical power are necessary
to better understand the underlying relative photoreceptor
contributions affecting different cognitive domains.

Interestingly, the subjective ratings of sleepiness in response
to light were not consistent between different scales. Although
we found that generally, higher melanopic illuminance was
associated with less subjective sleepiness assessed by the KSS,
which is consistent with some previous studies (2–4, 15, 34, 36),
we did not see an effect of lighting condition on the self-rated
sleepy-alert VAS. This may suggest that the different tests have
differential sensitivity for detecting the effects of light on self-
reported outcomes and may help to understand inconsistencies
in the effect of light on subjective sleepiness and alertness between
studies (8). Moreover, the inconsistency between subjective
ratings of sleepiness and alertness and objective performance is in
agreement with prior reports showing that subjectively reported
sleepiness is often an unreliable indicator of objectively assessed
neurobehavioral performance (40, 41). Surprisingly, subjective
KSS sleepiness ratings did not increase with lower melEDI but
was in fact highest under the highest melEDI exposure. This
unexpected finding suggests that overall spectral composition of
the light, besides only melanopic illuminance, may be influencing
some neurobehavioral responses.

Our current study has several limitations. Given that the
differences in spectra and melanopic illuminance between the
light conditions may not have been large enough to differentiate
their effects in some performance domains (e.g., sustained
attention) and we only examined the effects of a single intensity,
further studies are required to better test a broader range of
melanopic illuminances and spectra. Similarly, future work is
needed to better evaluate the time-course of light effects on
performance. For example, declarativememory was assessed only
once in the current study, several hours into the LE, although
previous studies have shown a positive effect of light when
declarative memory was assessed much sooner after light onset
(9, 20). Furthermore, administering the word pairs task for the
first time after lights on would have allowed us to assess the
effects of light not only on recall but also on learning. Finally,
future work is needed to examine the chronic (multiple days) vs.
acute (single day) effects of light on performance, including the
effects of light on sleep and the impact that this has on subsequent
performance, for example sleep dependent learning and memory
(29, 30).

The acute alerting response to light may be an effective
non-invasive intervention for preventing the neurobehavioral
performance impairment associated with inadequate sleep. Sleep
restriction negatively influences many aspects of cognitive
performance and mood (41, 42), even when only restricted to 7 h
of sleep per night (43), as in the current study where participants

could only sleep at most for 7 h given that their time in bed
was fixed at 7 h. Furthermore, restricted and irregular sleep also
impairs performance to a greater extent than stable sleep loss
(40) and has also been shown to affect GPA in college students
(23, 44), a population with a high prevalence of insufficient
sleep. For example, in a study of college students (n = 1,125),
more than 60% were categorized as poor-quality sleepers and
a quarter reported getting <6.5 h of sleep per night (22). A
sleep duration <7 h in college-aged adults is likely insufficient
as when young adults are given an extended sleep opportunity
(16 h per night for 9 nights) their total sleep duration has
been shown to approach an asymptote of 8.7 h per night (45).
Based on the findings of the current study, the acute alerting
effects of light may be a useful countermeasure for performance
impairment associated with sleep deficiency in this population;
however, additional studies are required to evaluate the impact
of sleep regularity and varying extents of sleep restriction (e.g.,
5 vs. 7 h per night) on the acute alerting effects of light
exposure. Blue-enriched light has been tested as an alertness
countermeasure in school and college students and showed
improvements in processing speed, concentration, and reading
speed [e.g., (28, 46, 47)]. Similar benefits of short-wavelength
enriched light exposure on performance and alertness have also
been observed in office settings (31, 48). These studies, coupled
with our results showing that short wavelength enriched long-
duration light exposure during the daytime improves working
memory/processing speed, procedural learning and subjective
sleepiness, support the incorporation of short wavelength
enriched white light in indoor environments to enhance learning
and cognitive performance.
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