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Anthocyanins are a class of phytochemicals that have generated considerable interest due to their re-
ported health benefits. It has been proposed that commonly consumed anthocyanins, such as cyandin-3-
O-β-glucoside (C3G), confer cellular protection by stimulating biosynthesis of glutathione (GSH), an
endogenous antioxidant. Currently, it is unknown whether the health effects of dietary anthocyanins are
genetically determined. We therefore tested the hypothesis that anthocyanin-induced alterations in GSH
homeostasis vary by genetic background. Mice representing five genetically diverse inbred strains (A/J,
129S1/SvImJ, CAST/EiJ, C57BL/6J, and NOD/ShiLtJ) were assigned to a control or 100 mg/kg C3G diet
(n¼5/diet/strain) for six weeks. GSH and GSSG levels were quantified in liver, kidney, heart, pancreas,
and brain samples using HPLC. The C3G diet promoted an increase in renal GSH concentrations, hepatic
GSH/GSSG, and cardiac GSH/GSSG in CAST/EiJ mice. C3G treatment also induced an increase in pancreatic
GSH/GSSG in C57BL/6J mice. In contrast, C3G did not affect GSH homeostasis in NOD/ShiLtJ mice. Sur-
prisingly, the C3G-diet caused a decrease in hepatic GSH/GSSG in A/J and 129S1/SvImJ mice compared to
controls; C3G-treated 129S1/SvImJ mice also exhibited lower total glutathione in the heart. Overall, we
discovered that C3G modulates the GSH system in a strain- and tissue-specific manner. To our knowl-
edge, this study is the first to show that the redox effects of anthocyanins are determined by genetic
background.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Anthocyanidins and their glycosides, anthocyanins, are flavo-
noids that contribute to the blue, purple, and red color of many
fruits and vegetables, such as blueberries, blackberries, and purple
corn [1]. Integration of foods rich in these compounds appears to
modulate chronic disease risk in humans. High dietary anthocya-
nidin intakes have been associated with lower levels of C-reactive
protein (CRP), a circulating predictor of cardiovascular disease
(CVD) [2], as well as decreased risk of CVD-related mortality [3,4].
However, evidence suggests that the relationship between an-
thocyanidin intake and health outcomes is not entirely consistent.
For example, Mursu, et al., found no relationship between
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anthocyanidin intake and CVD mortality in a cohort of Finnish
men [5]. To improve understanding of the relationships between
anthocyanidins, their corresponding anthocyanins, and health,
factors that contribute to inconsistent epidemiological data must
be clarified.

Important insight regarding the relationship between antho-
cyanin intake and health has been gained from various disease
models. In models of diabetes [6], obesity [7,8], cancer [9,10], and
metabolic syndrome [11], anthocyanins decrease markers of oxi-
dative stress. This effect is attributable, in part, to their strong
antioxidant activity. These compounds are potent free radical
scavengers [12–16], and they concurrently increase cellular levels
of glutathione (GSH), the most abundant endogenous thiol anti-
oxidant. For example, cyanidin-3-O-β-glucoside (C3G), a com-
monly consumed anthocyanin, increases hepatic GSH levels nearly
threefold in a mouse model of type 2 diabetes (T2D) [6]. Such a
significant change in GSH levels is noteworthy, as a more robust
GSH system has been associated with stress resistance [17]; con-
versely, depletion of GSH promotes the onset of morbidities such
as impaired glucose tolerance [18], cardiomyopathy [19], and
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Food intake of mice fed a control or C3G diet for 6 weeks. Data are re-
ported as means7standard error of mean (SEM). Two-way ANOVAwith Bonferroni
adjustments were used to determine significant differences across all groups.
Means without a common letter are statistically different, Po0.05.
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carcinogenesis [20].
Recent studies have demonstrated that, in addition to diet,

natural genetic variation regulates tissue GSH levels and redox
status (GSH/GSSG) [21,22]. We predicted that the genetic and
dietary regulation of the GSH system intersect, and specifically,
that C3G effects on GSH levels and GSH/GSSG would vary by
mouse strain. We also expected that these redox effects would be
most prominent in organs that metabolize and excrete C3G, no-
tably liver and kidney. To test our hypothesis, mice representing
five inbred strains (C57BL/6J, A/J, 129S1/SvImJ, NOD/ShiLtJ, and
CAST/EiJ) were fed either control or 100 mg/kg C3G diets for six
weeks, and the strains were chosen because of their relative ge-
netic diversity, a characteristic that has been utilized in previous
studies and during the generation of novel genetic reference po-
pulations [23]. We observed that these strains exhibited divergent
responses to C3G; two strains exhibited increases in GSH levels
while two others exhibited GSH depletion. Our findings demon-
strate that genetic background is a critical determinant of redox
effects related to anthocyanin-rich diets. Future studies will clarify
the genetic mechanisms that mediate anthocyanin effects, which
may inform differential responses to these compounds.
2. Material and methods

2.1. Animals

Female C57BL/6J (B6), A/J (A), 129S1/SvImJ (129), NOD/ShiLtJ
(NOD), and CAST/EiJ (CAST) mice were purchased from the Jackson
Laboratory (Bar Harbor, ME, USA). The mice arrived at our facility
at 4–6 weeks of age, depending on availability, and the mice were
Table 1
Percent initial body weight of mice fed a control or C3G diet for 6 weeks. Data are re
adjustments were used to determine significant differences across all groups at each tim

% Initial

Group Week 1 Week 2 Week 3
B6 Control 96.071.4a 96.971.2a 96.770
B6 C3G 97.071.9a 96.872.0a 97.371.
AJ Control 101.072.6a 101.972.4a 104.47
AJ C3G 101.674.0a 103.174.5a 106.87
129 Control 96.875.9a 98.876.0a 103.27
129 C3G 93.975.3a 98.175.7a 99.376
NOD Control 91.972.6a 96.872.8a 99.772
NOD C3G 96.072.6a 100.974.2a 98.875
CAST Control 92.070.6a 91.670.4a 91.370.
CAST C3G 90.270.9a 87.871.0a 89.371
housed in an animal room on a 12 h light/dark cycle in SPF con-
ditions. At three months of age, five mice from each strain were
assigned to the control diet, and an additional five mice were as-
signed to the C3G diet (100 mg/kg). After six weeks of dietary
intervention, the mice were humanely euthanized by cervical
dislocation, and tissues were harvested for analyses. Prior to eu-
thanasia, all mice were fasted for four hours. The University of
Georgia Institutional Animal Care and Use Committee approved all
methods and experimental procedures for this study (AUP #
A2013 08-011), and all procedures aligned with the National In-
stitutes of Health guide for the care and use of laboratory animals.

2.2. Diet

Mice were fed a standard purified AIN-93M mouse diet (con-
trol) or AIN-93M plus C3G (100 mg/kg). The C3G diet was gener-
ated as described previously [6]. Briefly, C3G was obtained from
Polyphenols Laboratories AS (Sandnes, Norway), and provided to
TestDiet (St. Louis, MO) for diet formulation. Control and C3G diets
were pelleted. Dietary interventions were initiated when mice
reached three months of age and were sustained for six weeks.
During the study period, mice were fed ad libitum and given un-
restricted access to water. Diets were stored at �20 °C, and fresh
food was provided weekly to maintain optimal stability of dietary
C3G. Food intake and weights of the mice were also measured on a
weekly basis.

2.3. Assessment of Total Glutathione, GSH, GSSG, and GSH/GSSG
Ratios

Liver, kidneys, heart, pancreas, and whole brain were removed,
rinsed in ice-cold phosphate-buffered saline (PBS), and flash-fro-
zen in liquid nitrogen. Within 24 h after collection, tissues were
homogenized and immediately acidified with perchloric acid.
Following centrifugation, acidified supernatants were flash-frozen
in liquid nitrogen and stored at �80 °C until analysis. GSH and
GSSG were quantified by high performance liquid chromatography
(HPLC) coupled with electrochemical detection (Dionex UltiMate
3000, Thermo Scientific, Waltham, MA). The cells were set at
1600 mV with a cleaning potential of 1900 mV between samples.
The mobile phase was composed of 4.0% acetonitrile, 0.1% penta-
fluoropropionic acid, and 0.02% ammonium hydroxide; a flow rate
of 0.5 ml/min was set. An injection volume of 2.0 μL was used for
liver and kidney samples, while 3.0 μL was used for heart, pan-
creas, and brain samples. External GSH and GSSG standards were
prepared in a 1:1 solution of PBS containing 10 mM DTPA and 10%
perchloric acid containing 1 mM DTPA to create the same chemical
condition as the samples. After electrochemical detection, data
were quantified by the Chromeleon Chromatography Data System
Software (Dionex Version 7.2, Thermo Scientific). Total glutathione
ported as means7standard error of mean (SEM). Two-way ANOVA with Bonferroni
e point. Means without a common letter are statistically different, Po0.05.

body weight

Week 4 Week 5 Week 6
.8a 96.572.1ab 96.871.6a 99.670.7a

5a 97.772.2ab 99.573.2a 99.671.6a

2.6a 108.473.2a 106.973.7a 106.873.0a

4.5a 106.174.7ab 107.274.3a 105.974.1a

5.0a 102.175.6ab 105.475.5a 108.275.6a

.0a 99.575.8ab 101.276.1a 105.776.3a

.5a 95.574.2ab 95.876.2a 89.578.1a

.2a 96.377.4ab 93.479.4a 91.4710.0a

6a 94.871.1ab 97.971.4a 102.871.7a

.2a 87.772.2b 92.972.1a 100.272.3a



Fig. 2. Hepatic glutathione concentrations and redox status in mice fed a control or C3G diet. (A) Liver total glutathione, standardized to total protein; (B) GSH levels;
(C) GSSG levels; and (D) GSH/GSSG. Data are reported as means7standard error of mean (SEM). Independent t-tests were conducted to determine significance within each
strain in response to C3G treatment, *Po0.05, **Po0.01.
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was calculated as GSHþ2GSSG, and glutathione redox status was
assessed by the ratio GSH/GSSG. GSH and GSSG concentrations
were standardized to total protein, which was quantified by Pierce
BCA Protein Assay (Thermo Fisher Scientific, Rockford, IL).

2.4. Assessment of GSH redox potential

GSH redox potentials (Eh) were calculated in liver, kidney,
heart, pancreas, and brain samples using the Nernst equation,
Eh¼EoþRT/nF ln [disulfide]/([thiol]2). Eo represents the standard
potential for the redox couple, R is the gas constant, T is tem-
perature, n is 2 for the number of transferred electrons, F is Far-
aday's constant, and molar concentrations of GSH and GSSG were
used. The standard Eo used for GSH/GSSG was �264 mV (mV) for
pH 7.4 [24].

2.5. Assessment of endogenous antioxidant enzyme expression

Total RNA was extracted from flash-frozen liver using TRIzol
reagent (Thermo Scientific), and cDNA was synthesized using a
High-Capacity cDNA Reverse Transcription Kit (Thermo Scientific)
according to the manufacturer's instructions. SYBR Green Mas-
terMix (BIO-RAD Life Science Research, Hercules, CA) was used to
determine relative gene expression of glutamate-cysteine ligase
modifier subunit (Gclm; Forward: CACAATGACCCGAAAGAACTG;
Reverse: AGACTTGATGATTCCCCTGCT), glutamate-cysteine ligase
catalytic subunit (Gclc; Forward: CCTCCTCCTCCAAACTCAGATA;
Reverse: CCACAAATACCACATAGGCAGA), glutathione peroxidase-1
(Gpx-1; Forward: CCCGTGCAATCAGTTC; Reverse: TTCGCACTTCTC
AAACAA), and glutathione reductase (Gr; Forward: GGTGGTGGA-
GAGTCACAAGC; Reverse: ATCGTGCATGAATTCCGAGT) using RT-
PCR. SYBR green fluorescence was detected by a LightCycler 480 II
(Roche Life Science). Target gene expression was normalized using
β-actin (Forward: AGCCATGTACGTAGCCATCC; Reverse:
CTCTCAGCTGTGGTGGTGAA) as a reference, and all samples were
run in triplicate. Quantitative fold-changes were derived using the
ΔΔCt method and are presented as the fold-change relative to the
B6 control group.

2.6. Statistical analysis

Statistical analyses were performed using GraphPad Prism (Ver-
sion 6.0, GraphPad Software Inc., La Jolla, CA, USA) and SPSS Statistics
(Version 24, IBM, Armonk, NY, USA). Body weight and food intake
analyses were completed using two-way ANOVA with Bonferroni
adjustments. Independent t-tests were used to identify which strains
exhibited altered total glutathione levels, GSH and GSSG concentra-
tions, GSH/GSSG ratios, GSH redox potentials, and expression of GSH-
related enzymes in response to C3G treatment. Correlations between
relative hepatic enzyme expression and other GSH phenotypes were
separately tested among controls, C3G-fed mice, and all mice pooled
together using Pearson's coefficient. Groups were first tested for
normality using the Shapiro-Wilk test, and skewed distributions
were transformed using the square root (Gclc, Gclm, Gpx-1, and GSSG)



Fig. 3. Glutathione concentrations and redox status in hearts isolated from mice fed a control or C3G diet. (A) Heart total glutathione, standardized to total protein;
(B) GSH levels; (C) GSSG levels; and (D) GSH/GSSG. Data are reported as means7standard error of mean (SEM). Independent t-tests were conducted to determine sig-
nificance within each strain in response to C3G treatment, *Po0.05.
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or reciprocal square root (Gr) function. The level of statistical sig-
nificance was defined at Po0.05. Data are reported as mean-
s7standard error of mean (SEM).
3. Results

3.1. Food intake and body weight

Throughout the six-week duration of the study, there was no
significant difference in food intake between C3G-fed mice and
their respective controls (Fig. 1). However, a strain effect was ob-
served. NOD mice consumed significantly more food than all other
strains, but the NOD treatment groups were not significantly dif-
ferent from one another. Additionally, no differences in body
weight changes were observed between groups assigned to the
control and C3G diets (Table 1). CAST mice exhibited lower true
body weights than the other strains (data not shown). These ef-
fects were expected, as CAST mice are wild-derived and are known
to be smaller than classical inbred strains.

3.2. GSH and GSSG levels, total glutathione, redox status, and redox
potential

In this study, baseline GSH levels and GSH/GSSG redox statuses
reflected the values that have been previously published [21,25]. In
response to C3G treatment, CAST mice showed a twofold increase in
hepatic GSH/GSSG (P¼0.041; Fig. 2D) and a nearly fourfold increase
in cardiac GSH/GSSG (P¼0.028; Fig. 3D). Renal total glutathione
(P¼0.014) and GSH concentrations (P¼0.010) increased in C3G-
treated CAST mice (Fig. 4A, B), and pancreatic levels of oxidized
glutathione, GSSG, were lower in the C3G group compared to control
CAST mice (P¼0.021) (Fig. 5C). The difference in cardiac GSH con-
centrations between control and C3G-treated CAST mice approached
statistical significance (P¼0.056), but did not achieve it.

B6 mice were largely unresponsive to C3G treatment. The ex-
ception was B6 pancreas samples, where C3G-fed mice had higher
GSH/GSSG than controls (P¼0.042; Fig. 5D). However, this effect
was modest, only accounting for a 12.5% increase in GSH/GSSG.
NOD mice exhibited no phenotypic differences due to C3G treat-
ment, and no significant differences in GSH levels were found
within the brains of any of the five strains (Fig. 6).

Surprisingly, the C3G diet caused a 40% decrease in hepatic GSH/
GSSG in A mice (P¼0.017) and a 43% decrease in 129 mice
(P¼0.0066) (Fig. 2D). These effects appear to be driven by distinct
mechanisms. In A mice, the C3G diet caused a decline in hepatic GSH
concentrations (P¼0.044) while GSSG levels remained stable (Fig. 2B,
C). In contrast, C3G-fed 129 mice displayed increased hepatic GSSG
levels (P¼0.020) while GSH levels were unaffected (Fig. 2B,C). 129
mice also contained lower cardiac GSH concentrations (P¼0.033)
and approximately 25% less total glutathione (P¼0.034) following
the C3G dietary intervention (Fig. 3A, B).

GSH redox potentials were calculated for each tissue (Table 2),
and the values were similar to those that have been reported



Fig. 4. Renal glutathione concentrations and redox status in mice fed a control or C3G diet. (A) Kidney total glutathione, standardized to total protein; (B) GSH levels;
(C) GSSG levels; and (D) GSH/GSSG. Data are reported as means7standard error of mean (SEM). Independent t-tests were conducted to determine significance within each
strain in response to C3G treatment, *Po0.05.
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[24,26]. In these analyses, less negative redox potentials reflect a
more oxidizing environment. The C3G diet induced oxidation of
the hepatic GSH redox potentials of A mice (P¼0.003) and 129
mice (P¼0.012). In contrast, the C3G diet promoted a more re-
ducing hepatic redox potential in CAST mice (P¼0.031). CAST mice
also exhibited more reducing cardiac (P¼0.004) and pancreatic
(P¼0.025) redox potentials on the C3G diet compared to controls.
B6 mice exhibited a similar reduction of pancreatic redox potential
(P¼0.040). No changes were found in redox potential of the kid-
ney or brain as a result of the C3G diet.

3.3. Hepatic expression of GSH-related enzymes

Hepatic expression levels of Gclc, Gclm, and Gr were not sig-
nificantly different in response to C3G treatment in any of the five
strains (Fig. 7A, B, C). Similarly, A, CAST, B6, and NOD did not ex-
hibit altered expression of Gpx-1 in response to C3G supple-
mentation (Fig. 7D). C3G-treated 129 mice did exhibit a twofold
increase in Gpx-1 expression compared to controls (P¼0.023)
(Fig. 7D), which was the only significant change in antioxidant
gene expression discovered in this study.

3.4. Correlations between expression of GSH-related enzymes and
hepatic GSH phenotypes

Relationships between GSH-related enzyme expression levels
and GSH phenotypes were tested in the liver (Table 3). After
pooling data from control and C3G-treated mice, significant cor-
relations were discovered between Gr and: 1) total glutathione
levels (P¼0.001); 2) GSH levels (P¼o0.001); 3) GSH/GSSG
(P¼0.003); and 4) GSH redox potential (P¼o0.001; Supple-
mental Figure 1). Significant correlations were also found between
Gpx-1 and: 1) total glutathione levels (P¼0.042); 2) GSH levels
(P¼0.037); 3) GSH/GSSG (P¼0.049); and 4) GSH redox potential
(P¼0.014; Supplemental Figure 2). Interestingly, the relationships
between Gpx-1 and GSH phenotypes emerged within the control
group, yet disappeared in the C3G-treated mice, suggesting that
C3G alters the relationship between Gpx-1 expression and GSH
homeostasis. In all, higher expression levels of Gr were associated
with a more reducing GSH redox potential, while increased ex-
pression of Gpx-1 was associated with a more oxidizing redox
potential. No significant correlations were present between Gclc or
Gclm expression and GSH phenotypes in the pooled data. How-
ever, a direct relationship was found between expression of Gclm
and GSSG levels in controls (P¼0.049), while an inverse relation-
ship was found between Gclm and GSSG levels in C3G-fed mice
(P¼0.026).
4. Discussion

Rationale for the current study was informed by conflicting
evidence surrounding chronic disease risk and its relationship
with phytochemical intake. For example, total flavonoid intake



Fig. 5. Pancreas glutathione concentrations and redox status in mice fed a control or C3G diet. (A) Pancreas total glutathione, standardized to total protein; (B) GSH
levels; (C) GSSG levels; and (D) GSH/GSSG. Data are reported as means7standard error of mean (SEM). Independent t-tests were conducted to determine significance within
each strain in response to C3G treatment, *Po0.05.
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was found to exhibit an inverse association with stroke incidence
[27] and mortality [4], while in other studies, flavonoid intake has
exhibited no correlation with risk [28,29] or mortality [30]. The
effect of flavonoid intake on cancer risk has also shown disparate
findings. No association was discovered between anthocyanidin
consumption and gastric cancer risk in a Korean population [31],
but a significant inverse correlation was found in European wo-
men [32]. The relationship between T2D and anthocyanidin/an-
thocyanin intake is similarly uncertain. One study on U.S. adults
found an inverse correlation between T2D risk and anthocyanin
consumption [33], while a European case-cohort study found no
correlation with T2D risk and anthocyanidin intake [34]. Im-
portantly, the inconsistencies highlighted in these studies have
been captured in clinical intervention studies as well [35–46]. In
both chronic and acute intervention trials, the effects of antho-
cyanin consumption on endogenous antioxidant enzyme activity,
plasma antioxidant capacity, and DNA damage have been incon-
sistent [47]. We predict that genetic variation in part drives the
variable responses to dietary anthocyanins, and we tested our
hypothesis in the current study. We fed mice representing five
genetically diverse strains a control or 100 mg/kg C3G diet. Overall
food intake did not differ between controls and C3G-fed animals.
Furthermore, NOD consumed the largest amounts of C3G diet, yet
these mice did not respond in any of the assessments we mea-
sured. We therefore concluded that results from the current study
were not confounded by strain-dependent differences in food
intake.

We tested whether genetic background determines the extent
to which C3G regulates GSH levels and redox status. The C3G diet
increased pancreatic GSH/GSSG in B6 mice, but this difference
represented a relatively minor alteration. The C3G diet exerted no
other effects on the GSH system of this strain. Upon initial review,
our results appear to conflict with work by Zhu and colleagues,
who showed that the same C3G diet increases hepatic GSH
synthesis nearly threefold in the same genetic background [6].
However, it must be noted that Zhu, et al., employed db/db mice,
which contain a spontaneous mutation on the B6 or C57BLKS/J
background that drives a diabetic phenotype. In that study, GSH
levels were compared between db/db mice fed control and C3G
diets; unstressed wild-type B6 control mice were not included in
the design. If unstressed, wild-type B6 mice had been evaluated, as
in this study, we predict that a similar lack of effect would have
been observed. Taken together, these results suggest that the C3G
diet does not alter GSH levels in unstressed B6 mice, and may only
rescue GSH levels in stressed, mutant B6 mice. Similarly, the re-
lationship between flavonoid intake and disease risk in some hu-
man populations may require a stressor. Cutler, et al., found that
flavanone intake was inversely correlated with lung cancer in-
cidence among current and past smokers, but the relationship was
not observed among individuals who had never smoked [48].

The effects of stress on the C3G-GSH paradigm must be further
evaluated in the context of genetic background. Although C3G
rescues GSH levels in diabetic B6 mice, the current study showed
no effect of this diet on NOD mice, an established model of type
1 diabetes. In contrast, the most potent GSH-inducing effects were
observed in CAST mice. CAST is not a model of a specific disease,
but these mice appear to exhibit deficiencies within the GSH redox
system. Our previous reports identified CAST as having among the



Fig. 6. Whole brain glutathione concentrations and redox status in mice fed a control or C3G diet. (A) Whole brain total glutathione, standardized to total protein;
(B) GSH levels; (C) GSSG levels; and (D) GSH/GSSG. Data are reported as means7standard error of mean (SEM). Independent t-tests were conducted to determine sig-
nificance within each strain in response to C3G treatment, *Po0.05.

Table 2
GSH redox potentials. Redox potentials (expressed in mV) were calculated in liver, kidney, heart, pancreas, and whole brain samples using the Nernst equation. Data are
reported as means7standard error of mean (SEM). Independent t-tests were conducted to determine significance within each strain in response to C3G treatment, *Po0.05,
**Po0.01 from control.

Group Liver Kidney Heart Pancreas Brain

B6 Control �215.872.0 �20471.0 �140.1710.0 �188.170.7 �199.571.8
B6 C3G �215.471.5 �20171.4 �125.674.6 �190.470.7* �200.672.5
AJ Control �228.770.9 �20472.0 �151.872.0 �197.171.4 �20474.0
AJ C3G �218.272.4** �196.474.7 �146.976.2 �19770.7 �201.771.7
129 Control �220.171.1 �194.573.1 �152.573.4 �19671.8 �204.872.1
129 C3G �209.472.7* �189.272.7 �146.873.6 �19471.2 �203.971.7
NOD Control �207.373.6 �200.671.8 �138.3710.0 �192.271.8 �20172.4
NOD C3G �21173.6 �201.872.1 �154.172.9 �193.671.7 �201.771.6
CAST Control �197.771.8 �187.371.2 �116.371.2 �180.170.3 �208.971.5
CAST C3G �213.374.5* �191.272.6 �141.375.3** �183.871.1* �210.871.0

K.M. Norris et al. / Redox Biology 9 (2016) 254–263260
lowest GSH levels and GSH/GSSG in a large panel of inbred strains
[21]. C3G appears capable of rescuing redox deficiencies in B6 and
CAST backgrounds, but it has no effect on the diabetic NOD mice.
We predict that genetic background provides a platform on which
stress and diet modulate GSH levels (Fig. 8). We initially predicted
that these effects are largely independent of gene expression due
to the minimal changes in hepatic GSH-related enzyme expression
observed here. However, subsequent statistical analyses revealed
correlations between GSH phenotypes and expression of GSH-
related enzymes, indicating that basal expression levels may play a
role in the redox effects outlined in this study. It is important to
note that additional factors may have also influenced GSH home-
ostasis beyond what was assayed, such as glutathione transferase
activity, activity of GSH efflux pumps, NAD(P)H supply, as well as
composition of the gut microbiome, which could affect C3G me-
tabolism, absorption, and bioactivity.

This study demonstrated that GSH levels and GSH/GSSG can
decrease in response to an established C3G-rich diet [6]. The C3G



Fig. 7. Hepatic expression of glutathione enzymes in mice fed a control or high-C3G diet for 6 weeks. (A) Relative Gclc mRNA levels; (B) Gclm mRNA levels; (C) Gr mRNA
levels; and (D) Gpx-1 mRNA levels. Data represent fold expression relative to the B6 control group and are reported as means7standard error of mean (SEM). Independent t-
tests were conducted to determine significance within each strain in response to C3G treatment, *Po0.05.

Fig. 8. Model of genetic regulation of GSH. Genetic background directly regulates
GSH homeostasis and determines the relative effects of diet and physiological
stress on this system. Together, these interactions influence disease risk.
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diet caused apparent disruptions in GSH homeostasis in 129 and A
mice, and the effect was most apparent in the liver, suggesting
oxidative stress and hepatotoxicity [49–52]. Several polyphenols
are known to exert toxicity at high levels [53–55], and in the case
of epigallocatechin gallate (EGCG), a polyphenol present in green
tea, toxicity is determined by genetic background [55]. As use of
dietary supplements continues to grow considerably in the United
States, it will be critical to further characterize the genetic me-
chanisms that drive hepatotoxicity attributable to polyphenols
such as EGCG and C3G. It will also be important to elucidate
whether distinct mechanisms direct toxicity of each compound.

We tested the hypothesis that the redox effects of C3G would
be limited to the liver and kidney due to the primary role of these
organs in phytochemical metabolism and clearance. Our hypoth-
esis was partially confirmed because the most significant effects
were discovered in liver. The kidney, as well as the heart and
pancreas, showed fewer and less pronounced effects on GSH
homeostasis; the brain exhibited no effects. Overall, our data
support a tissue-specific effect of anthocyanins on GSH home-
ostasis. To our knowledge, this is the first study to show that the
redox effects of anthocyanins are determined by genetic back-
ground. Our long-term hypothesis predicts that anthocyanins
differentially affect humans based on their genetics. If that hy-
pothesis is correct, it may highlight the underlying reason for in-
consistent findings in previous epidemiological and clinical stu-
dies. Furthermore, such findings would indicate that anthocyanin
supplementation may cause toxicity in a highly susceptible sub-
population. Overall, our data will inform future efforts to clarify
genetic mechanisms that regulate differential responses to in-
gested anthocyanins.



Table 3
Pearson correlation coefficients for GSH-related enzyme expression and GSH
phenotypes in the liver. Correlations were separately tested in controls, C3G-fed
mice, and all mice pooled together. The Pearson correlation coefficient is expressed
as r, and the P value for the correlation is provided. Statistically significant re-
lationships are indicated in bold, and their corresponding significant p-values are
marked with an asterisk.

Control C3G Pooled

Gclc and Total Glutathione r �0.092 �0.100 �0.096
p-value 0.699 0.658 0.545

Gclc and GSH r �0.081 �0.102 �0.090
p-value 0.735 0.650 0.572

Gclc and GSSG r �0.190 �0.025 �0.132
p-value 0.422 0.911 0.404

Gclc and GSH/GSSG r 0.041 �0.082 0.031
p-value 0.864 0.717 0.843

Gclc and GSH Redox Potential r �0.017 0.161 0.043
p-value 0.942 0.474 0.786

Gclm and Total Glutathione r �0.228 �0.182 �0.209
p-value 0.334 0.417 0.185

Gclm and GSH r �0.252 �0.161 �0.214
p-value 0.284 0.474 0.173

Gclm and GSSG r 0.445 �0.473 0.053
p-value 0.049* 0.026* 0.738

Gclm and GSH/GSSG r �0.365 0.388 �0.102
p-value 0.113 0.075 0.519

Gclm and GSH Redox Potential r 0.311 �0.157 0.152
p-value 0.182 0.486 0.335

Gr and Total Glutathione r 0.486 0.565 0.518
p-value 0.030* 0.008* 0.001*

Gr and GSH r 0.498 0.575 0.528
p-value 0.025* 0.006* o0.001*

Gr and GSSG r �0.272 0.124 �0.089
p-value 0.246 0.591 0.580

Gr and GSH/GSSG r 0.526 0.418 0.451
p-value 0.017* 0.059 0.003*

Gr and GSH Redox Potential r �0.579 �0.533 �0.551
p-value 0.007* 0.013* o0.001*

Gpx�1 and Total Glutathione r �0.358 �0.312 �0.319
p-value 0.122 0.169 0.042*

Gpx�1 and GSH r �0.386 �0.305 �0.327
p-value 0.093 0.179 0.037*

Gpx�1 and GSSG r 0.549 �0.262 0.103
p-value 0.012* 0.252 0.521

Gpx�1 and GSH/GSSG r �0.565 �0.045 �0.310
p-value 0.009* 0.846 0.049*

Gpx�1 and GSH Redox Potential r 0.585 0.229 0.383
p-value 0.007* 0.318 0.014*
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