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New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is
required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton
devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the
patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method
to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and
the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical
formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for
the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the
method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate
avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist
analytic rehabilitation.

1. Introduction

Robotic and VR technologies are important components of
the modern neurorehabilitation systems for pathologies such
as stroke or spinal cord injury [1–3]. In this field, our general
research has two main goals:

(a) to improve the assessment of the rehabilitation
progress through precise estimation of the patient
kinematics. This is the focus of this paper;

(b) to optimize the rehabilitation processes by using the
kinematic (and other) patient models. This opti-
mization includes hybrid technologies (e.g., robotics,
virtual reality, functional electrical stimulation [4],
etc.). Even though this domain is very important for
rehabilitation, we see it as a natural consequence of (a)
and we concentrate on (a) at this time.

In the mentioned scenario, the proper estimation of the
patient limb posture is a fundamental prerequisite for the
following:

(1) design and control of the advanced robotic exoskele-
tons which provide assistance to the patient during
motor rehabilitation [5, 6],

(2) animation of realistic avatars representing the patient
in virtual reality (VR) scenarios (e.g., games, bionics),
and

(3) acquisition of kinematic data of the patient during
the training exercises to assess improvement along the
therapy.

This paper presents a method for estimation of limb
posture from the exoskeleton posture. Notice that such an
estimation is not trivial, since the limb is not rigid, is not
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standard, and has kinematic topology different from the
exoskeleton topology.

Our method delivers limb postures estimates to
strengthen and to enable downstream applications in robotic
rehabilitation (among others, using VR [4]).

1.1. Robotic-Based Motor Rehabilitation Therapy. The inclu-
sion of robotic devices in motor rehabilitation therapies has
been increasing over the last decade.The robot-assisted ther-
apies complement conventional rehabilitation by providing
intensive, repetitive, task-specific, and interactive treatment.
All these factors contribute to a more effective rehabilitation
[7–9].

Robotic-assisted therapy has been shown to improve
active movement, strengthening, and coordination in stroke
patients [10]. The majority of clinical studies have reported
that robot-assisted therapy can ease impairments and lower
disabilities of the affected patient [11]. Moreover, evidence
suggests that task-oriented exercises using robotic devices
produce significant improvements in recovering lost abilities
[12].

Combining these exercises with VR games makes the
therapy more attractive to the patient, increasing motivation
and treatment effects [4, 13]. It is important that these games
are designed to be consistent with the principles of physical
therapy and adjustable to the level of impairment [14].

A central element in designing a therapy is the feedback
that patients receive. To achieve relatively permanent changes
in the capability of producing skilled action, it is crucial to
provide the patient with proper feedback in order to produce
a positive impact on the neural mechanism promotingmotor
learning [15].

Feedback includes all the sensory information as the
result of a movement and it is divided into two classes:
(1) intrinsic or inherent feedback, which is information
captured by human sensory systems as a result of the normal
production of the movement, and (2) extrinsic or augmented
feedback, which is information that supplements intrinsic
feedback [15, 16]. Robotic-assisted therapy with VR games
including animated realistic avatars may improve the quality
and specificity of extrinsic feedback that the patient receives.

From the perspective of the therapist, robotic devices can
be used to obtain quantitative metrics for the assessment of
the improvement of the patient.The kinematic information of
the affected limb during the exercises is required to compute
several evaluation metrics, such as joint amplitudes, speeds,
movement smoothness, and directional control.

1.2. Case Study Armeo Exoskeleton. Our proposed therapy
uses the Armeo Spring exoskeleton for the upper limb
intervention (Figure 1). We find the following limitations of
this system.

(1) Currently, the gaming platform provides an elemen-
tary assessment of the patient performance with
metrics such as Hand Path Ratio [17] and joint range
of motion, which are only available in certain games
of the Armeo proprietary platform. We propose a
continuous quantification of the patient performance

Figure 1: Armeo Spring orthosis.

along the treatment therapies, involving metrics that
are highly correlated with the functional recovery of
the patient.

(2) Currently, the games only provide the patient with
feedback of his hand position. We propose to provide
a 3-dimensional representation of the arm, which
would help the patient to immerse in the VR environ-
ment.

The kinematic data provided by the exoskeleton samples
the angular position of its joints. Such information cannot
be used directly to represent the human arm, since the
patient limb and the exoskeleton kinematic models differ
significantly.

This paper presents a method to estimate the posture
of the limb by using the kinematic data provided by the
exoskeleton. We propose to solve the limb’s inverse kinemat-
ics (IK) problem extended with the kinematic constraints of
the exoskeleton fixations on the limb.This extended problem
is solved in real time with standard robotic libraries. In this
manner, we aim to overcome the limitations of the Armeo
system regarding to the feedback and assessment of the
patient.

This paper is organized as follows: Section 2 presents
a brief literature review. Section 3 addresses the formal
statement of the problem and the proposed method to solve
it. Section 4 discusses the implementation of our approach
and its use in VR games. Section 5 presents the evaluation
methodology of our approach in the realm of motor reha-
bilitation. Section 6 informs and discusses the results of the
experiments conducted using our solution strategy. Section 7
concludes the paper and identifies future developments.

2. Literature Review

Several estimation methods and human models have been
proposed in the literature to solve the problemof limbposture
estimation. Next, we present a brief review of developments
in these areas.
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2.1. Limb Posture Estimation

2.1.1. Free Movement Scenario. Most of the existing work on
limb posture estimation focuses on free movement scenarios.
We define a free movement scenario as a situation in which
the patient limb does not wear an exoskeleton or interact with
any other robotic interface. Under the mentioned conditions,
the literature that addresses upper limb posture estimation
considers tasks in which the human subject has to reach a
desired object. Therefore, these approaches are designed to
estimate the posture of the upper limb based on a given target
position and orientation of the hand.

Statistical [18, 19], IK [20–22], and direct optimization
[23–28] methods are the most used approaches to estimate
the limb posture [29].

Statistical or data-based approaches model the human
kinematics with regressive models from empirical data [30].
Factors such as the size of the database of captured motions
[31] and the characteristics of the population involved in
the experiments impact the accuracy and usefulness of these
models.

Kinematic approachesmodel the human limbswith links,
joints of different degrees of freedom, and end-effectors [27].
The IK problem is then solved with either closed-form or
numerical methods. The quality of the kinematic model and
the convergence speed and robustness of the approach used
to solve the IK problem directly affect the accuracy of the
estimations.

Optimization approaches require a nontrivial function to
minimize, which actually leads to the desired configuration
(typically, a minimal energy one [31]). When optimization is
used to solve an IK problem, additional constraints can be
easily included in the formulation [26–28].

Approaches combining optimization-based and statis-
tical models have been also proposed to overcome the
individual limitations of optimization and statistical methods
[31, 32]. Naturally, the composed method requires a high-
quality dataset of motions and the formulation of proper
objective and constraints functions.

2.1.2. Robotic-Assisted Scenario. There is a shortage in the
literature addressing posture estimation of the human limb
while interactingwith an exoskeleton. Although exoskeletons
are designed with the ultimate goal of minimizing their kine-
matic differences with human limbs and interact seamlessly
with them, the following factors influence the humanmotion
patterns and therefore the posture of the limb:

(1) the mechanic design of the exoskeleton (inertia, back
drivability, friction, joint motion limits, etc.).

(2) the type of assistance that the exoskeleton provides
(passive, active, and assist-when-needed).

(3) the performance of the exoskeletonmotion controller.
Here, using a naive one-to-one mapping between the
joint angles of the human limb and exoskeleton leads
to poor positioning results [33].

References [6, 21] propose the computation of the arm’s
IK by using a disambiguation criteria for its redundancy

which chooses a swivel angle such that the palm points to
the head region. This methodology is suitable for real-time
implementation and it is used in the control strategy of the
active 7-DOF exoskeleton developed by the authors’ research
team [34]. The authors report that the mean error in the
estimation of the swivel angle is less than 5 degrees. The
magnitude of the errors in the estimation of the wrist, elbow,
and GH-joint angles is not reported.

References [6, 21] do not consider the motions of the
clavicle and scapula (which affect the position of the GH-
joint center) in the estimation of the posture of the arm, as
they assume the position of the GH-joint center to be known.
Therefore, this approach should not be used in cases in which
the position of the GH-joint center cannot be determined
from data provided by the exoskeleton (e.g., Armeo Spring)
or by any additional motion capture system.

Other common methods to estimate the posture of
human limbs cannot be used or are impractical in robotic-
assisted scenarios. For example, inertial and magnetic mea-
surement systems (IMMSs) presented in [35, 36] are unusable
because the magnetic disturbances produced by the metallic
components of the exoskeleton corrupt the magnetic sensor
measurements.

If optical tracking systems are used, arrays of markers
need to be attached to the patient in order to measure the
limb joint angles. Occlusions of such markers are frequently
produced by the mechanic structure of the exoskeleton when
performing the rehabilitation exercises. To overcome the
occlusions of the markers, a redundant setup is necessary
[29].This limitationmakes the use of optical tracking systems
cumbersome for frequent use in the rehabilitation therapy.

2.2. Human Model. A central element in human posture
estimation is the human kinematic model itself. Simple
models based on hierarchies of links and lower kinematic
pairs can be found in [27, 37–40]. These approaches results
are convenient for real-time tasks and for implementation.
However, more elaboratedmodels should be used to describe
complex kinematic relationships [41], such as the shoulder
rhythm [42]. On the other hand, musculoskeletal models
reported in [43–45] offer better accuracy for dynamics
computations, since they include forces from muscles and
ligaments.

The selection of the human kinematics model rests not
only on the kinematic statement of the problem, but also on
the compromise between accuracy and speed required in a
particular application.

2.3. Conclusions of Literature Review. Although the methods
designed to estimate the posture of the upper limb (in absence
of a robotic interface) reviewed in Section 2.1.1 could be
used in robotic-assisted rehabilitation, we have not found any
actual implementation of them in this context. Usage of these
methods without any change in their design parameters in
robotic-assisted applications may lead to erroneous posture
estimations, given the influence of the exoskeleton on human
motion patterns. Therefore, the validity of these methods
in the robotic-assisted scenario remains to be proven. An



4 BioMed Research International

additional limitation of these methods is that only few of
them have been validated quantitatively by determining the
errors in their estimations.

On the other hand, the few posture estimation
approaches that address limb interaction with an exoskeleton
(Section 2.1.2) have been designed to specifically solve the
arm posture estimation problem, limiting their usability in
posture estimation of other human limbs.

In response to the mentioned issues, in this paper we
present the following:

(1) a method that can be applied, in a general manner,
to solve the limb posture estimation problem using
kinematic data provided by the exoskeleton attached
to the limb,

(2) the implementation of our proposed method for
the upper limb posture estimation using the Armeo
Spring exoskeleton, and

(3) the quantitative validation of our proposedmethod by
determining the estimation errors during the training
of meaningful upper limb rehabilitation exercises.

3. Materials and Methods

3.1. ProblemDescription. In this section, we state the problem
of estimating the joint angles of the patient limb during
robotic-assisted rehabilitation therapy from the kinematic
information provided by the robot. The elements that are
considered inputs to the problem are the following: (1)
the geometry and topology (e.g., the Denavit-Hartenberg
parameters [46]) of the exoskeleton and the human limb,
(2) a known configuration of the angles of the joints of the
exoskeleton, (3) the kinematic constraints imposed by the
fixations of the exoskeleton over the patient limb (which
result from wearing the exoskeleton), and (4) the constraints
that govern the posture of the patient limb while interacting
with the exoskeleton, which are related to mechanical and
control factors of the exoskeleton that influence the patient
movement. The goal of the proposed algorithm is to find the
approximate joint angles of the patient limb, such that the
mentioned constraints are met.

This problem can be formally stated as follows.

Given

(1) the kinematic model of the exoskeleton 𝑅(𝐿
𝑅
, 𝐽
𝑅
),

where 𝐿
𝑅
and 𝐽
𝑅
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};
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Figure 2: Exoskeleton kinematic model.

Goal is as follows

(1) to find the vector 𝑞
𝐻𝑡

∈ R𝑘, which approximates 𝑞
𝐻𝑡

such that

(a) 𝑐
𝑖
(𝑞
𝐻𝑡
, 𝑞
𝑅𝑡
) = 0 ∀𝑖 ∈ [0, 𝑝];

(b) ℎ
𝑗
(𝜃
𝑗
) = 𝜃min𝑗 ≤ 𝜃

𝑗
≤ 𝜃max𝑗 ∀𝑗 ∈ [0, 𝑘 − 1];

(c) 𝑑
𝑢
(𝑞
𝐻𝑡
) = 0 ∀𝑢 ∈ [0, 𝑠].

To solve this problem, a method based on IK of the
limb has been developed.The following sections describe the
methodology implemented.

3.2. Kinematic Modeling of the Exoskeleton. The Armeo
Spring (Figure 1) is a passive exoskeleton (orthosis) that
supports the weight of the arm of the patient. The level of
support provided by the system springs can be adjusted,
regulating the effort of the patient arm to overcome gravity.
The exoskeleton has a total of seven angle sensors to measure
the position of its rotational joints and one pressure sensor to
measure the gripping force at the hand [47].

We built a kinematic model of the Armeo Spring
(Figure 2), which contains both prismatic and revolute joints.
The prismatic joints of the exoskeleton allow adjusting it
to the different sizes of the patients, and they remain fixed
during the training.

Our implementation models the links and joints of the
Armeo exoskeleton and creates a hierarchical structure of
them.

Although the Armeo exoskeleton presents a parallelo-
gram mechanism in its kinematic chain, the exoskeleton can
be modeled with a serial chain extended with a dependency
equation among the joints used to represent the parallel
mechanism.

GH joint

Shoulder
complex

Elbow
joint

Wrist joint

Figure 3: Human upper body kinematic model.

3.3. Kinematic Modeling of the Human Upper Body. Figure 3
shows the kinematic model of the human upper body that
we created for this application. The joints of the model are
represented with green color. The upper limb is highlighted
using links in light green color.

Our upper body model (33-DOF) includes joints of the
spine, shoulder complex, elbow, and wrist. It is based on the
ones presented in [27–29, 38, 39, 48], which have been widely
used in the area of human posture estimation. The main
advantages of those models are their easy implementation
and their suitability for solving the posture estimation prob-
lem in real time, which is one of themain requirements of our
application. A weakness of those kinematic models is that the
glenohumeral (GH) joint is modeled with a kinematic chain
of three concurrent revolute joints, orthogonal to each other.
In this way, the rotation of the GH joint is parameterized
with Euler angles and suffers from gimbal lock [49]. In
order to avoid this limitation, the GH joint is represented
in our model with a spherical joint, such that other rotation
parameterizations (e.g., quaternion or exponential map) can
be used.

Although there aremore complex and accurate kinematic
models of the upper body, the results obtained in [39],
in a scenario where the subject does not interact with an
exoskeleton in an application that is not related to motor
rehabilitation, show that posture estimations for the upper
limb can be obtained with a reasonable accuracy by using
their original model.

The neutral or rest posture of the arm is defined with the
arm fully extended along the body as in [50]. The range of
motion of the joints of the arm obtained in [34] (derived
from a motion study during the execution of activities of
daily living) is used as reference to establish the joint limits
of our model, which correspond to constraint 2(d)(ii) in the
list presented in Section 3.1.

3.4. Modeling the Kinematic Constraints of Interaction of
the Upper Limb and the Exoskeleton. The Armeo provides
fixations for the human limb. These fixations introduce
constraints on the position and orientation of the coordinate
systems attached to the arm, forearm, and hand.
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coordinate systems

coordinate
systemcoordinate

system

Arm fixation
Arm

(a) Small error while meeting the arm fixation con-
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Match of the positions of the
coordinate systems

(b) Negligible error while meeting the arm fixation
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Figure 4: Constraint modeling the interaction of the Armeo’s arm fixation.

There are several factors that affect the satisfaction of the
constraints during the execution of the exercises. This set
includes (1) deformation of the coupling mechanisms and (2)
uncertainty or errors in the modeling of the human upper
limb. Therefore, these constraints are exactly met only under
ideal conditions and in practice they do not capture all the
details of the real interaction. However, as we prove, they
suffice to obtain a reasonable accuracy in the estimation of
the limb posture.

3.4.1. Arm Constraint. The arm fixation imposes a position
(3-DOF) constraint on the human arm.The point on the arm
that follows the position of the fixation is determined by an
initialization process between the 𝑅 and𝐻 kinematic chains
(see Section 3.6).

In our model, the fixations are modeled as rigid bodies.
However, the exoskeleton fixations are made of flexible
materials, such that their geometry is deformed when large
forces are applied on them.

The arm fixation suffers significant deformationwhen the
arm is moved towards a horizontal configuration (e.g., when
performing a complete stretching of the arm along the sagittal
or frontal plane). In those cases, the coordinate system at
the exoskeleton arm fixation center undergoes a translation,
resulting from the deformation of the fixation mechanism
that is not reproduced by our model.

To deal with this kind of situations, the weights of
constraints representing fixations that suffer less deformation
than other ones are adjusted such that they receive more
importance when solving the IK problem. In this way, the
limb posture is estimated meeting the constraints that model
with more fidelity the observed behavior. In this case, the
weight of the arm constraint is lower than the ones belonging
to the forearm and arm restrictions.

Figure 4 shows the human arm (blue transparent cylin-
der) with the fixation of the exoskeleton for the arm (black

transparent ring) around it. The constraint imposed by this
fixation to the arm is represented by the matching of (a)
human arm (white disk) versus (b) fixation (yellow disk)
coordinate systems. Figures 4(a) and 4(b) correspond to
unsatisfied and satisfied constraints, respectively.

3.4.2. Forearm Constraint. The forearm fixation imposes
a 3-DOF position constraint on the human forearm. The
point on the human forearm that moves together with the
fixation is determined in the initializing stage. Additionally,
the fixation is able to rotate around its longitudinal axis,
according to the forearm pronation/supinationmovement (1-
DOF orientation constraint). The rotation angle is measured
with an encoder. The forearm constraint forces the human
wrist flexion/extension axis to be approximately aligned with
the exoskeleton’s wrist joint axis.

3.4.3. Hand Constraint. The hand constraint forces the
human hand to follow the position and orientation (6-DOF)
of the Armeo hand grip.The patient exercises while grabbing
the handle of the exoskeleton. The mechanic design of the
Armeo avoids the slippage of the hand with respect to the
axis of the handle during the execution of the exercises. As
with the previous fixations, the point on the hand where the
coordinate system of the hand is located is calculated in the
initialization stage.

3.4.4. Shoulder Constraint. The shoulder constraint does not
belong to the set of movement restrictions imposed by the
coupling mechanisms of the Armeo. Instead, it is related to
the restrictions intended to produce a natural posture of the
upper limb considering also the influence of the exoskeleton
on the patient movements. This constraint helps to choose
one of the multiple configurations of the human kinematic
chain that comply with the other categories of constraints.
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Figure 5: Effect of the shoulder constraint in the upper limb posture estimation.
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Figure 6: State of the kinematic chains before the initialization
process (notation in Table 1).

Currently, it is implemented to attract the GH joint to a
position (3-DOF position constraint) below the first joint of
the Armeo (𝑗

𝑅0
joint represented with symbol𝐴 in Figure 6),

which does not suffer any translation during the training of
the patient. By keeping the GH joint near 𝑗

𝑅0
comfortable

postures for the spine and arm can be achieved.
Figure 5 shows that the shoulder constraint prevents

the excessive motion of the joints of the spine, which is a
compensatory movement that should be also avoided during
the rehabilitation therapy. The shoulder constraint is central
to proper posture estimation during shoulder abduction.

3.5. Inverse Kinematics. Given a desired pose (position and
orientation) vector 𝑇

𝑟
∈ R6 for the end-effector of an open

kinematic chain 𝑟, the IK problem is to find the vector of
angles of the robot’s joints 𝑞

𝑟
∈ R𝑁 (where𝑁 corresponds to

the DOFs of 𝑟), such that the difference 𝑒 = 𝑇
𝑟
− 𝑋
𝑟
between

𝑇
𝑟
and the actual pose of the end-effector of 𝑟, 𝑋

𝑟
∈ R6,

approaches zero.
There are several approaches to solve this problem,

including analytic [51] and numerical methods [52, 53]. The
iterative strategy used to solve the IK problem is based on
the Jacobian matrix of the manipulator 𝑍(𝑞

𝑟
), which linearly

relates the velocity of the end-effector and the joints by

�̇�
𝑟
= 𝑍 (𝑞

𝑟
) ̇𝑞
𝑟
. (1)

Table 1: Glossary related to the Figure 6.

Symbol Description
𝐴 𝑗

𝑅0

𝐵 𝑗
𝑅2

𝐶 Arm fixation coordinate system
𝐷 Forearm fixation coordinate system
𝐹 Armeo hand grip coordinate system
𝑎 Human arm end-effector coordinate system
𝑏 Human forearm end-effector coordinate system
𝑐 Human hand end-effector coordinate system

By replacing Δ𝑋
𝑟
for 𝑒 in (2), which is obtained by

discretizing (1), the necessary Δ𝑞
𝑟
to approximate 𝑇

𝑟
is

obtained:

Δ𝑞
𝑟
= 𝑍(𝑞

𝑟
)
−1
Δ𝑋
𝑟
. (2)

Notice that 𝑍(𝑞
𝑟
) may not be square (consider, e.g., a

kinematic chain with more than 6-DOF) or invertible. In
those cases, the pseudoinverse and damped least squares
(DLS) methods (among others) can be used to obtain Δ𝑞

𝑟
,

such that ‖𝑒‖ is minimized. The pseudoinverse method is
computationally faster than the DLS but tends to be unstable
when the robot approaches a singular configuration.TheDLS
method offers more robustness (specially when 𝑇

𝑟
is out of

reach) at the cost of a slower convergence [52].

3.5.1. Relation among End-Effectors and Targets. The afore-
mentioned strategy to solve the IK problem can also be used
in situations in which the manipulator has more than one
end-effector. In this case, the error vector 𝑒 is given by 𝑒 =

{𝑇
𝑟1
− 𝑋
𝑟1
, . . . , 𝑇

𝑟𝑖
− 𝑋
𝑟𝑖
, . . . , 𝑇

𝑟Nee
− 𝑋
𝑟Nee

} where Nee is the
number of end-effectors of the robot. Notice that vector 𝑒

𝑖
=

𝑇
𝑟𝑖
− 𝑋
𝑟𝑖
is not necessarily a point ∈ R6. For example, if only

the position (and not the orientation) of the 𝑖th end-effector
is specified, 𝑒

𝑖
∈ R3.

In our application, the formulation of the IK problem
with multiple end-effectors and targets can be used to
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represent the constraints discussed in Section 3.4. In this
way, each constraint can be represented by a target and
end-effector pair. The coordinate frames of the end-effectors
𝑋
𝐻𝑖
(𝑞
𝐻𝑡
) (𝑖 ∈ [1, . . . ,Nee]) are attached to the human limb,

so their position and orientation depend on the current
configuration of the limb, 𝑞

𝐻𝑡
. The coordinate frames of the

targets of the limb 𝑇
𝐻𝑖
(𝑞
𝑅𝑡
) (𝑖 ∈ [1, . . . ,Nee]) are attached to

the exoskeleton such that they are transformed according to
its current configuration 𝑞

𝑅𝑡
. Then, the IK problem is solved

for the limb, finding 𝑞
𝐻𝑡
such that 𝑒

𝑖
= ‖𝑇
𝐻𝑖
(𝑞
𝑅𝑡
)−𝑋
𝐻𝑖
(𝑞
𝐻𝑡
)‖ ≈

0 (𝑖 ∈ [1, . . . ,Nee]). Notice that if 𝑒
𝑖
represents a kinematic

constraint, 𝑒
𝑖
∈ R𝑁(𝑚𝑖) where 𝑖 ∈ [0, 𝑝]. Otherwise, 𝑒

𝑖

represents a restriction related to the natural posture of the
limb, and therefore 𝑒

𝑖
∈ Rdim(𝑑𝑖), where 𝑖 ∈ [0, 𝑠], and Nee =

𝑝 + 𝑠 + 2.
Notice that, due to modeling inaccuracies of the kine-

matic chains or the constraints, it is possible that for a
configuration 𝑞

𝑅𝑡
some constraints cannot be satisfied within

the desired tolerance. That situation can be interpreted as
if some targets 𝑇

𝐻𝑖
(𝑞
𝑅𝑡
) are not reachable. It is important

that the method used to solve the IK problem handles this
situation robustly, avoiding oscillations. For this reason the
DLS method was used.

3.5.2. Joints and Constraint Weights. References [38, 39] state
that givingmore importance to some of themodel joints over
others, by assigning weights to the joints, allows estimating
more accurately the posture of the human limb.

Let us assume that 𝑤
𝐽𝑖
is the weight of joint 𝐽

𝐻𝑖
and that

joints 𝐽
𝑐
and 𝐽

𝑑
can contribute to the movement of end-

effector 𝑖 to diminish 𝑒
𝑖
. Then, if 𝑤

𝐽𝑐
> 𝑤
𝐽𝑑
, the displacement

that 𝐽
𝑐
performs is larger than the one done by 𝐽

𝑑
. This means

that 𝐽
𝑐
is preferred to be moved over 𝐽

𝑑
to reach a desired

target.
In our model, the weights of the joints of the upper

body were adjusted such that the joints on the spine of
the model perform small displacements in comparison with
the movement performed by the shoulder, elbow, and wrist
joints.

On the other hand, applying weights to the error vector 𝑒
gives more importance to reach a specific target over others.
In our approach, this translates into giving some constraints
more importance than others. Let us define with 𝑤

𝑐𝑖
(𝑖 ∈

[0, 𝑝]) the weight of the 𝑐
𝑖
constraint and with𝑤

𝑑𝑢
(𝑢 ∈ [0, 𝑠])

the weight of 𝑑
𝑢
constraint.

In our model, high weights were adjusted for the kine-
matic constraints imposed by the exoskeleton fixations (𝑤

𝑐𝑖
≈

1.0). Otherwise, low weights (𝑤
𝑑𝑖
≈ 0.2) were assigned to the

other type of constraints.
There are different formulations of the DLS method that

incorporate weights for the joints and error vector (e.g., [54]).
In V-REP, the following DLS formulation is used to solve
IK problems. The angles of the joints of the human model
are given by 𝑞

𝐻𝑡
= √𝑊𝑞𝑞𝐻𝑡𝑤

, where 𝑞
𝐻𝑡𝑤

= 𝑍
∗

𝑤
𝑒
𝑤
and

𝑍
∗

𝑤
= 𝑍
𝑡

𝑤
(𝑍
𝑤
𝑍
𝑡

𝑤
+ 𝛼𝐼)

−1. The weighted Jacobian matrix is
given by 𝑍

𝑤
= 𝑍√𝑊𝑞, where𝑊𝑞 = diag{𝑤

0
, . . . , 𝑤

𝑘−1
}. Here,

if 𝑤
𝑎
and 𝑤

𝑏
are related to 𝐽

𝐻𝑖
(e.g., a joint with DOFs > 1),

𝑤
𝑎

= 𝑤
𝑏
= 𝑤
𝐽𝑖
. The weighted error vector is given by

𝑒
𝑤

= 𝑊
𝑒
𝑒, where 𝑊

𝑒
= diag{𝑤

0
, . . . , 𝑤V−1} and V =

∑
𝑝

𝑖=0
𝑁(𝑚
𝑖
) + ∑

𝑠

𝑗=0
dim(𝑑

𝑗
). If 𝑤

𝑎
and 𝑤

𝑏
are related to the

same 𝑐
𝑖
constraint, 𝑤

𝑎
= 𝑤
𝑏

= 𝑤
𝑐𝑖
. This also applies

for weights related to constraints 𝑑
𝑢
. However, independent

weights can be assigned for the position and orientation
components of a constraint.

3.6. Initialization of the Kinematic Chains. To accurately
estimate the limb posture, it is required to properly couple
the human and exoskeleton kinematic models. To do so, we
require to correctly position the end-effectors of the human
kinematic model with respect to the arm, forearm, and hand
coordinate systems. These end-effectors must be positioned
such that they are able to move together with the coordinate
systems of the fixations of the exoskeleton model (targets).
Notice that the position of the end-effectors with respect to
the links of the humanmodel changes according to the actual
patient and exoskeleton dimensions.

Figure 6 depicts a state in which the human and exoskele-
ton models are decoupled. The correct position and orien-
tation of the coordinate systems of the end-effectors of the
human model have not been calculated, and, therefore, they
do notmatch the position and orientation of the exoskeleton’s
fixations coordinate systems.

The initialization of the kinematic chains requires a refer-
ence pose of the exoskeleton in which (a) the human joints
angles can be determined accurately and (b) the exoskele-
ton’s fixations undergo negligible deformation, reducing the
uncertainty about the position of the human model end-
effectors.

The pose of the exoskeleton that meets the mentioned
requirements is the one in which the flexion/extension of the
shoulder and elbow take place in the sagittal plane (Figure 6).
In this pose, the position of the human GH joint with respect
to the exoskeleton base can be easily determined because the
joints of the spine and shoulder complex are in their rest
position.

The coupling process involves the following steps.

(1) Position the exoskeleton model such that the joint
𝑗
𝑅0

lies above the human GH joint. Adjust the height
of the exoskeleton model such that 𝑗

𝑅2
is at the

level of the human GH joint. These instructions are
prescribed by the manufacturer of exoskeleton to use
it with the actual patient.

(2) Compute the arm flexion and abduction angles such
that the arm passes through the origin of the arm
fixation coordinate system. Adjust the origin of the
arm end-effector coordinate system to match the
origin of the arm fixation.

(3) With the position of the elbow joint defined, compute
the elbow flexion and the GH internal rotation angles
such that the forearm passes through the origin of the
exoskeleton forearm fixation. Adjust the origin of the
forearm end-effector coordinate system to match the
origin of the forearm fixation.



BioMed Research International 9

Alignment
with the
GH joint

Match
of the

human
and robot

coordinate
systems

Figure 7: Result of the initialization procedure.

(4) Compute the wrist extension angle such that the
human hand is able to grasp the exoskeleton’s hand
grip. Adjust the hand end-effector to match the
position of the Armeo’s end-effector at the hand grip.

(5) Calculate the forearm pronation/supination angle
such that the wrist’s extension/flexion axis matches
the orientation of the Armeo’s hand grip longitudi-
nal axis with respect to the human forearm prona-
tion/supination axis.

(6) Adjust the human forearm and hand end-effector
coordinate systems to match the orientation of the
forearm and Armeo’s end-effector coordinate sys-
tems, respectively.

The result of the initialization process is depicted in
Figure 7.

4. Implementation

To implement the proposed method the virtual robot experi-
mentation platform (V-REP) was used [55], which is an open
source robotics simulator. V-REP provides tools to easily
and efficiently create kinematic models of rigid multibody
systems and to solve IKproblems.Using the simulator, a scene
was created, which contains both the human upper body
and Armeo kinematic models (Figures 2 and 3). The weights
of the human kinematic model were adjusted (Section 3.5.2)
and the simulator’s IK module was configured to include the
kinematic constraints (Section 3.4).

The source code of the simulator was compiled, modified,
and integrated into our rehabilitation platform. Custom
classes and functions were programmed to allow easy data
exchange among the Armeo, the rehabilitation game plat-
form, and the IK module of the simulator.

The limb posture estimation process consists of the
following steps.

(1) Obtain the angles of the Armeo’s joints by using hard-
ware and software interfaces provided by HOCOMA
AG [47].

(2) Use the obtained angles to update the joints angles of
the Armeo’s kinematic model in the simulator.

(3) Retrieve the angles of the joints of the human model
computed by the simulator’s IK module.

Computing the inverse kinematics of our upper limb
kinematic model, once the Armeo model is updated in
the simulator with the real joint measurements of the
exoskeleton, takes less than 4ms on a 2.13Ghz dual-core
CPU.Therefore, the implementedmethod is suitable for real-
time posture estimation without using high-performance
hardware.

After the joint estimates are produced, we use them to
update the patient avatar in VR games. We also store them
in a database for a posterior patient assessment.

Figure 8 presents a user test of the limb posture esti-
mation algorithm feeding the Armeo kinematic model in
the simulator (in real time) with the Armeo Spring joint
positions measured by its encoders. This figure presents the
posture of the test subject and Armeo Spring in parallel with
estimations of the user posture in the simulator. The test
subject performed

(a) reaching exercises, in which the subject recreated the
postures of his arm to reach and grab objects that
are close to his body (Figure 8(a)).These exercises are
frequently practiced during the arm rehabilitation;

(b) extreme region exercises, in which the subject posi-
tioned his hand in the boundaries of his arm
workspace (Figure 8(b)).These exercises are challeng-
ing for the subject and are less likely to occur during
the therapies due to the exercises difficulty.

4.1. VR Games. Currently, we have implemented two types
of games for the robotic-assisted upper limb rehabilitation
therapy. The first type of games focuses on the rehabilitation
of reaching movements. The second type of games addresses
the rehabilitation of analytic movements of the GH, elbow,
and wrist joints.

4.1.1. Reaching Rehabilitation. Reaching rehabilitation is per-
formed by training the movements that are required to reach
and grasp objects with the hand. These exercises involve
several joints of the upper limb, and, therefore, they are
considered complex.

To train these exercises, we have programmed a game in
which the patient controls the movement of a virtual human
arm by moving his own arm (Figure 9(a)). The target of the
patient is to reach a specific object (e.g., cube) in the scene,
grab it, and bring it to a releasing area (e.g., green circle).

4.1.2. Analytic Movements Rehabilitation. According to
motor learning theories, the training of analytic movements
constitutes the first step into learning complex motor tasks.
In such a step, simple movements involving few DOFs of the
limb are practiced [56–58].

For this scenario, we have programmed a game
(Figure 9(b)) in which the patient controls the position
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(a) (b)

Figure 8: Test subject in parallel with estimations of his posture in the simulator. (a) shows reaching exercises and (b) shows extreme region
exercises.

(a) Reaching game

(b) Analytic game (c) Medical interface

Figure 9: Games and medical interface.
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of a spaceship, along the horizontal axis of the screen, by
performing 1-DOF movements with the wrist, elbow, or GH
joint. The target of the game is that the patient positions the
spaceship under an alien that moves along a vertical path
from the top to the bottom of the screen. When the position
of the spaceship is correct, it fires a gun and destroys the
alien.

For both games, the limitations of the mobility of the
patient are identified in a calibration phase, guarantying
that the target of the games is properly located. Other
game parameters (number of executions, max execution
time per task, target size, etc.) are adjusted through the
medical interface (Figure 9(c)). The medical interface allows
the physician to select the games for the training, configure its
parameters, and reviewmetrics related to the performance of
the patient during a game.

The VR games were programed with the OpenScene-
Graph API [59], which allows animating deformable virtual
objects and creating scenes with dynamic simulations using
the Bullet Physics package. The graphic rendering of the VR
game runs at 30 frames per second using a ATI Radeon HD
4600GPU, which is a midrange graphic card.

During the therapy, the patient sees the VR scene. The
kinematic models are used for IK computations and they are
not displayed.

5. Evaluation

In order to determine the accuracy of our developedmethod,
the joint angles of 4 voluntary healthy male test subjects
(average age 34 years) were measured by using an optical
tracking system and compared with the angles obtained from
our posture estimation algorithm during the execution of
typical (in this case, analytic movements) robotic-assisted
rehabilitation exercises. As discussed in Section 4.1.2, the
rehabilitation of analytic movements is a necessary step
before addressing the rehabilitation of complex motor tasks.

The specific exercises performed by the test subjects were
(1) wrist flexion/extension (WFE),
(2) elbow flexion/extension (EFE),
(3) forearm pronation/supination (FPS),
(4) simultaneous elbow flexion/extension and forearm

pronation/supination (SEFEFPS).
The evaluation of our method has been conducted with-

out performing any previous setting or automatic adjustment
of the weights or other parameters of the approach in
order to reduce the estimation errors. However, algorithm
training might be used in the future to improve the method’s
performance.

5.1. Measurement of the Upper Limb Joint Angles. A detailed
explanation of the method that was used to measure the
human joint angles would merit an additional manuscript.
Nevertheless, a basic description of this method is provided
next.

In order to measure the limb joint angles of the test
subject, we use a Polaris Spectra optical tracking system

Table 2: Installation of the reference and mobile rigid bodies in the
evaluation.

Angle to measure Reference rigid body
installed on

Mobile rigid body
installed on

WFE Forearm Hand
EFE Upper arm Forearm
FPS Upper arm Forearm

Reference
rigid body

Mobile rigid body

Figure 10: Setup for the quantitative assessment of the estimation
errors in elbow flexion/extension exercise.

(OTS) [60]. In order to track the limb movements, it is
necessary to install on test subject limb a set of rigid bodies
with passive markers. By detecting these passive markers
(reflective spheres), the OTS is able to compute the position
and orientation of each rigid body.

One rigid body (reference rigid body) is used as the
coordinate system of reference for the measurements of the
OTS. The position and orientation of the other rigid bodies
(mobile rigid bodies) are computed with respect to the
reference rigid body.

The reference and mobile rigid bodies are installed on
different arm segments (i.e., upper arm, forearm, and hand)
according to the joint angle to be measured. Table 2 shows
the installation of the reference and mobile rigid bodies for
each of the joint angles that we measured. Figure 10 shows
the configuration of the rigid bodies to measure the elbow
flexion/extension angle.

In order to measure the human joint angles, we have
adapted the method presented in [61], which is originally
proposed to be used with IMMSs, to implement it by using
an OTS. In [61] it is proposed to measure the joint angles by
following the next steps.

(1) Compute a reference coordinate system for the joint
of interest. A subset of the axes of the resulting
coordinate system match the axes of rotation of
the joint. The position and orientation of the joint
coordinate system are defined with respect to the
reference rigid body.

(2) Compute the orientation of the mobile rigid body
with respect to the joint coordinate system.

(3) Compute the joint angles that result from rotations of
the mobile rigid body by using Euler-angles decom-
position. The rotations of the mobile rigid body are
caused by the exercising of the subject joint.
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To build an orthogonal right-handed coordinate system
of reference for the joint, we identify each axis of rotation of
the joint, as proposed in [61].

To identify each rotation axis of the joint, we use the
instant helical axismethod described in [62]. A rotational axis
of the joint is computed from the kinematic data of themobile
rigid body while the subject performs 1-DOF movements of
the joint.

In contrast to the proposal presented in [61] to compute
the wrist joint coordinate system, we build this coordinate
system by identifying only the flexion/extension axis, given
that the ulnar/radial deviation cannot be trained with the
Armeo Spring.

Accuracy of the Limb Joint Angles Measurement Method. In
motor rehabilitation, goniometry is the standard method to
measure the angle at the patient joints. This is a manual
method, and, therefore, its efficacy depends on the examiner
experience [63]. One of the limitations of this method is
that it provides a resolution (minimal detectable change) in
measuring limb joint angles of about 8 degrees [64]. In other
words, this method should not be used to measure angles
smaller than 8 degrees because in those cases measurements
present large uncertainty.

Alternative approaches to measure the patient limb joint
angles are IMMS-based methods. One of the methods that
provide better accuracy than goniometry is presented in [35].
Thismethod provides ameasurement accuracy characterized
by a RMSE of less than 3.6 degrees. The authors of the
mentioned work conclude that this accuracy is proper for
measuring elbow and shoulder angles of clinical relevance in
ambulatory settings.

In tests with an artificial 1-DOF joint, the method to
measure the limb joint angles that we have adapted from [61]
allowed us to estimate the joint angle with a RMSE smaller
than 1 degree. According to a comparison with the accuracy
provided by the reviewed methods, we conclude that the
method proposed by [61] to measure the limb posture is
valid to determine the accuracy of our proposed limb posture
estimation method.

5.2. Protocol. Table 3 summarizes the main features of the
evaluation that we have conducted.

For each trial of the evaluation exercises we performed
the following steps.

(1) Compute the joint coordinate system corresponding
to the evaluation exercise (Section 5.1).

(2) Instruct the subject to perform the corresponding
evaluation exercise until the number of desired joint
angle measurements is taken.

(3) Compute the RMSE in the estimation of each joint
angle by comparing the measured angle with the
estimation provided by our algorithm.

(4) Compute the ROM of the subject movements from
the measured angles.

During the execution of the evaluation exercises the
amplitude, speed and the number of cycles of the movements

Table 3: Summary of main features of the evaluation tests.

Number of
test subjects

Number of
exercises

performed by
each test subject

Number of
trials per
exercise

Joint angles
measurements

per trial

4

4 (WFE, EFE,
FPS, and
SEFEFPS)

4 2960 at 66.6Hz

Table 4: Estimation errors in wrist flexion/extension exercise (units
in degrees).

Subject Average WFE RMSE Average WFE ROM
1 1.137 53.389

2 1.432 54.824

3 3.282 63.869

4 3.555 53.977

Average 2.351 56.265

Table 5: Motion features for subjects 1 and 3 in WFE exercise.

Aspect Subject 1 Subject 3
Average angular speed (deg/s) 26 82

Time delay (ms) 15 60

in each trial were left to the discretion of each test subject. In
the evaluation, the VR games were not executed, given that
they are not necessary to assess the accuracy of the posture
estimation algorithm. Furthermore, in this way the influence
of the VR games on the subject movement amplitude, speed,
and repetitions is avoided, which derives a richer variety of
movement features in the evaluation exercises.

However, it is worth mentioning that the joint limits of
the exoskeleton, the need to avoid occlusions of the passive
markers on the rigid bodies attached to the test subject, and
the limited detection volume of the OTS do constrain the
subject’s movements.

6. Results and Discussion

In this section, we present the results of the experiments
described in Section 5. Tables 4, 6, 7, and 8 (angles expressed
in degrees) present the average RMSE obtained in the estima-
tion of the angle of interest by using our proposed algorithm.
Each table presents the average ROM of the movement
performed by each test subject. The average RMSE and ROM
metrics mentioned previously are obtained from the 4 trials
that each subject performed for each exercise. The last row in
the tables presents the average values of each of the computed
metrics for all subjects.

N.B.: in this section we compare our results against freely
moving subject cases reported in the literature. We resort
to such free movement cases since we found no reports
concerning estimations errors of the wrist or elbow angles in
limbs constrained with exoskeletons.
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Table 6: Estimation errors in elbow flexion/extension exercise (units in degrees).

Subject Av. EFE RMSE Av. EFE ROM Av. FPS RMSE Av. FPS ROM
1 1.636 36.948 0.980 4.148

2 1.553 33.897 1.408 4.921

3 2.815 49.333 2.187 5.216

4 4.381 36.442 1.128 7.160

Average 2.596 39.150 1.426 5.361

Table 7: Estimation errors in forearm pronation/supination exercise (units in degrees).

Subject Av. EFE RMSE Av. EFE ROM Av. FPS RMSE Av. FPS ROM
1 1.221 5.799 1.965 70.453

2 1.799 7.395 2.639 48.500

3 1.627 9.691 4.147 90.527

4 1.132 2.459 4.568 37.717

Average 1.445 6.336 3.330 61.799

Table 8: Estimation errors in simultaneous elbow flexion/extension and forearm pronation/supination exercise (units in degrees).

Subject Av. EFE RMSE Av. EFE ROM Av. FPS RMSE Av. FPS ROM
1 2.224 35.762 2.707 59.878

2 2.773 40.837 3.037 58.441

3 5.212 47.850 4.429 55.228

4 2.679 36.654 2.158 59.673

Average 3.222 40.276 3.083 58.305

6.1. Wrist Flexion/Extension. Table 4 presents angle estima-
tion statistics for wrist flexion and extension. The ROM
exercised by the subjects presents small variability and seems
not to correlate with RSME. However, we did observe that
subjects 1 and 2 performed slow movements while subjects
3 and 4 moved fast. Such a difference reflects on the RMSE
values.

To elaborate this point, we present in Figure 11 the history
of the measured versus estimated angle, for subjects 1 and
3. The sampling span is 250 (approx. 3.75 seconds). The
motion features of the movements shown in Figure 11 are
summarized in Table 5. In such table, the time delay aspect
refers to the time delay that the estimations provided by our
algorithm present with respect to the measured angles. The
time delay is larger when the subject moves fast. This causes
the increment in the RMSE estimation values.

These results suggest that the response speed of our
algorithm, given a change in theArmeo joint angles caused by
the movement of the human subject, allows providing better
estimates when the subject moves slowly (as in rehabilita-
tion therapy). In our algorithm, the response speed largely
depends on the damping constant used in the DLSmethod to
solve the limb’s IK. By using a smaller damping constant in the
DLSmethod, the response speed can be improved, sacrificing
some stability.

Nevertheless, the average RMSE obtained for all subjects
shows a better performance of our method with respect
to [39], an optimization-based approach which presents

errors around 3.5 degrees. Compared to [36], which presents
a IMMS-based method to estimate the wrist angles with a
RMSE of less than 3 degrees, our results are slightly better.

6.2. Elbow Flexion/Extension. In flexion and extension of
elbow (Figure 12, Table 6), involuntary movement along the
pronation/supination axis is not avoided. Therefore, small
excursions in this DOF were observed.

For all subjects, our method overestimates the amplitude
of rotational movements about the flexion/extension axis,
when compared against themeasured values (see Figure 12(a)
for subject 2).

Our method performs better than the one in [39],
in which the reported mean error in estimating the flex-
ion/extension angle is approximately 14 degrees. Compared
to the approach in [35], which uses a IMMS-based method
and presents a RMSE of 3.6 degrees in estimating elbow
and shoulder angles, our method also presents better perfor-
mance.

We include in Table 6 the estimation statistics for prona-
tion/supination angle in order to illustrate the perfor-
mance of our method with small angular displacements.
Figure 12(b) displays the estimation and measurement of
pronation/supination angle for a trial of subject 2. In this fig-
ure, we observe that there is an underestimation of the angle.
However, it must be taken into account that estimation errors
for small ROMs are in the same order of the measurement
method accuracy (RMSE 1 degree).
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Figure 11: Motion patterns of subjects 1 and 3 during a trial of wrist flexion/extension.

500 1000 1500 2000 2500 3000

Samples

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Measured F/E angle
Estimated F/E angle

(d
eg

)

(a) Estimation results of the flexion/extension angle

−5

−4

−3

−2

0

1

2

3

4

−1

500 1000 1500 2000 2500 3000

Estimated P/S angle

Samples

Measured P/S angle

(d
eg

)

(b) Estimation results of the pronation/supination angle

Figure 12: Estimation results of the elbow angles during flexion/extension for trial of subject 2.

6.3. Forearm Pronation/Supination. Table 7 and Figure 13
show the statistics of our method for forearm prona-
tion/supination angle estimation. We remark that motion
in the elbow flexion/extension axis may occur during the
forearm pronation/supination exercise. Therefore, we also
report (in Table 7 and Figure 13) the estimation results for the
small angular movements around the flexion/extension axis.

The average RMSE in the estimation of the prona-
tion/supination DOF of our method presents an accuracy
similar to the one of [35] (RMSE 3.6 degrees).

Figure 13 shows the elbow angles estimation results for
a trial of the FPS exercise of subject 1. Figure 13(a) shows
that estimations in the flexion/extension DOF, in which
small movements were performed, do not present the oscil-
lations of the measured angle (RMSE 1.175 degrees). On the
other hand, Figure 13(b) shows that estimations of the pro-
nation/supination angle are very close to themeasured values.

For the pronation/supination angle, the worse estima-
tions were obtained for subject 4, who performed short but
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Figure 13: Estimation results of the elbow angles during pronation/supination for a trial of subject 1.
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Figure 14: Estimation results of the elbow angles during simultaneous flexion/extension and pronation/supination for a trial of subject 4.

very fast movements, affecting the estimation accuracy as
described in Section 6.1.

According to results presented here and in Section 6.2,
it seems that for small movements the estimation approach
is slightly more sensitive to movements in the prona-
tion/supination DOF than on the flexion/extension DOF.

6.4. Simultaneous Elbow Flexion/Extension and Forearm
Pronation/Supination. The objective of this exercise is to
evaluate how simultaneous movements of both DOFs of the
elbow affect the angle estimations for this joint. The results

are presented in Table 8. In this table, it is shown that, for both
elbow DOFs, the average of the RMSE for all the subjects is
similar to the one presented in [35] (RMSE 3.6 degrees).

This result also suggests that, during the performance of a
functional rehabilitation exercise, such as reaching, in which
simultaneous flexion/extension and pronation/supination
movement are necessary, the accuracy of the estimations
would remain in an adequate range.

Figure 14 presents the estimation results of a trial of this
exercise of subject 4. In this figure, it can be observed that
estimations follow closely the measured angles.
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7. Conclusions and Future Work

This paper presents a method that can be applied to estimate
the posture of the human limbs during the interaction with
exoskeletons by solving the limb IK problem extended with
the kinematic constraints of the exoskeleton fixations on the
limb. The few approaches in the literature that deal with
limb posture estimation in a robotic-assisted scenario are
specifically designed to estimate the arm posture. In contrast,
the method that we propose provides a general formulation,
which is not specific to any human limb or exoskeleton.
Our method is based on inverse kinematics and it can be
implemented using standard robotics libraries.

In this paper, we have also shown the implementation of
themethod to provide upper limb posture estimations, in real
time, using the Armeo Spring.We have also presented the use
of the resulting limb postures estimations in the animation of
avatars in VR rehabilitation games.

We have evaluated the accuracy of the estimations of our
method during the performance of analytic rehabilitation
exercises of the wrist and elbow. The obtained results show
that our approach presents an accuracy that is better than the
one provided by goniometry, which is the traditional method
to measure the patient angles in motor rehabilitation. Com-
pared to the accuracy provided by IMMSs-based methods,
which are considered enough accurate to measure clinical
relevant limb joint angles in nonrobotic-assisted scenarios,
we have obtained very similar results.

Based on the mentioned results, we conclude that our
approach can be used to (a) provide an estimation of the pose
of the human upper limbwith enough accuracy to be used for
avatar animation in VR games and (b) obtain the kinematic
data for the patient assessment during analytic training of the
elbow and wrist.

Future work includes (a) the exploration of other
approaches to model the flexible fixations of the exoskeleton,
(b) the definition of a set of weights for the human model
joints that represent the movement features of a set of human
subjects, and (c) a quantitative assessment of the performance
of our method in a functional rehabilitation scenario.

Nomenclature

Clavicle: One of the bones of the shoulder girdle. It
is located at the root of the neck

DLS: Damped least squares
DOF: Degree of freedom
EFE: Elbow flexion/extension
FPS: Forearm pronation/supination
GH: Glenohumeral
Humerus: Upper arm bone
IK: Inverse kinematics
IMMSs: Inertial and magnetic measurement

systems
OTS: Optical tracking system
RMSE: Root mean square error
ROM: Range of motion
Scapula: One of the bones of the shoulder girdle. It

connects the humerus with the clavicle

SEFEFPS: Simultaneous EFE and FPS
VR: Virtual reality
V-REP: Virtual robot experimentation platform
WFE: Wrist flexion/extension
V: Total number of constraints of the IK

problem (V ∈ N)

𝑒: IK error vector (𝑒 ∈ RV
)

𝑘: Total DOFs of the human kinematic model
(𝑘 ∈ N)

𝑛: Total DOFs of the exoskeleton kinematic
model (𝑛 ∈ N)

𝑍: Jacobian matrix of the IK problem
(𝑍 ∈ RV×𝑘)

𝐼: V × V identity matrix
𝑊
𝑞
: Diagonal matrix of joints weights

(𝑊
𝑞
∈ R+
𝑘×𝑘)

𝑊
𝑒
: Diagonal matrix of constraints weights

(𝑊
𝑒
∈ R+

V×V)
𝑞
𝐻𝑡
: Vector of joint angles of the human

kinematic model in instant 𝑡 (𝑞
𝐻𝑡
∈ R𝑘)

𝑞
𝑅𝑡
: Vector of joint angles of the exoskeleton

kinematic model in instant 𝑡 (𝑞
𝑅𝑡
∈ R𝑛)

𝛼: Damping factor of DLS method (𝛼 ∈ R+).
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