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During early Drosophila embryogenesis, a network of gene regulatory interactions
orchestrates terminal patterning, playing a critical role in the subsequent formation of
the gut. We utilized CRISPR gene editing at endogenous loci to create live reporters of
transcription and light-sheet microscopy to monitor the individual components of the
posterior gut patterning network across 90 min prior to gastrulation. We developed a
computational approach for fusing imaging datasets of the individual components into
a common multivariable trajectory. Data fusion revealed low intrinsic dimensionality
of posterior patterning and cell fate specification in wild-type embryos. The simple
structure that we uncovered allowed us to construct a model of interactions within
the posterior patterning regulatory network and make testable predictions about its
dynamics at the protein level. The presented data fusion strategy is a step toward
establishing a unified framework that would explore how stochastic spatiotemporal
signals give rise to highly reproducible morphogenetic outcomes.

gene regulatory networks | Drosophila development | transcriptomics | data integration |
image registration

At the start of animal gastrulation, epithelial primordia bend toward the interior of the
embryo, taking the first step toward forming internal organs. In particular, involution
of endoderm via the blastopore precedes formation of posterior structures of the gut
(e.g., posterior midgut [PMG] and hindgut [HG]) (1–7). This morphogenetic event is
foreshadowed by spatial patterning within the primordium that is defined by differential
expression of regulators, such as signaling molecules and transcription factors. Patterning
of the gut progresses in a similar fashion in organisms as diverse as corals and mammals,
with the homologs of essential components (such as cdx, foxA, bra, and wnt genes)
displaying striking similarities in their expression profiles (2, 8–16). Understanding the
organization of such conserved patterns is fundamental for understanding organogenesis.
Here, we examine patterning dynamics in the Drosophila embryo, where the PMG and
HG primordia are established within a short time window of only 2 h.

The PMG and HG primordia in Drosophila are induced by the locally activated
extracellular signal–regulated kinase (ERK) pathway. ERK relieves gene repression by
a high mobility group (HMG)-box DNA binding protein Capicua (Cic), which acts
as a sensor of ERK activation in multiple stages of Drosophila development (17–19).
Phosphorylated by ERK, Cic rapidly leaves the enhancers of its target genes (Fig. 1A),
which are positively regulated by maternal and zygotic activators (19, 20). Among the
direct targets of Cic are tailless (tll), a member of the nuclear receptor family, and huckebein
(hkb), a zinc-finger transcription factor, both of which are induced within minutes of ERK
activation. Tll and Hkb proteins shape the expression domains of several genes within the
PMG/HG primordia; these include brachyenteron (byn), the Drosophila homolog of T-
box transcription factor Brachyury; wingless (wg), which encodes a secreted Wnt-family
ligand; and forkhead (fkh), which encodes a winged helix transcription factor (Fig. 1B)
(2). Another key regulator of the posterior gut patterning is caudal (cad ), encoded by the
Drosophila homolog of the vertebrate CDX-2 homeobox gene (21). Posteriorly localized
cad is translated from both maternal and zygotic transcripts and activates genes involved
in Drosophila endoderm and ectoderm specification.

Genetic studies of PMG and HG specification established several interactions within
the corresponding gene regulatory network (GRN) (Fig. 1B) (22–27). At the same time,
most studies with the goal of creating a comprehensive description of gene expression
in regulatory networks in Drosophila development rely on the use of fixed embryos.
To construct spatially resolved expression profiles of multiple genes from fixed samples,
spatial registration techniques have been applied to integrate partial observations in both
Drosophila and other organisms (28–31). However, generating a time-resolved view of
spatiotemporal gene expression dynamics from such data, although possible, has proven
to be a daunting task (29, 32). As a result, we lack a detailed temporal view of the
establishment of gene expression domains in PMG/HG patterning network or a clear
description of the spatial relationship of these domains.

Significance

To understand developmental
patterning of an organism, it is
necessary to accurately measure
how the state of a gene regulatory
network is changing over time.
One way of extracting dynamics of
a network involves simultaneously
imaging several reporters
within fixed tissue. Reconstructing
dynamics from such data requires
staging many samples over time
and often leads to low temporal
resolution. Time-lapse microscopy
of fluorescent transcriptional
reporters has revolutionized
studies of biological
dynamics at the single-cell level.
However, this method is limited
by the number of reporters
that can be imaged at one
time. We present a computational
method for addressing
this problem and demonstrate
its application by modeling
the gene regulatory network
underlying Drosophila posterior
patterning and reconstructing
its developmental dynamics.
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Fig. 1. The posterior gut specification GRN and acquisition of transcriptional information. (A) ERK signaling, which is activated through the receptor tyrosine
kinase (RTK) Torso at the posterior pole of the Drosophila embryo, antagonizes repression by Cic. Export of Cic from the nucleus and subsequent degradation in
the cytoplasm allow for activation of downstream genes. (B) A minimal network of five genes that specifies the posterior gut (2, 21). Arrows indicate activation,
and flat lines indicate repression. (C) Transcription for five genes was tracked by endogenously inserting MS2 stem loops (black) into the 5′ UTR of each of our
genes using CRISPR. (D, data acquisition) About 1/3 of the embryo is imaged starting from the posterior pole using light-sheet microscopy. A stack of images
is taken once every minute from NC 11 to the start of gastrulation for a total of 90 min. (D, raw data) Representative raw images of a single slice (row 1) and
a maximum intensity projection of all 200 slices (row 2) in the nuclear (Histone-GFP) and MS2-MCP (MCP-mCherry) channels are shown. (Scale bar: 50 μm.)
(D, processing) Images were segmented in 2D using ilastik (41) and reconstructed in 3D using arivis Vision4D. Overlapping nuclear and dot “objects” indicated
whether a nucleus was actively transcribing a gene. Nuclei containing an MS2 dot were “colored” with gene expression. (D, output) A list of all nuclear objects
paired with information about their positions and transcriptional activity was exported for further analysis.

Recent advances in live imaging, genome editing, and data
science offer powerful tools for revisiting Drosophila gut determi-
nation with greatly increased temporal resolution. Nonetheless,
one obstacle remains; it is not experimentally tractable to label
the expression of more than two or three genes at a time (33–
37) due to genetic constraints of expressing multiple live reporters
in a single organism and from spectral overlap of fluorophores.
Here, we present a systematic strategy that employs live imaging
of transcriptional reporters of individual genes and algorithms
that combine the partial observations into a multivariable tra-
jectory. We demonstrate our strategy by reconstructing the wild-
type dynamics of five genes involved in posterior gut patterning
in the Drosophila embryo. We validate our findings using in
situ hybridization and antibody staining in fixed embryos and
provide a simplified view of the patterning dynamics through low-
dimensional approximation. Finally, we use computational mod-
eling to study the extent to which the simple patterning dynamics
can be predicted by known gene interactions in the network.

Results

Live Imaging of PMG/HG Patterning. In order to visualize tran-
scriptional dynamics of the posterior patterning GRN, we created
endogenous transcriptional reporters using the MS2–MS2 coat

protein (MCP) system (33–35). This system utilizes stem loops
derived from the MS2 bacteriophage that are inserted into a
noncoding region of a gene and the expression of a fluorescently
labeled MCP. As the gene is transcribed, the labeled MCP binds
to the stem loops, creating fluorescent puncta (also referred to
here as “dots”) and enabling observation of active transcription
in individual nuclei in the posterior of the embryo. For five
genes in the network, MS2 stem loops were inserted into the
5′ untranslated region (UTR) of each gene with CRISPR-Cas9–
mediated genome editing (Fig. 1C ) (38, 39). Transgenic flies
for all genes were homozygous viable and were crossed to flies
expressing MCP-mCherry and a Histone marker. To maximize
spatiotemporal resolution of the posterior of the embryo in three
dimensions, we used the Luxendo MuVi SPIM light-sheet mi-
croscope (Fig. 1D) (40). We imaged nuclei and transcription
starting from the pole cells, taking cross-sectional slices inward and
capturing about one-third of the embryo. One stack was taken
every minute from the beginning of nuclear cycle (NC) 11 to
the start of gastrulation (∼ 90 min). Nuclei and MS2 dots were
segmented using ilastik (41), and three-dimensional (3D) objects
were reconstructed in arivis Vision4D (Fig. 1D and Materials
and Methods). Four developmental movies were collected for each
of the five genetic reporters (42). The output of segmented and
reconstructed imaging datasets was a list of all nuclei paired with
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Fig. 2. Fusion of transcriptional profiles of individual genes. (A) A schematic representation of our approach to data fusion. After the registration step (based
on morphology) (SI Appendix, Figs. S1 and S2), for every gene g, random forest classification was performed to predict transcription probabilities fg(x, y, z, t) on
spatiotemporal morphology of a shared model embryo. The output is a common view of multivariable transcriptional dynamics on the posterior of the embryo.
For clarity, only two genes and one time point are shown. (B) Mean of the predicted expression probabilities on the model embryo as a function of (synchronized)
time shown for individual genes and on the same axes (Bottom Right). The shaded regions show the 95% CIs.

information about their positions and whether they contain a
transcriptional dot, which indicates that the nucleus is actively
transcribing a gene.

Processed data paint a picture of how patterns arise and change
over time. As expected for direct targets of ERK signaling, tran-
scription of tll and hkb was observed at the onset of the movie
during NC 11. Expression of tll and hkb continued through
NC 12 and NC 13 and ceased about halfway through NC 14.
Expression of byn, which is activated by Tll and repressed by
Hkb, began in NC 12 and persisted through NC 14. About
halfway through NC 14, transcription of byn subsided in the
most posterior cells, resulting in a ring of expression. Similarly,
wg expression was initiated in NC 13, eventually forming a ring
of expression in NC 14. Lastly, fkh expression was initiated in NC
13 and continued in NC 14.

Our set of transcriptional movies was a starting point for
understanding multivariable profiles of the posterior patterning
network. The next step was to combine these descriptions of
individual patterns into a single embryo.

Fusion of Individual Expression Profiles. In order to computa-
tionally fuse transcriptional data, imaging datasets first needed
to be aligned in time and space due to variability of imaging
initiation time and embryonic placement on the microscope.
During registration steps, transcriptional information was ig-
nored, and only embryonic morphology was employed to preserve
spatiotemporal transcriptional variability between samples. NC
lengths during Drosophila embryogenesis are consistent across
samples (NC 12: 9.6± 0.6 min, NC 13: 17± 1.5 min), as
measured from all collected movies (SI Appendix, Fig. S1B) (43,
44). Therefore, developmental time alignment between samples
was performed by identifying the times of nuclear divisions in each
movie (Materials and Methods and SI Appendix, Fig. S1A) and
specifying t = 0 as the 11th nuclear division in embryogenesis.
SI Appendix, Fig. S1 C and D renders the result of this alignment
in terms of the total number of nuclei across movies and bulk
transcriptional dynamics between replicates of the same gene,
respectively.

After temporal alignment, we obtained spatial registration of
all samples to a template to account for the random rotation and
translation of the embryo during mounting on the microscope
as well as to correct for small fluctuations in the overall size of
the embryo. This was achieved using a version of iterative closest
point (ICP) algorithm (45) applied to the point clouds of nuclear
centroids, with the formation of the ventral furrow at the end
of the movie serving as a morphological cue for initial rotation
(Materials and Methods and SI Appendix, Fig. S2).

With all data aligned to the same axes, we developed a model
to make predictions about spatiotemporal domains of gene ex-
pression on the template embryo. For every gene g, we used
binary indicators of MS2 dots as a proxy for expression. We fit
a random forest classification model (46, 47) to the observed
expression profiles in the corresponding movies using the available
spatiotemporal coordinates as features (Fig. 2A). Indeed, every
nucleus corresponds to an observation of the form (Di , ξg,i),
where Di = (xi , yi , zi , ti) are its spatiotemporal coordinates and
ξg,i is a binary variable indicating whether the nucleus is actively
transcribing or not. We used a random forest classifier to solve
the binary classification problem using Di as predictors, with
ξg,i being the target variable. The performance of this classifica-
tion approach was compared with gradient boosting and kNN
classification through a cross-validation procedure (Materials and
Methods). Cross-validation demonstrated similar performance be-
tween random forest and gradient boosting classifiers, with a small
advantage over the kNN approach (Materials and Methods and
SI Appendix, Fig. S6 and Table S3). Results of the evaluation of
the best-performing random forest models on independent test
sets are given in SI Appendix, Table S4. For every gene g, we
trained the corresponding tuned model on all the biological repli-
cates and used the trained model to predict expression probabili-
ties fg(D) of this gene for every observation D on the morphology
of the chosen template sample (Materials and Methods).

Fig. 2B summarizes the dynamics of the expression prob-
abilities provided by our trained models for individual genes,
illustrating how the overall level of gene expression changes over
time. For example, we see that levels of tll and hkb fall concurrently
with a rise in wg expression and a reduction in byn levels during
NC 14. To demonstrate spatial organization of the underlying
process, Fig. 3 shows snapshots of individual and fused outputs
of our classification on the coordinates of the template embryo.
To validate some of our predictions, we have performed fluo-
rescent in situ hybridization using intronic probes for byn and
wg in embryos throughout NC 14 (Materials and Methods and
SI Appendix, Fig. S7, five time points shown). These data provided
us with snapshots of the simultaneous dynamics of these two genes
at the primary transcript level. In accordance with our results,
these data demonstrated the emergence of byn pre-mRNA at the
beginning of NC 14, with a gradual evolution from a posterior cap
into a ring-like structure that was predicted by our random forest
model. At the same time, we confirmed emergence of a thinner
ring for wg concurrently with the recession of byn pre-mRNA
from the posterior region.

Fused data are valuable for examining the underlying properties
of the genetic network, which we address next.
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Fig. 3. Snapshots of fused expression patterns. Predicted transcriptional probabilities for representative time points are shown spatially on the template
embryo (posterior view). For every individual plot, the color is normalized so that the highest intensity corresponds to probability of one. In the fused row, for
every gene, the radius of its corresponding visible annulus is proportional to the predicted probability of transcription.

Posterior Patterning Network Dynamics Has Low Intrinsic
Dimensionality. The spatial patterns in Fig. 3 suggest a high
level of coordination between the expression of individual genes
within specific spatial components of the tissue. To construct the
expression trajectories corresponding to emerging cell fates, the
predictions between adjacent time frames must be connected.
In lieu of a tracking algorithm, we created a grid of 1,000
points on the surface of the model embryo (Materials and
Methods) and utilized our classification model again to make
predictions for individual genes on this grid at every time point.
As a result, each element of the grid displays a five-dimensional
trajectory of predicted expression probabilities (Fig. 4A). In order
to dissect the structure of the multidimensional dynamics and
extract interpretable features, we applied nonnegative matrix
factorization (NMF) to the trajectories (Fig. 4B). Dimensionality
reduction showed that our data are accurately explained by two
primary components (23% relative residual error) (Materials
and Methods), revealing two developmental trajectories that are

linearly combined at every locus with spatial mixing coefficients
(Fig. 4C ). The approximation provided by the two NMF
components recapitulates the spatiotemporal patterns of the fused
expression probabilities (Fig. 5). The mixing coefficients of NMF
components on the embryo are concentrated in a “cap” and a
“ring” of nuclei around the pole, reminiscent of the tissue that
will become ectoderm and endoderm of the future gut. Feature
importance scores (SI Appendix, Fig. S3D and section I) offer a
closer look into divergence between the two trajectories for every
time point at the level of individual genes. A major distinction
between the trajectories can be observed already in NC 13 through
differential expression of fkh and hkb and persists throughout NC
14, culminating in its second half with input from wg and byn.
This observation might provide insight into timing and origins of
gut cell–type specification.

The mixing weights produce an embedding of our data into
a plane (SI Appendix, Fig. S3C ), with most of the variance in the
weights explained by nonlinear functions of the anterior–posterior
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(AP) axis coordinate only (SI Appendix, Fig. S3B). Nonetheless,
residual error analysis suggests that an additional fine-scaled struc-
ture might be present in the data. SI Appendix, Fig. S4A depicts
the norm of the residual error of our NMF approximation over
time plotted on the template embryo for each gene. Most of the
error is concentrated at the dorsal side of the embryo for byn
and away from the dorsal side for hkb and wg, suggesting that
dorsal–ventral (DV) signaling may play a role in expression of
the network. In fact, interactions between dorsal and Cic have
been shown to lead to DV gradients in Cic concentration, which
may propagate through the GRN (48). Additionally, note that
the quality of our NMF approximation varies between individual
genes, with wg displaying the highest residual to expression ratio
on average (SI Appendix, Fig. S4B). This suggests that wg may be
expressed in a cell-type subset within the posterior, reflecting a
more complex relationship between the patterning dynamics and
the ultimate cell fates.

To test the sensitivity of our predictions to each individ-
ual gene in silico, we performed experiments removing from
consideration the data corresponding to one gene at a time
(SI Appendix, section I) and observed remarkable robustness of
the low-dimensional decomposition. The patterns remained stable
after removal of any gene except byn, which when removed,
produced a shift in the distribution of the ring mixing coefficients
(SI Appendix, Fig. S5). This suggests that while byn is the main

driver of the ring component, other genes collectively contribute
to the formation of the two components.

Modeling Posterior Patterning Network. To validate some of the
presumed relationships in the terminal patterning GRN (Fig. 1B),
we collected quadruple antibody staining for embryos in late NC
14 in tll and hkb mutant backgrounds (Fig. 6B and Materials
and Methods). In hkb2 embryos, both Byn and Wg become
expanded toward the posterior pole, suggesting that the posterior
boundary for both genes is set by their relationship with Hkb
serving as a repressor. At the same time, in tll1 background, no
substantial Byn or Wg protein can be detected in the posterior of
the embryo, confirming that Tll expression might be necessary for
their activation.

The small size of the network paired with the simple descrip-
tion of the network dynamics provided by the low-dimensional
approximation allowed us to fit an ordinary differential equation
(ODE) model to our data (Materials and Methods). The model
(Fig. 6A) incorporates activating and repressing relationships be-
tween the genes in the network in Fig. 1B, assuming nonlinear
relationships between the protein level of an upstream gene and
the instantaneous rate of transcription of a target gene. These in-
teractions are modeled through the Hill function, h(x ) = xs

xs+cs ,
with additional parameters for the strength of the interaction
and protein degradation rates. We fit our system to two NMF

PNAS 2022 Vol. 119 No. 15 e2112892119 https://doi.org/10.1073/pnas.2112892119 5 of 11

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://doi.org/10.1073/pnas.2112892119


Fig. 5. Snapshots of the expression patterns provided by low-dimensional NMF approximation. Snapshots of the approximate probabilities of transcription
provided by two NMF components shown on the embryonic grid for the same time points as in Fig. 3. For individual gene predictions, the color in every figure
is normalized so that the highest intensity corresponds to one. In the fused row, for every gene, the radius of its corresponding visible annulus is proportional
to the approximate probability of transcription.

components for the transcription intensity levels (derived from
probabilities predicted by our random forest model) (Materials
and Methods). Absence of RNA synthesis during mitosis allows
us to fit the model parameters using only transcription intensities
in the interphase. We employed a Bayesian framework for param-
eter inference; prior distributions for 14 free model parameters
and fixed values chosen for other parameters can be found in
SI Appendix, Table S7.

We applied the GRN model to our data by fitting it to both
NMF components simultaneously and simulating samples from
the posterior distribution of the parameters using a Monte Carlo
approach (Materials and Methods). This allowed us to study
the posterior predictive distribution of transcription trajectories
for the downstream genes in the network: byn, fkh, and wg.
Interactions within the model were sufficient to capture the
overall dynamic trends of these genes in both spatial components
(cap posterior mean RMSE = 0.2414, ring posterior mean RMSE

= 0.1963) (Fig. 6 C, Upper). We observed that, despite the
flexibility of our chosen model, most of the marginal posterior dis-
tributions were unimodal and were concentrated in small regions
of the parameter space (SI Appendix, Fig. S9). As an example, the
instantaneous rate of transcription of byn in both components is
described within the model framework by an equation of the form

Nbyn(t) = a · h (Ptll(t), c1, s) (1− h (Phkb(t), c2, s)) ,

where Ptll(t) and Phkb(t) are the upstream protein concentra-
tions; a denotes the strength of interactions; and c1, c2 and s
are thresholding and slope parameters, respectively. As a result,
dynamics of byn are explained by a trade-off between the upstream
Tll and Hkb protein profiles, which provides tight constraints
on the degradation rates of these proteins. Our model provides
an estimate of 40± 2 min for the half-life of Tll, with a much
longer half-life (on the order of hours) predicted for Hkb and Fkh.
Indeed, the posterior distribution allowed us to simulate Tll, Hkb,
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Fig. 6. Bayesian ODE model for the posterior patterning network. (A) A scheme of the GRN model that was applied to posterior patterning data. Squares,
N(t): observed instantaneous rate of transcription; circles, P(t): unobserved protein concentration. Arrows indicate activation, and flat lines indicate repression.
Dashed arrows correspond to the ODE part of the model (Materials and Methods). For every downstream gene in the network (byn, fkh, wg), its rate of transcription
is modeled to result from a combined input of concentrations of upstream proteins [passed through nonlinear filters, denoted by h(·)]. Other parameters
include protein degradation rates (d), interaction strength (a), and thresholding and slope parameters (c, s). (B) Protein staining of NC 14 syncytial blastoderm
into early gastrulation (the lateral view of the posterior portion is shown). The first four columns show wild-type terminal patterning. Columns 5 and 6 show
mutant terminal patterning. NC 14A: 0 to 20 min; NC 14B: 20 to 40 min; NC 14C: 40 to 60 min of NC 14. Gast indicates early gastrulation. (Scale bars: 50 μm.)
(C) Predicted transcription and protein dynamics obtained using Bayesian inference for the ODE-based regulatory network model shown in A. (Upper) Dynamics
of the instantaneous rate of nascent RNA production for three downstream genes of the network. Dashed lines indicate posterior predictive means. (Lower)
Mean predicted dynamics of protein concentration for three upstream genes. (D) Spatial distribution of protein concentration and transcription rates in NC 14C.
(Upper) Predicted (minimum/maximum-normalized) expected concentrations of Tll and Hkb are shown as dotted lines. Mean protein concentration derived from
immunostaining of 20 NC 14C embryos is shown in gray. (Lower Left) Transcriptional profiles of downstream genes of the GRN. (Lower Right) Immunostaining
data (including Byn; solid lines) and model predictions (dotted lines) for protein concentration are overlaid with the transcriptional profile of byn. The x axis is the
embryonic length (EL; 100% corresponds to posterior pole). SI Appendix, section J has details on normalization and inference of common embryonic coordinates.
In all plots of C and D, shaded regions denote twice the SD from the mean.

and Fkh protein dynamics (Fig. 6 C, Lower), which reflect their
corresponding degradation rates. In particular, our results for the
cap component (NMF component 1) suggest that Tll, Hkb, and
Fkh persist in the posterior of the embryo throughout NC 14.

Testing GRN Model Predictions. To test model predictions and
obtain a view of the network dynamics at protein level, we
performed simultaneous antibody staining for Tll, Hkb, Byn, and
Wg proteins in wild-type embryos across NC 14 (Fig. 6B). Over-
all, these data reveal that the spatial structure that we identified
from RNA is preserved at the protein level, with Hkb, expressed
in a small posterior cap region, getting combined with Tll in a

broader cap region to define the two spatial components setting up
a more refined structure of Byn and Wg downstream. In line with
our GRN model predictions, we observed Hkb and Tll proteins in
their respective spatial compartments of the embryo throughout
NC 14 until gastrulation.

Furthermore, by combining concentration predictions of
Fig. 6C using spatial coefficients provided by NMF, one can
predict how a protein is distributed along the AP axis at any
point of our time course (SI Appendix, section J has details).
Thus, to test our model further, we quantified Tll, Hkb, and
Byn concentrations in embryos between 40 and 60 min into
NC 14 (NC 14C) and contrasted the result against our predicted
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spatial protein profiles for this stage of development (Fig. 6D). We
observed striking agreement between model predictions for Tll
and Hkb and these orthogonal measurements (with divergence
around the posterior pole, which can be explained by not
excluding pole cells from our analysis). We stress that the resulting
shape of the protein profiles could not be immediately predicted
without GRN modeling (since the shape of the corresponding
transcription profiles dynamically changes throughout the whole
time course of our observation).

Unlike Tll and Hkb, however, our GRN model does not incor-
porate Byn and cannot provide a prediction for its distribution.
Previous studies (49) suggested that Byn protein follows similar
dynamics to its RNA, localizing, during cellularization, to the pos-
terior ring of cells mostly comprising the proctodeal primordium.
However, even though our data confirm that transcription of byn
ceases in the cap spatial component by NC 14C, quantification
of immunostaining data for Byn for this stage suggests its per-
sistence in both spatial compartments of the posterior (Fig. 6 D,
Lower). Furthermore, Byn staining in Fig. 6B demonstrates that
the Byn domain stays extended toward the posterior pole of the
embryo until the beginning of gastrulation. We have followed
our static experiments with live imaging Byn protein (Movie S1
and SI Appendix, section K) using a LlamaTag construct, which
allowed us to visualize endogenous concentration dynamics of Byn
by fusing it to a nanobody (50). Live imaging corroborated the
static observations, with Byn clearly identifiable in the nuclei in
both spatial components until gastrulation.

Discussion

Our approach to reconstructing dynamics of posterior gut spec-
ification is based on several experimental and computational
features: generation of transcriptional reporters and homozygous
viable transgenic flies, light-sheet imaging, image segmentation
and reconstruction, temporal and spatial registration of samples,
fusion of datasets through random forest classification, dimen-
sionality reduction, and GRN modeling. These steps led to a
compact description of multivariable transcriptional dynamics of
the Drosophila PMG/HG regulatory network, which we found
to be accurately approximated by two different gene expression
trajectories. Our data fusion approach can readily incorporate ad-
ditional replicates for the five genes considered here and imaging
data for other genes involved in the PMG/HG network. While we
provided accuracy estimates for our fusion and low-dimensional
decomposition, these estimates as a function of the number of
replicates or state variables remain to be investigated. Additional
data may refine the boundaries of the two NMF components we
described or reveal additional components specifying finer cell
subtypes within the tissue.

Possessing a comprehensible description of network dynamics
opens up further questions on what drives differentiation. For
instance, our data revealed that transcription of tll and hkb stops
about halfway through NC 14. The underlying mechanisms of
this are not understood and may involve loss of transcriptional
activators, appearance of repressors, or the transient nature of
the terminal ERK signal. A similar question is derived from our
data involving the extent to which the dynamics of tll, hkb,
and fkh constrain those of byn and wg (e.g., leading to their
posterior disappearance in late NC 14). While our study suggests
that a relatively simple GRN model might explain this latter
feature of transcriptional dynamics of byn and wg, additional
variables or refinements in the model might be required to explain
finer spatiotemporal features of posterior patterning (such as the
differences between transcriptional domains of wg and byn in late

NC 14). Pairing modeling with imaging experiments in fixed and
live embryos, we demonstrated how transcriptional dynamics con-
strain protein concentrations for upstream transcription factors
(TFs) Tll, Hkb, and Fkh. At the same time, Byn appears to be
initially broadly activated, with its boundaries gradually refined
and the functional protein still present in both spatial components
prior to gastrulation. Functional consequences of dynamics of Byn
in PMG primordium and additional inputs or features in protein
stability that play a role in such spatiotemporal induction remain
to be elucidated.

The presented strategy relies on live imaging data, and we
expect that it can be extended in several directions. First of all,
similar experimental techniques can be harnessed for observation
of processes other than transcription, such as live imaging of
protein as it is translated (50, 51), or for probing direct in-
teractions within the network (e.g., by simultaneous live imag-
ing of transcriptional activity of developmental genes and their
cis-regulatory elements) (52). Another direction is incorporat-
ing morphological information (e.g., by live imaging cell shape
changes with the use of nuclear and membrane markers) (53–55).
Furthermore, multiplexity could be significantly increased with
the use of modern transcriptomic technologies. Single-cell RNA
sequencing captures information about the entire transcriptome,
and profiles of single cells collected prior to gastrulation have
been successfully mapped to embryonic coordinates (56–58). The
result, however, is still only a snapshot of transcriptional dynamics
in the embryo. Integrating whole-transcriptome sequencing and
live imaging data in this context could further inform us about the
dynamics of cell fate specification (59, 60). A similar strategy was
successfully implemented in the chordate Phallusia mammillata
embryo, where gene expression trajectories were reconstructed
from single-cell RNA-sequencing (scRNA-seq) and light-sheet
imaging data (61). Developing further computational approaches
to integrating different data modalities is essential for advancing
our understanding of development and cell fate decisions.

There are advantages to working with Drosophila embryos that
make our method of data fusion feasible. These include low mor-
phogenetic variability, easy genetic manipulation, and amenability
to live imaging. Such features should be present for use of our
method in other model organisms. Consider the ascidian, Ciona
intestinalis. Due to their size (∼ 140μm in diameter) and trans-
parency, whole Ciona embryos can be imaged on a light-sheet
microscope with high resolution (62). They have a manageable
number of cells with invariant cleavage patterns. The MS2-MCP
system has not been implemented in Ciona, but previous studies
have successfully utilized fluorescently tagged proteins for similar
aims (63, 64). Zebrafish embryos can also be imaged with light-
sheet microscopy (65, 66), and MS2 reporters have previously
been used within this developmental system (37). Nonetheless,
difficulties may arise when considering higher-level vertebrates.
Xenopus laevis, utilized for their large size, may be more diffi-
cult to image due to their opaque yolk. While preimplantation
mouse embryos have been imaged with high resolution, there
is much higher variability between samples, and cell cycles are
not synchronized, making temporal and spatial registration more
difficult (67). Despite these challenges, we hope our method
can be adapted to support the goal of understanding network
dynamics with data fusion in other systems.

Materials and Methods

Fly Stocks and Genetic Crosses. MS2 reporter flies were generated for five
genes using CRISPR-Cas9–based insertion of 24x-MS2 RNA stem loops into the
5′ UTR of each endogenous gene. Virgin females with His2Av-GFP were crossed
to males with MCP-mCherry. Virgins from this cross were placed in a cage with

8 of 11 https://doi.org/10.1073/pnas.2112892119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112892119/-/DCSupplemental
https://doi.org/10.1073/pnas.2112892119


males expressing homozygous genei-MS2. Embryos from this cross, which were
all heterozygous for the MS2 allele, were imaged.

Generation of Transcriptional Reporters Using CRISPR. For insertion
of MS2 stem loops into the 5′ UTR of our genes of interest, the pU6-BbsI-
chiribonucleic acid expression plasmid (38) and the pHD-dsRed-24xMS2 donor
plasmid (gifted by the Levine Lab) were coinjected to yw;nos-Cas9(II-attP40)
or yw;;nos-Cas9(attP2) embryos. Microinjection was performed by BestGene
Inc., and dsRed was used for subsequent screening. More details are in
SI Appendix, section B.

Light-Sheet Microscopy. Embryos were manually dechorionated with tape
and suspended in 1% low-melt agarose gel in a capillary tube. The embryo was
oriented such that the AP axis runs perpendicular to the capillary tube. Once the
gel solidified, the embryo was placed in the chamber of the Luxendo MuVi SPIM
light-sheet microscope. The microscope has two Nikon 10×/0.3 water objectives
and two Olympus 20×/1.0-W detection objectives. The embryo was rotated in
the chamber such that the AP axis of the embryo was parallel to the detection
cameras. In this way, the posterior end of the embryo was closer to one of the
detection cameras. Data from the camera that was closest to the posterior of
the embryo were used. A stack of 200 cross-sectional slices was taken from the
posterior pole of the embryo up to 200 μm inward, with a z-step size of 1 μm.
One stack was taken every minute for ∼90 min. The 488-nm laser was used to
image nuclei (His-GFP), and the 561-nm laser was used to image MS2 dots (MCP-
mCherry), both at 5% laser power. Exposure time for the green channel was 55 ms,
and exposure for the red channel was 70 ms. The line illumination tool was used
to improve background levels and was set to 40 pixels.

Protein Immunostaining and Quantification. Embryos were dechorionated
by treating with 50% bleach for 1 min and fixed in 1:1 heptane/4% formaldehyde
in phosphate buffered saline (PBS) for 25 min, after which they were vortexed
in methanol to remove vitelline membranes. To stain, embryos were washed in
PBT (0.1% Triton X-100, 1% bovine serum albumin, 0.01% sodium azide in PBS),
blocked in Image-iT FX signal enhancer (ThermoFisher; I36933), and incubated
with a mixture of all primary antibodies excluding rat anti-Byn in staining buffer
(5% bovine serum albumin, 0.1% Triton X-100, 0.01% sodium azide in PBS) at
4 ◦C overnight. Embryos were washed in PBT and incubated with secondary
antibodies in staining buffer for 2 h at room temperature. A second fixation as
before for 15 min at room temperature was followed by washing in PBT and
overnight incubation in staining buffer with rat anti-Byn at 4 ◦C. Embryos were
washed in PBT and incubated with goat anti-rat secondary antibody for 2 h at
room temperature. To image, embryos were mounted on glass coverslips in Aqua-
Poly/Mount (Polysciences; catalog no. 18606). More details, including embryo
staging and protein quantification, are in SI Appendix, sections C and D.

Fluorescent In Situ Hybridization Using Intronic Probes. Sheep anti-
digitonin (DIG) (1:125; Roche; catalog no. 11333089001) and mouse antibiotin
(1:125; Jackson ImmunoResearch; catalog no. 200-002-211) were used as pri-
mary antibodies. Alexa Fluor conjugates were used as secondary antibodies. DAPI
(1:10,000; Molecular Probes; catalog no. D1306) was used to stain nuclei. DIG-
or biotin-labeled antisense intronic probes were synthesized from the sequences
within the introns of byn and wg using the primers listed in SI Appendix, Table S2;
0- to 1-h-old embryos from Oregon R flies were collected and aged for 2.5 h. The
embryos were dechorionated in 50% bleach and fixed in 4% formaldehyde in
PBS for 20 min. The fixed embryos were incubated in 90% xylene for 1 h and
in 80% acetone for 10 min at –20 ◦C. Then, embryos were hybridized overnight
with intronic byn probes labeled with DIG and intronic wg probes labeled with
biotin. Next, the embryos were washed for 4 h and then, incubated with secondary
antibodies and DAPI for 1 h. Embryos were then imaged on the Leica SP5 confocal
microscopy with a 20× objective.

Image Segmentation and 3D Object Creation. Image segmentation was
performed for each two-dimensional (2D) slice of a movie using ilastik (41). This
tool uses semantic image segmentation to train a random forest classifier on
features of the image, including intensity, texture, and edges. At least five time
points that captured representative images throughout the movie (different NCs,
during division, during elongation, etc.) were loaded into the software. Images
were annotated (nuclei or dots and background) for at least five slices per time
point. These five slices were chosen based on distance from the camera to capture

any loss of intensity with depth. We recursively added annotation until satisfied
with performance on test slices. Then, segmentation was batch performed for
all time points (SI Appendix, section E). We used arivis Vision4D to reconstruct
3D nuclear and dot objects from segmented 2D binary images and to extract
information about those objects, including positions, volumes, and intensities in
both channels. Details are in SI Appendix, section F.

Temporal and Spatial Registration. Because each movie begins at a slightly
different time, movies must be aligned temporally. We approached this problem
by aligning the movies by the 11th nuclear division in embryogenesis. Details
are in SI Appendix, section G.

Each movie can be viewed as a set of point clouds M = {Mt}t=t0...tN of
centroids of the segmented nuclei at every time point. The ICP algorithm (45)
was used to align point clouds between samples. We started with choosing the
template sample Q, which represents the largest portion of the geometry of the
embryo (i.e., exhibits the maximal average number of nuclei throughout the
movie). For a certain choice of metric, for every movie M, ICP identified a rigid
transformation T, minimizing the total distance between point cloud sets TM
and Q at their last common time point (SI Appendix, section H). We utilized a
variation of the algorithm by introducing a scaling factor into the optimization
problem. ICP converges to a local minimum and is sensitive to initialization; the
formation of the ventral furrow at the end of our observation time frame served as
a morphological cue for the initialization. After alignment, we applied principal
component analysis to the nuclear centroids in all the samples pooled together.
The first principal component aligned with the AP direction, while the DV axis was
roughly given by the third component.

Fusion of Gene Expression Profiles. Let ξg(n) be the binary indicator of
transcription in every nucleus n of a movie collected for gene g [i.e., ξg(n) is set
to zero if no MS2 dot is observed in n, and ξg(n) is set to one otherwise]. All data
collected for gene g can, therefore, be viewed as a set {(D(n), ξg(n))}n∈N(g),
where N(g) denotes the set of all the nuclei observed in the samples corre-
sponding to gene g, with D(n) = (x(n), y(n), z(n), t(n)) denoting spatiotem-
poral coordinates of nucleus n after registration. Fusion of gene expression
profiles in individual movies is achieved through random forest classification
with {(D(n), ξg(n))}n∈N(g) serving as training data. Details on model selection
and hyperparameter tuning are given below. The trained model allows us to
predict expression probabilities fg(D(n′)) for any new observation D(n′) by
taking the mean of the predicted positive class probabilities of the individual
trees in the ensemble. For an individual tree, the probabilities are calculated as
the proportion of positive votes in the corresponding leaf. In Fig. 2B, the CIs for
the mean predictions as a function of time were calculated using 1,000 bootstrap
samples.

We used the sklearn python implementation for the random forest classi-
fication and gradient boosting and k-nearest neighbors (kNN) classifiers from
the same package to perform the following cross-validation comparison. For
each gene, four samples were collected, of which one random sample was set
aside for final testing. On the other three samples, threefold cross-validation was
performed, with individual replicates consecutively chosen for validation sets,
to achieve independence between training and validation sets. Cross-validation
allowed for model selection and hyperparameter tuning. Hyperparameter tuning
was performed through a randomized grid search (with 200 iterations per fold)
over the sets of hyperparameter values shown in SI Appendix, Table S5. Due to
the imbalanced nature of the task, the area under the precision–recall curve was
chosen as the optimization metric, and the final score was calculated as the mean
score over the folds. The best scoring parameters for all three methods are given in
SI Appendix, Table S6. Note that an alternative approach, which evaluates overall
performance by aggregating predictions over the folds and comparing them
against ground truth (instead of averaging the scores over folds), produced
similar results (SI Appendix, Fig. S6).

Nuclear Trajectories. In order to construct gene expression trajectories over
time, predictions at adjacent time frames need to be connected. Coarse-grained
tracking of the nuclei was done by applying k-means clustering to all the nuclear
centroids in Q, fixing k = 1000 to produce a grid on the template driven by
the embryonic morphology. Denoting the resulting cluster centroids by nj, j =
1 . . . 1000, the desired trajectories at every grid element nj were then obtained
from probabilistic predictions of the random forest classifier (Fusion of Gene
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Expression Profiles) at these centroids over the aligned time course: that is,
{�f(nj, t) = (fg1(nj, t), . . . fg5(nj, t))}t=tmin...tmax .

Dimensionality Reduction. NMF (68) is a popular method of dimensionality
reduction and topic modeling. For a given data matrix X, NMF seeks to decom-
pose it into a product of lower-rank nonnegative matrices: dictionary matrix W,
which encodes hidden topics in the data, and code matrix H containing the
mixture weights with which each hidden topic appears in each observation.
More precisely, for X ∈ R+

n×k and rank r ≤ min(n, k), we solve the following
optimization problem:

minimizeW∈Rn×r
+ ,H∈Rr×k

+
‖X − WH‖,

where ‖ · ‖ is the Frobenius norm.
We applied NMF from the sklearn python package to the matrix F with

the flattened multidimensional trajectories in the rows (Nuclear Trajectories and
SI Appendix, section I). The elements of matrix F are in one-to-one correspon-
dence with a (j, g, t) triple of grid element index j, gene g, and time point t. NMF
was initialized with nonnegative double singular value decomposition and used
a coordinate descent solver. As the result of factorization, we obtained matrices
C, with columns containing spatial mixing weights, and G, with rows containing
gene expression trajectories. Columns of C and rows of G were simultaneously
renormalized so that the maxima of the spatial mixing weights found in every
column of C (after ordering by the AP coordinate and smoothing with the window
of width 50) equal one. Information on the residual analysis, calculation of
feature importance scores, and robustness tests for NMF decomposition are in
SI Appendix, section I.

Instantaneous Rate of Transcription. Observed MS2 fluorescence intensity
is roughly proportional to the number of actively transcribing RNA polymerase
(RNAP) molecules (35). With a Poisson distribution Pois(λg(n, t)) assumption on
the RNAP molecule count for gene g in a nucleus n at time point t, transcription
probabilities predicted by our classification model (Fusion of Gene Expression
Profiles) can be approximated by

fg(n, t)≈ P(Pois(λg(n, t)) �= 0) = 1 − e−λg(n,t).

Thus, we can estimate the underlying mean transcription intensities from the
random forest–predicted probabilities by employing the relationshipλg(n, t)≈
− ln(1 − fg(n, t)). We repeated NMF dimensionality reduction for these ap-
proximated intensity profiles, which revealed a 2D structure similar to the one
described for the case of probability trajectories fg(n, t) (SI Appendix, Fig. S8).
We employed this low-dimensional approximation in our GRN model. In what
follows, we will denote the two resulting trajectories by l̃i,g(t), i = 1, 2 and their
corresponding spatial coefficients by c̃i(n).

ODE Model for a GRN. We propose a simplified model for the GRN in Fig. 1B,
in which an activating or a repressive relationship between a protein and its
downstream gene is modeled through a multiplicative factor employing the Hill
function: h(x, c, s) = xs

cs+xs for some positive threshold and slope parameters
c and s. Note that our model ignores the rates at which protein is bound and
unbound to DNA and does not account for diffusion.

More precisely, for gene g and Ng, Mg, and Pg corresponding to instantaneous
nascent transcription intensity, total messenger RNA (mRNA) product, and total
protein product, respectively, the dynamics of the network for a nucleus n is
chosen to be independent of other nuclei and can be described by the following
system of equations:

Ṗg(n, t) = cgMg(n, t)− dgPg(n, t);

Ṁg(n, t) = Ng(n, t)− egMg(n, t);

Ng(n, t) = ag

∏

g′∈A(g)

h(Pg′(n, t), cg′ ,g, sg′ ,g)·

∏

g′∈R(g)

(1 − h(Pg′(n, t), cg′ ,g, sg′ ,g)).

Here, eg and dg denote the decay coefficients of the mRNA and protein, respec-
tively, and cg is the rate of translation. The relationships between a gene g and

its upstream factors within the network are encoded through the sets A(g) and
R(g) of genes that serve as activating and repressive inputs to g, respectively.
The strength of the interaction is modeled through the corresponding parameters
cg′ ,g and sg′ ,g.

Under quasisteady-state approximation, Mg can be assumed to be propor-
tional to Ng, which after proper rescaling of Pg, reduces the system to

Ṗg(n, t) = Ng(n, t)− dgPg(n, t); [1]

Ng(n, t) = ag

∏

g′∈A(g)

h(Pg′(n, t), cg′ ,g, sg′ ,g)·

∏

g′∈R(g)

(1 − h(Pg′(n, t), cg′ ,g, sg′ ,g)). [2]

Here, we allowed a slight abuse of notation by absorbing the rescaling constants
of Pg into cg′ ,g in the second equation above.

We apply this framework to the network in Fig. 1B, with the activating and re-
pressive relationships in the model encoded through A(byn) = {tll}, A(fkh) =
{tll, hkb}, A(wg) = {tll, fkh}; R(wg) = R(byn) = {hkb}. More precisely,
protein levels Ptll(n, t), Phkb(n, t), and Pfkh(n, t) serve as the input in the network,
while Nbyn(n, t), Nfkh(n, t), and Nwg(n, t) serve as the (noiseless) output. From
Eq. 1, protein level Pg(n, t) can be obtained from Ng(n, t) through discrete
approximation:

Pg(n, t + 1) = e−dgt
t∑

i=tmin

Ng(n, i)edg i. [3]

As a result, with Tll and Hkb upstream of fkh, Nfkh(n, t) can be derived from Eq. 2,
and Tll and Hkb protein profiles can be obtained from Eq. 3. This subsequently
allows us to obtain Pfkh(n, t) from Eq. 3.

We fit the proposed model to two intensity components l̃1,g(t) and l̃2,g(t)
only (Instantaneous Rate of Transcription). The expressions for the three input
proteins fully specify the model, and the output can be fit to the observations
with another parameter allowing for residual noise: l̃i,g(t)∼N (Ni,g(t), σ), i =
1, 2.

Uninformative, uniform prior distributions were chosen for every parame-
ter. Protein degradation rates dg were constrained to be bounded by 0.0001
and 0.5; simultaneously, cg′ ,g and ag were chosen to be bounded by 0.01
and 50 to correspond to the possible range of protein concentration values
(SI Appendix, Table S7). We utilized the PyMC3 package for Bayesian modeling
(69) and ran three chains of the No-U-Turn sampling. We allowed for 2,000 tuning
steps, with 5,000 steps used for subsequent sampling. There were no divergences
identified during sampling, with the R̂ diagnostic statistics close to one and the
number of effective samples statistics >25%.

Data Availability. Light-sheet image stacks and Excel files for all replicates were
deposited in the Image Data Resource (https://idr.openmicroscopy.org; acces-
sion no. idr0118). Code is available at https://github.com/MariaAvdeeva/Live
imaging fusion Drosophila.git. All other data are included in the manuscript
and/or supporting information.
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