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Hypoxia is a universal feature in the tumor microenvironment (TME). Nonetheless, the heterogeneous hypoxia patterns of TME have
still not been elucidated in hepatocellular carcinoma (HCC). Using consensus clustering algorithm and public datasets, we identified
heterogeneous hypoxia subtypes. We also revealed the specific biological and clinical characteristics via bioinformatic methods. .e
principal component analysis algorithm was employed to develop a hypoxia-associated risk score (HARS). We identified the two
hypoxia subtypes: low hypoxia pattern (C1) and high hypoxia pattern (C2). C1 was less sensitive to immunotherapy compared to C2,
consistent with the lack of immune cells and immune checkpoints (ICPs) in C1, whereas C2 was the opposite. C2 displayed worse
prognosis and higher sensitivity to obatoclax relative to C1, while C1 was more sensitive to sorafenib. .e two subtypes also
demonstrated subtype-specific genomic variations including mutation, copy number alteration, and methylation. Moreover, we
developed and validated a risk signature: HARS, which had excellent performance for predicting prognosis and immunotherapy. We
revealed two hypoxia subtypes with distinct biological and clinical characteristics in HCC, which enhanced the understanding of
hypoxia pattern. .e risk signature was a promising biomarker for predicting prognosis and immunotherapy.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most com-
mon liver malignancies, accounting for about 75%–80% of
primary liver cancers, and is the fourth leading cause of
cancer-related mortality globally [1]. HCC arises mainly
from chronic hepatitis B and hepatitis C, alcohol addiction,
metabolic liver disease, and exposure with aflatoxins and
aristolochic acid [2]. Although the clinical diagnosis and
treatment of HCC have been greatly improved, the therapy
efficacy is still disappointing and the 5-year recurrence rate
exceeds 70% [3]. Recently, immunotherapy has made tre-
mendous progress as a novel treatment method in HCC, but

so far, it benefited only a subset of patients [4, 5]. .is might
be due to lack the awareness with the heterogeneity of tumor
microenvironment (TME) in HCC.

Hypoxia plays a vital role in TME and has intense
correlations with tumor cells, immune cells, stromal cells, as
well as plenty of cytokine and chemokine [6, 7]. .e TME is
the survival soil of tumor and has profound impacts on the
tumorigenesis and progression of HCC [8]. Hypoxia is a
common status of TME; it triggers the deposition and
degradation of extracellular matrix and contributes to ab-
normal angiogenesis, desmoplasia, and inflammation, which
further promotes the aggressiveness and metastasis of tumor
[6, 9]. For example, hypoxia elevates the reactive oxygen
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species (ROS) level and upregulates the expression of VEGF,
facilitating tumor angiogenesis [10]. .e two transcription
factors Snail and Twist are activated in TME with hypoxia,
inducing epithelial-mesenchymal transition (EMT) [6].
Hypoxia is subjected to the metabolic reprogramming of
tumor cells, while the changes in metabolism in turn have
great impacts on the hypoxia status of tumor [11]. Moreover,
the hypoxia status of HCC is associated with sorafenib re-
sistance, adverse prognosis, and high risk of recurrence [12].
.erefore, the hypoxia status of TME is tightly associated
with the biological characteristics and clinical outcomes of
HCC.

In addition, hypoxic TME is essential to immune in-
filtration and immunotherapy of tumor [13]. Immune cells
are important components of TME, which have intense cell-
cell interactions with tumor cells [14]. Immunotherapy is
gradually becoming a revolutionized and promising treat-
ment for cancer, which can activate T cells to perform the
cytotoxicity by blocking specific immune checkpoints, such
as CTLA-4 and PD-L1 [15]. Previous study suggested that
hypoxia inhibited the effector and activity of lymphocytes
[16]. Moreover, hypoxic TME attracts massive tumor-as-
sociated macrophages (TAMs), myeloid-derived suppressor
cells (MDSCs), and regulatory Tcells, which directly restricts
the immune function and increases the resistance of im-
munotherapy [17]. Increasing researches demonstrate that
hypoxia induces plenty of adenosine distribution in TME,
which further impair the effects of immunotherapy [13].
.erefore, the low rates of response to immunotherapy
might be explained by the complex hypoxia status of TME to
some extent. With the systemic exploration of heteroge-
neous hypoxia subtype of HCC, we may identify populations
who present poor sensitivity to immunotherapy, making
appropriate decisions for clinical therapy.

To this context, we performed consensus clustering of
multiple cohorts based on the expression of hypoxia-asso-
ciated genes (HAGs). Two subtypes were identified and then
divided into C1 with the low hypoxia pattern and C2 with
the high hypoxia pattern. Further studies revealed the two
subtypes had significant heterogeneity in biological function,
immune cell infiltration, molecular characteristics, and
clinical outcomes. In addition, based on the heterogeneity of
hypoxia in TME, we developed and validated a risk signature
termed hypoxia-associated risk score (HARS) for predicting
prognosis and immunotherapy. It turned out HARS has
excellent performance for prognosis and immunotherapy.
Combining the HARS and vital clinical features, we further
constructed two nomograms for overall survival (OS) and
relapse-free survival (RFS) to predict the probability of
patient survival. Collectively, this study increased the un-
derstanding of hypoxia in TME and facilitated the precise
therapy and clinical managements of HCC.

2. Materials and Methods

2.1. Data Collection and Processing. A total of 831 patients
from three independent cohorts encompassing TCGA-
LIHC, ICGC-LIRI-JP, and NCI (National Cancer Institute)
datasets (GSE14520) were enrolled. .e TCGA-LIHC RNA-

seq data were downloaded from the Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/). .e ICGC-LIRI-JP
RNA-seq was obtained from the International Cancer Ge-
nome Consortium portal (ICGC, https://dcc.icgc.org/). For
TCGA-LIHC and ICGC-LIRI-JP datasets, the RNA-seq data
were converted to the log2 (TPM+1) value, enhancing the
comparability among samples. .e raw expression data of
NCI cohort were downloaded from the Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/), and we
further applied the robust multiarray average algorithm
(RMA) of affy package to accomplish data normalization.
Corresponding clinical data were also downloaded. .e
somatic mutation, copy number alteration (CNA), and
methylation 450 Bead Chip array of TCGA-LIHC were
obtained from the TCGA portal. In addition, we also col-
lected four eligible immunotherapy datasets, including
GSE100797, GSE91061, VanAllen cohort, and IMvigor210
[18–21]. For the details of datasets retrieved, refer to
Table S1. All expression data were processed by Z-score
normalization for subsequent analysis. Batch correction was
performed to remove batch effect by ComBat algorithm.
According to previous researches [22, 23], we summarized
24 hypoxia-associated genes (HAGs) including ALDOA,
ANGPTL4, BNC1, CA9, CDKN3, COL4A6, ENO1, FOSL1,
GNAI1, LDHA, P4HA1, PGAM1, PGK1, SDC1, SLC16A1,
SLC2A1, TPI1, VEGFA, ACOT7, ADM, MIF, MRPS17,
NDRG1, and TUBB6 (Table S2).

2.2. Hypoxia Subtypes Identification in HCC. .e meta-
cohort including a total of 831 HCC patients was utilized to
identify hypoxia subtype based on the expression profiles of
24 HAGs. Unsupervised clustering was executed by Con-
sensusClusterPlus package. In ConsensusClusterPlus func-
tion, the number of clustering iterations was set to 1000, with
80% cases extracted per iteration; the K-means algorithm
and the Euclidean distance were adopted; all cases were
categorized as k subgroups (k� 2∼9). .e cumulative dis-
tribution function (CDF) and proportion of ambiguous
clustering (PAC) were applied to determine the optimal
cluster number [24]. Moreover, the Nbclust package was
used to further verify the best cluster number.

2.3. Exploration of Specific Biological Function in Two
Subtypes. To investigate the different biological functions
between two hypoxia subtypes, we performed gene set
variation analysis (GSVA), using Molecular Signatures
Database (MSigDB) v7.1 Hallmark and KEGG gene sets. We
identified the significantly different biological functions by
limma package, setting the criterions as log2FC> 0.2 and
adjusted P value<0.05. .e adjusted P value was obtained
from Benjamin–Hochberg multiple correction. In addition,
we also retrieved some known gene sets to further reveal
biological function of hypoxia subtypes [21] (Table S3).

2.4. Evaluation of Immune Infiltration and Immunotherapy
Response. .e ssGSEA algorithm was further utilized to
assess the infiltration abundance of 23 immune cells
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including innate immune cells (activated dendritic cell,
CD56bright natural killer cell, CD56dim natural killer cell,
eosinophil, immature dendritic cell, macrophage, mast cell,
MDSC, monocyte, natural killer cell, neutrophil, and plas-
macytoid dendritic cell) and adaptive immune cells (acti-
vated B cell, activated CD4+ T cells, activated CD8+ T cell,
gamma delta T cell, immature B cell, natural killer T cell,
regulatory T cell, T follicular helper cell, type 1T helper cell,
type 17T helper cell, and type 2T helper cell) [25]. .e
infiltration abundance of fibroblasts was assessed via Mi-
croenvironment Cell Population-counter (MCP-counter)
algorithm [26]. For the details of cell markers, refer to
Table S4. .e tumor immune dysfunction and exclusion
(TIDE, http://tide.dfci.harvard.edu) web tool was utilized to
predict the response to immunotherapy of different hypoxia
subtypes [27]..e unsupervised subclass mapping (submap)
method was applied to evaluate the expression similarity of
HCC patients with hypoxia subtypes and patients with
different immunotherapy outcomes; if a pair’s expression
profiles shared more similarity, their clinical outcomes were
more likely to be similar [28].

2.5. �e Prediction of Drug Sensitivity in Different Hypoxia
Subtypes. .e pRRophetic algorithm was fitting in a linear
ridge regression based on gene expression and drug sensi-
tivity data [29]. We used pRRophetic package to exhibit the
response to sorafenib and obatoclax. Drug sensitivity was
quantified by half-maximal inhibitory concentration (IC50);
the lower the IC50, the more the sensitivity.

2.6. Mutation-Driven Genes and Mutation Signatures of
Hypoxia Subtypes. According to silent mutational genes and
noncoding mutations, we assessed the background mutation
rate (BMR) of each gene-patient-subtype combination by
MutSigCV [30]. .e screening threshold was set as q< 0.05,
and then, we could obtain a series of significantly mutated
genes (SMGs). .e extractSignatures implemented in NMF
R package [31] was utilized to extract mutation signatures
from the mutation count matrix. .e potential rank was set
to 2∼6, and we found that the optimal rank of both subtypes
was 3. Subsequently, we calculated the pairwise cosine
similarity between 3 mutation signatures and COSMIC
signatures, matching each other (https://cancer.sanger.ac.
uk/cosmic/signatures).

2.7. Copy Number Alteration. GISTIC 2.0 was utilized to
identify the remarkably amplified and deleted genome re-
gions [32]. To further quantify the overall changes in the
genome, fraction of genome alteration (FGA), fraction of
genome gained (FGG), and fraction of genome lost (FGL)
were calculated. FGA was defined as the percentage of
fragment base number of genome variation and FGG/FGL
only focused on the gain or loss of genome variation.

2.8. �e Estimation of Global Methylation Levels in Hypoxia
Subtypes. .e global methylation level (GML) of each pa-
tient from the TCGA database was calculated as the averaged

beta values of specific probes [33]. We further constructed a
pipeline to identify methylation-driven genes (MDGs) of
each hypoxia subtypes, as follows: (1) removed the CpG sites
that the averaged beta values greater than 0.2 in normal
samples; (2) set the cutoff as 0.3, further divided the beta
value matrix into the binary matrix only contained meth-
ylation and unmethylation; (3) removed the CpG sites that
the number of samples in the methylated group was less than
10% of all tumor samples; (4) the probes were labeled
methylated silence when the gap of the corresponding gene
expression in the unmethylated group was more than 1.64
standard deviation of the corresponding gene expression in
the methylated group; (5) multiple probes were matched one
gene if over 50% probes were identified epigenetic silence,
and the gene was labeled MDG.

2.9. Construction of Hypoxia-Associated Risk Signature.
.e limma package was utilized to identify differentially
expressed genes (DEGs) between two subtypes. .e crite-
rions were set as adjusted P value<0.05 and |logFC|> 1 to
define DEGs. We then used the clusterProfiler package to
display GO and KEGG enrichment analysis. .e signifi-
cantly biological function was extracted with an adjusted P

value <0.05. .e adjusted P value was obtained from
Benjamin–Hochberg multiple correction. .e STRING
database (https://string-db.org/) obtained the protein-pro-
tein interaction (PPI) networks of DEGs. Based on maximal
clique centrality (MCC) algorithm, we applied the molecular
complex detection (MCODE) to extract key module via
Cytoscape software. .e top 10 genes were defined as key
genes. .e univariate Cox regression analysis revealed the
prognostic significance of DEGs. We further assessed the
accuracy of prognostic prediction based on the area under
the ROC curve (AUC) value of each DEG. .e principal
component analysis (PCA) algorithm was employed to
construct a hypoxia-associated risk score (HARS) according
to the key genes. Based on the nearest centroid method and
Pearson correlation, we developed a R package termed
HCCS (https://github.com/Zaoqu-Liu/HCCS). .e pipeline
could divide each sample into the corresponding hypoxia
subtype and calculate the HARS of each sample.

2.10. Immunotherapy Response Prediction. To evaluate the
immunotherapy sensitivity based on HARS, four indepen-
dent immunotherapy cohorts contained prognosis and
immunotherapy information was retrieved: (1) GSE100797:
adoptive T cell therapy (ACT) for melanoma patients [18];
(2) GSE91061: anti-CTLA4 and anti-PD-1 therapy for
melanoma patients [19]; (3) VanAllen cohort: anti-CTLA4
therapy for metastatic melanoma patients [20]; (4) IMvi-
gor210 cohort: anti-PD-L1 therapy for metastatic urothelial
carcinoma patients [21]. Based on the Response Evaluation
Criteria in Solid Tumors (RECIST) criterion, we categorized
the patients with complete response (CR) as well as partial
response (PR) as responders and the patients with stable
disease (SD) and progressive disease (PD) as nonresponders.
In addition, the patients with not evaluable (NE) were ex-
clusive of our study. Ultimately, we recruited 21 patients (8
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responders and 13 nonresponders) for GSE100797, 49 pa-
tients (10 responders and 39 nonresponders) for GSE91061,
39 patients (7 responders and 32 nonresponders) for
VanAllen cohort, and 298 patients (68 responders and 230
nonresponders) for IMvigor210 cohort.

2.11. Statistical Analysis. Correlation analysis between the
two variables was accomplished by Spearman or Pearson
correlation analysis. We applied Wilcoxon rank-sum or T
test to evaluate the difference when comparing between two
continuous variables. As to more than two groups of con-
trast, the Kruskal–Wallis or ANOVA test was carried out.
We adopted the chi-squared or Fisher’s test to compare
differences in categorical variables..e distributions of CNA
on chromosome were shown by RCircos package. .e raw
Affymetrix microarray data were processed by Affy package.
.e Combat function of sva package was used to remove
batch effect of different datasets. .e GSVA and ssGSEA
analysis was performed by gsva package. .e infiltration
abundance of fibroblasts was assessing via MCP-counter
package. .e efficacy of immunotherapy was evaluated by
TIDE and submap algorithm. .e pRRopheticPredict
function in pRRophetic package was utilized to predict the
sensitivity of two subtypes to sorafenib and obatoclax. GO
and KEGG enrichment analysis was performed via clus-
terProfiler package. PPI networks were obtained from
STRING databases and using the MCODE plug-in of
Cytoscape software to extract key module from PPI. .e
nomogram was developed to assess individual outcome of
HCC patients by using rms package..emedian was used to
divide samples into two groups. Survival curves were gen-
erated by the Kaplan–Meier method, and the statistically
significant difference was identified by the log-rank test. .e
Cox regression analysis was estimated using survival
package. .e pROC package was used to assess the accuracy
of HARS for predicting immunotherapy response. .e
timeROC package was performed to evaluate the accuracy of
HARS for predicting prognosis. Calibration curves were
calculated by calibrate function implemented in rms
package. All statistical P values were two-sided, and P< 0.05
was deemed as statistically significance. P adjust value was
obtained by Benjamini–Hochberg (BH) multiple test cor-
rection. All data processing was completed in R 3.6.3
software.

3. Results

3.1. Landscape of Genomic Variations in Hypoxia-Associated
Genes in HCC. .e workflow of our study is shown in
Figure 1. A total of 24 hypoxia-associated genes (HAGs)
were recruited in our research (Table S2) [22, 23]. Based on
the expressions of 24 HAGs, we could distinguish HCC from
normal tissues in the TCGA cohort (Figure 2(a)). Most of
HAGs had significant differences between HCC and normal
tissues (Figure 2(b)). To further explore the relationship
between genomic alterations and expressions of 24 HAGs in
HCC, the genomic alterations of these genes were sum-
marized in the TCGA-LIHC project. We observed HAGs

displayed scarce mutations, and over half of the molecules
did not mutate (Figure 2(c)). .e chromosomal locations
where CNA experienced in HAGs are shown in Figure 2(d).
It was nothing that CNA of these genes was broad, especially
with copy number deletions (Figure 2(e)). Compared to
normal samples, HAGs with deletions displayed lower ex-
pressions in HCC (e.g., ANGPTL4 and TPI1), while HAGs
with amplification might promote mRNA expressions (e.g.,
MRPS17 and NDRG1). Moreover, DNA methylation neg-
atively regulated many HAGs, e.g., SLC16A1, SDC1 and
MIF, implying epigenetic silencing (Figure 2(f )). .e above
suggested the CNA and methylation might have a leading
impact on HAG expressions compared to rare somatic
mutations in HCC. We also found there were intense in-
teractions and connections among HAGs, and most of
HAGs were risk prognosis factors (Figure 2(g)).

3.2. Hypoxia SubtypesWere Identified in HCC. According to
the expression profiles of 24 HAGs, we performed consensus
clustering analysis. .e results indicated k� 2 was the op-
timal number (Figures S1(a) and S1(b)). Meanwhile, the
cumulative distribution function (CDF) and NbClust also
displayed 2 was the best classification (Figures 3(a) and
S1(c)), verifying the robustness of our results. .us, we
divided 831 HCC patients into two clusters according to the
above results: 608 cases in C1 and 223 cases in C2. Compared
to C1, we found that most of HAGs were significantly
upregulated in C2 (Figures S2(a) and S2(b)). .erefore, C1
was categorized as the low hypoxia pattern and C2 was the
high hypoxia pattern. Consistent with this, C2 presented
unfavorable overall survival (OS) and relapse-free survival
(RFS) relative to C1 (Figures 3(b) and 3(c)). To further reveal
the underlying biological characteristics, we performed
GSVA enrichment analysis using Hallmark and KEGG gene
sets. C1 was obviously enriched in metabolism-relevant
pathways such as fatty acid metabolism, bile acid meta-
bolism, and tryptophan metabolism, while C2 was mainly
associated with angiogenesis relevant pathways such as
angiogenesis, epithelial-mesenchymal transition (EMT), and
VEGF signaling pathway (Figures 3(d) and 3(e)). Previous
report demonstrated the high hypoxia pattern induced
stromal activation and angiogenesis, which might further
promote the progression and metastasis of tumor [34]. To
better identify the biological significance of C2, we checked
some known signatures [21]. .e results suggested that C2
was associated with stromal relevant signatures, such as
EMT1, EMT2, and EMT3 (Figure S2(c)). We further ex-
plored the infiltration abundance of fibroblasts by MCP-
counter algorithm in two subtypes, which was also higher in
C2 (Figure S2(d)). Overall, C1 was characterized as the low
hypoxia pattern and metabolism-relevant function; C2 was
characterized as the high hypoxia pattern and stromal
activation.

3.3. Immune Infiltration and Immunotherapy Response of
Molecular Subtypes. We further evaluated the immune
checkpoints (ICPs) expression profile in the two hypoxia
subtypes and found that C2 exhibited the higher expression
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level of ICPs, such as CTLA-4 and PD-L1 (Figures 4(a) and
S3(a)). Consistent with this, C2 also displayed superior
abundance of immune cell infiltration, such as CD4+ and
CD8+ T cell (Figures 4(b) and S3(b)). .ese results implied
that C2 might be more sensitive to immune checkpoint
inhibitors (ICIs). In addition, HAGs exhibited significant
correlations with ICPs and immune cells (e.g., B7-H4, CD4+
T cell, and CD8+ T cell) (Figures 4(c) and S3(c)). Subse-
quently, we applied the TIDE algorithm to assess the im-
munotherapy response. .e results indicated C2 was almost
three times the response of C1 (Figure 4(d)). We further
utilized the submap algorithm to evaluate the similarity of
the expression profile of two hypoxia subtypes and 47
pretreatment patients with the completely immunotherapy
information [28, 35]. As expected, C2 was similar to patients
with the treatment PD-L1 inhibitor (Bonferroni corrected P

value� 0.031), which was in line with the high PD-L1 ex-
pression in C2 (Figure 4(e)).

3.4. �e Clinical Characteristics of Two Hypoxia Subtypes.
Subsequently, we focused on the TCGA-LIHC cohort to
further explore the clinical characteristics of two hypoxia
subtypes due to it contained comprehensive omics data and
clinical information. C2 had higher HAGs expression
compared to C1 (e.g., CA9, VEGFA, and SLC2A1), exhib-
iting the high hypoxia pattern (Figure 5(a)). Apart from the
molecular level, there were also differences in the distri-
bution of clinicopathological characteristics and prognosis
between the two subtypes. C1 with the low hypoxia pattern
mainly presented in older, male, and higher BMI patients
(Figures 5(d)–5(f )). C2 with the high hypoxia patternmainly

presented in patients with advanced AJCC stage, superior
histological grade, and vascular invasion (Figures 5(g)–5(i)).
.ese results indicated C2 was predominantly associated
withmalignant phenotype..eKaplan–Meier analysis of OS
and RFS suggested C1 had favorable prognosis (Figures 5(b)
and 5(c)). In addition, the pRRophetic algorithm based on a
linear ridge regression was further applied to estimate the
sensitivity of each patient to sorafenib and obatoclax [29].
.e half-maximal inhibitory concentration (IC50) was used
to quantify the drug sensitivity, and a smaller IC50 indicated
a higher drug sensitivity. .e results revealed C1 was more
sensitive to sorafenib compared to C2 (Figure 5(j)). Previous
study demonstrated high hypoxia could limit the efficacy of
sorafenib and cause tumor resistance by the massive ex-
pression of HAGs [36]. On the contrary, the high hypoxia
pattern could enhance tumor cell responsiveness to oba-
toclax in HCC [37]. In line with this, C2 performed the
stronger response to obatoclax (Figure 5(k)). Overall, the
two hypoxia patterns demonstrated distinct molecular and
clinical characteristics, and these results could guide per-
sonalized therapy and clinical management.

3.5. Genomic Alterations of Hypoxia Subtypes. C2 suggested
the higher tumor mutation burden (TMB) trend compared
with C1 although there was no pronounced difference in
hypoxia subtypes (Figure S4(a)). Using MutSigCV algo-
rithm, we identified 12 significantly mutated genes (SMGs)
in two subtypes, and all genes had mutation rates greater
than 5% (Figure 6(a) and Table S5). .e mutation status of
12 SMGs significantly influenced their expression
(Figure S4(b)). For example, the mutation group of TP53,
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Journal of Oncology 5



PC
3

PC1

PC
2

Normal
Tumor

SLC16A1

8

6

4

2

0

Re
lat

iv
e e

xp
re

ss
io

n

AC
O

T7

A
D

M

A
LD

O
A

A
N

G
PT

L4

BN
C1

CA
9

CD
KN

3

C
O

L4
A

6

EN
O

1

FO
SL

1

G
NA

I1

LD
H

A

M
IF

M
RP

S1
7

N
D

RG
1

P4
H

A
1

PG
A

M
1

PG
K1

SD
C1

SL
C1

6A
1

SL
C2

A
1

TP
I1

TU
BB

6

V
EG

FA

AC
O

T7
A

D
M

A
LD

O
A

A
N

G
PT

L4
BN

C1
CA

9
CD

KN
3

C
O

L4
A

6
EN

O
1

FO
SL

1
G

NA
I1

LD
H

A
M

IF
M

RP
S1

7
N

D
RG

1
P4

H
A

1
PG

A
M

1
PG

K1
SD

C1
SL

C1
6A

1
SL

C2
A

1
TP

I1
TU

BB
6

V
EG

FA

AC
O

T7

A
D

M

A
LD

O
A

A
N

G
PT

L4

BN
C1

CA
9

CD
KN

3

C
O

L4
A

6

EN
O

1

FO
SL

1

G
NA

I1

LD
H

A

M
IF

M
RP

S1
7

N
D

RG
1

P4
H

A
1

PG
A

M
1

PG
K1

SD
C1

SL
C1

6A
1

SL
C2

A
1

TP
I1

TU
BB

6

V
EG

FA

Normal
Tumor

Group

∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗∗∗
∗∗

∗∗ns ns ns ns ns ns ns

1270

0
CA9

CA
9

COL4A6

CO
L4A6

GNAI1

GNAI1

ANGPTL4
ANGPTL4BNC1

BNC1

CDKN3

CDKN3

TUBB6

TUBB6

P4HA1

P4
H

A1

NDRG1

N
D

RG
1

ALDOA

ALDOA

ENO1

EN
O

1

FOSL1

FO
SL

1

LDHA

LD
HAPGAM1

PG
AM

1PGK1
PG

K1
SDC1

SD
C1

SLC2A1

SL
C2

A
1

SL
C1

6A
1

TPI1

TPI1

VEGFA

VEGFA

ACOT7

AC
O

T7

ADM

ADM

MIF

M
IF

MRPS17

SLC16A1

CA9

COL4A6 GNAI1

ANGPTL4

BNC1

CDKN3

TUBB6

P4HA1
NDRG1

ALDOA

ENO1

FOSL1

LDHA

PGAM1PGK1

SDC1

SLC2A1

TPI1

VEGFA

ACOT7 ADM

MIF

MRPS17

M
RPS17

1

2

3

4

5

6

7
89

10
11

12

13

14

15

16

17

18
19

20
21 22

x y

0.4

0.2

0.0

CN
V

 fr
eq

ue
nc

y

Gain

Loss

Type

0.0

–0.2

–0.4

–0.6

Co
rr

ela
tio

n

Risk factors
for OS
Favorable factors
for OS

Positive correlation
with P < 0.001
Negative correlation
with P < 0.001

Logrank test, P value
0.05 0.001 1e – 05 1e – 08

p value

0.6

0.4

0.2

Gene cluster-A
Gene cluster-B
Gene cluster-C
Gene cluster-D

1%
1%
1%
1%
1%
1%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%

1%

0 5

Missense_mutation
Frame_shi�_del

Nonsense_mutation
Multi_del

(a)

(b)

(e) (f)

(c) (d)

(b)
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AXIN1, BAP1, TSC2, and BRD7 had higher expression level
compared to the wild group, whereas CTNNB1 and ALB
were the opposite (Figure S4(b)). .ere were four common
SMGs presented in both hypoxia subtypes, including
CTNNB1, TP53, ALB, and AXIN1, implying these muta-
tions were universal in HCC. Notably, C1 had dominant
CTNNB1 mutation compared with C1 and specific SMGs
associated with chromosome remodeling including ARID1A
and ARID2. .e key role in the cell cycle, TP53, and its
mutations was more frequent in C2 relative to C1. Specific
SMGs including RB1 and TSC2 in C2 also participated in the
regulation of cell cycle. In addition, we further investigated
the mutation signatures of HCC. .e diverse mutation
signatures reflected different carcinogenic processes.
According to the NMF algorithm, three signatures were
extracted in both subtypes and named based on COSMIC
signatures by MutationalPatterns R package (Figures 6(b),
S4(c), and S4(d)). In line with the higher TMB, C2 had
superior proportion of signature 6, which represented de-
fective DNA mismatch repair. Signature 24 associated with
aflatoxin was also mainly displayed in C2, indicating a
specific extrinsic carcinogenic process of C2. However,
signature 5 was pertinent to age occupied the most pro-
portion in C1, consistent with the dominant clinical features
of C1 (Figures S4(e) and S4(f )).

We further applied GISTIC 2.0 software to decode the
amplification and deletion of CNA on chromosomes
(Figure 6(c) and Table S6). Compared to C1, we found C2
displayed higher burden of amplification and deletion at arm
and focal level (Figures 6(d)–6(g)). In line with this, C2 also
had superior FGA, FGG, and FGL (Figure 6(h)). .is
suggested C2 had superior genomic instability relative to C1.
Consistent with previous study, the higher CNA load was
associated with a higher immunogenicity and immune in-
filtration [38]. .e recurrent CNAs in C2 included the
amplification of 6q13 (CD109), 3q26.31(TNFSF10),
7q31.2(MET), and 8q24.21 (MYC) as well as the deletion of
10q23.31 (PTEN) and 8p23.2 (CSMD1)..e specific CNA of
C1 was mainly associated with cell proliferation, such as the
amplification of 6p21.1 (VEGFA) and 7q21.3 (TAC1) as well
as the deletion of 9p24.1 (JAK2). .ese results suggested the
two subtypes had distinct CNA events, which not only might
cause different immune infiltration but also promoted the
target treatment of HCC.

3.6. Methylation Modification of Hypoxia Subtypes. DNA
methylation played an essential role in genes expression reg-
ulation. Global methylation levels (GMLs) referred to the large
normally methylated genomic regions showing the systematic
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loss of DNA methylation [39]. In this research, C2 exhibited
higher GMLs relative to C1 (Figure 7(a)). Previous study
demonstrated that GMLs were negatively correlated with cell
proliferation and positively correlated with CD8+ cell infil-
tration, and the methylation loss was associated with immune
regulation, further affecting immunotherapy response [33].
Consistent with these, GMLs were significantly negatively
correlated with proliferation score (Figure 7(b)). GMLs also
exhibited positive correlation with immune cell infiltration,
such as dendritic cell, B cell, and CD8+ Tcell (Figure 7(c))..e
difference of GMLsmight impact the progression and immune
status of tumor. Subsequently, we identified 13 and 28
methylation-driven genes (MDGs) in C1 and C2, respectively
(Figures 7(d) and 7(e)). Liver-specific protein CPS1 was a
common MDG in both subtypes. It was the first rate-limiting

enzyme in urea cycle, involving tumormetabolism, while DNA
methylation led to expression silencing of CPS1 in HCC [40].
Of note, WIPF3 was the most frequent MDG in C1. WIPF3
encoded actin cytoskeleton protein, impacting actin remod-
eling and cellular invasion [41], thus the silencing of WIPF3
promoted tumor growth. .e suppressors FOXD4 and CDO1
were specific MDGs in C2. FOXD4 participated in immune
system regulation, tumor progression, and metastasis by
methylationmodification [42]. Besides, it was reported that the
promoter methylation of CDO1 might be a common event in
human carcinogenesis [43]. .e silencing of FOXD4 and
CDO1 might accelerate carcinogenesis and development in
HCC. Collectively, the two subtypes had specificMDGs, which
might represent potential molecular target and promote the
progression of the heterogeneity in HCC.

Project
Cluster

Project

Cluster

B7-H4
CD137
CD137L
CD244
CD28
CD40
CD40LG
CD48
CD80
CD83
CD86
CTLA4
FAS
FASLG
HVEM
ICOS
ICOSLG
OX40
OX40L
PD-1
PD-L1
PD-L2

B7-H4
CD137

CD137L
CD244

CD28
CD40

CD40LG
CD48
CD80
CD83
CD86

CTLA4
FAS

FASLG
HVEM

ICOS
ICOSLG

OX40
OX40L

PD-1
PD-L1
PD-L2

2

1

0

–1

–2

TCGA-LIHC
ICGC-LIRI
NCI-cohort

C1
C2

A
CO

T7
A

D
M

A
LD

O
A

A
N

G
PT

L4
BN

C1
CA

9
CD

KN
3

CO
L4

A
6

EN
O

1
FO

SL
1

G
N

A
I1

LD
H

A
M

IF
M

RP
S1

7
N

D
RG

1
P4

H
A

1
PG

A
M

1
PG

K1
SD

C1
SL

C1
6A

1
SL

C2
A

1
TP

I1
TU

BB
6

V
EG

FA

0.4
0.2
0.0
–0.2

∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗

∗∗

∗∗ ∗∗ ∗∗

∗∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗

∗∗ ∗∗

∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗

∗∗

∗∗ ∗∗ ∗∗ ∗∗

∗∗

∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗

∗∗

∗∗ ∗∗ ∗∗

∗∗

∗∗ ∗∗

∗∗

∗∗ ∗∗ ∗∗

∗∗

∗∗

∗∗ ∗∗

∗∗ ∗∗ ∗∗ ∗

∗

∗∗

∗∗ ∗∗ ∗∗ ∗∗

∗∗

∗∗

∗∗

∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗

∗∗

∗∗

∗∗ ∗∗

∗∗ ∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗ ∗∗

∗∗∗∗

∗∗

∗∗

∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗∗ ∗∗

∗∗

∗∗

∗∗

∗∗

∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗

∗∗

∗∗

∗∗∗∗

∗∗∗∗

∗∗

∗

∗∗

∗

∗ ∗ ∗

∗∗ ∗∗

∗∗

∗

∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗

∗∗∗∗

∗∗

∗∗

∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗

∗∗

∗∗

∗∗

∗∗

∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗ ∗∗

∗∗

∗∗

∗∗∗∗ ∗∗

∗∗∗∗ ∗∗

∗ ∗∗

∗∗ ∗∗

∗∗ ∗∗

∗∗ ∗∗

∗∗ ∗∗

∗∗ ∗∗ ∗∗

∗∗ ∗∗

∗∗∗∗

∗∗

∗∗∗

∗∗

∗∗∗∗

∗∗ ∗∗ ∗∗∗∗∗∗ ∗∗

∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗

∗

∗

∗

∗

∗

∗∗∗∗ ∗∗ ∗∗

∗∗∗∗ ∗∗ ∗∗

∗∗

∗∗ ∗∗ ∗∗

∗∗

∗∗ ∗∗

∗∗ ∗∗

∗∗ ∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗ ∗∗

∗∗

∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗

∗∗ ∗∗

∗∗ ∗∗

∗∗

∗

∗∗

∗∗

∗∗

∗

∗∗

∗∗

∗∗

∗

∗∗∗

∗ ∗ ∗ ∗ ∗

∗

∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗

∗∗ ∗∗

∗∗ ∗∗

∗∗ ∗∗

∗∗

∗∗

∗∗ ∗ ∗

∗ ∗ ∗

∗

∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗

∗∗ ∗∗ ∗∗

∗∗

∗∗

∗ ∗∗

∗

∗

∗ ∗

∗

∗

∗ ∗∗

∗

∗

∗p < 0.05
∗∗p < 0.01

C1
C2

Cluster

∗∗∗ ∗∗∗ ∗∗∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗ ∗∗ ∗

Pl
as

m
ac

yt
oi

d 
de

nd
rit

ic
 ce

ll

T 
fo

lli
cu

la
r h

elp
er

 ce
ll

Ac
tiv

at
ed

 B
 ce

ll

N
at

ur
al

 k
ill

er
 ce

ll

M
ac

ro
ph

ag
e

Ac
tiv

at
ed

 d
en

dr
iti

c c
el

l

M
as

t c
el

l
M

D
SC

Ty
pe

 1
 T

 h
elp

er
 ce

ll

Ty
pe

 2
 T

 h
elp

er
 ce

ll
Ty

pe
 1

7 
T 

he
lp

er
 ce

ll

Im
m

at
ur

e d
en

dr
iti

c c
el

l

G
am

m
a d

elt
a T

 ce
ll

Re
gu

lat
or

y 
T 

ce
ll

Im
m

at
ur

e B
 ce

ll

N
at

ur
al

 k
ill

er
 T

 ce
ll

Ac
tiv

at
ed

 C
D

8 
T 

ce
ll

Ac
tiv

at
ed

 C
D

4 
T 

ce
ll

N
eu

tro
ph

il

M
on

oc
yt

e

Eo
sin

op
hi

l
CD

56
di

m
 n

at
ur

al
 k

ill
er

 ce
ll

CD
56

br
ig

ht
 n

at
ur

al
 k

ill
er

 ce
ll

0.50 nsns

0.25

0.00

–0.25

–0.50

In
fil

tr
at

io
n 

ab
un

da
nc

e

False
True

Responder

1.00

87%

13%

66%

34%

0.75

0.50

0.25

0.00

Pe
rc

en
ta

ge

C1 C2
Cluster

P = 8.52e – 04

1

0.8

0.6

0.4

0.2

C1

C2

C2

C1

P = 0.031

P value

NR R
CTLA-4

NR R
PD-L1

N
or

m
al

Bo
nf

er
ro

ni
co

rr
ec

te
d

(c)(a)

(b) (d) (e)

Figure 4:.e difference of ICP expression, immune cells infiltration, and immunotherapy response between C1 and C2. (a).e expression
heatmap of ICPs between C1 and C2 inmetacohort. High expression, red; low expression, blue. (b).e abundance of 23 immune cell subsets
infiltration was compared between the C1 and C2 in metacohort. ns, P> 0.05; ∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001. (c) Correlations between
immune checkpoints and HAGs in metacohort using Spearman analysis. Negative correlation was marked with blue, and positive
correlation was marked with red. No asterisks represented no statistical significance; ∗P< 0.05; ∗∗P< 0.01. (d) Distribution of the im-
munotherapy response results predicted by TIDE algorithm between C1 and C2 in metacohort. Nonresponders, blue; responders, orange.
(e) Submap analysis of the two subtypes and 47 previous melanoma patients with detailed immunotherapeutic information. NR represented
nonresponders; R represented responders.

8 Journal of Oncology



< 65
≥ 65

Age
Female
Male

Gender
< 24
> = 24

BMI

Stage iii
Stage iv

Stage i
Stage ii

AJCC_stage

G3
G4

G1
G2

Grade

NoneMacro
Micro

Vascular

C1
C2

Cluster

C1
C2

Cluster

C2
C1

Cluster
Dead
Alive

Status

Macro
Micro
None
Unknown

Vascular_invasion

Age

Unknown

< 65
> = 65

2

1

0

–1

–2

Age
Gender

Male
Female

Gender

BMI

Unknown

< 24
> = 24

BMI

AJCC_stage

Stage i
Stage ii
Stage iii
Stage iv

AJCC_stage

Histologic_Grade

Unknown

G1
G2
G3
G4

Histologic_grade

Status
Cluster
GNAI1
SLC16A1
MRPS17
ANGPTL4
SDC1
ACOT7
COL4A6
SLC2A1
VEGFA
CDKN3
CA9
NDRG1
FOSL1
BNC1
TUBB6
P4HA1
ADM
PGAM1
PGK1
MIF
LDHA
TPI1
ALDOA
ENO1

1.00

0.75

0.50

0.25

0.00

O
ve

ra
ll 

su
rv

iv
al

0 1 2 3 4 5 6 7 8 9 10
Time (years)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Number at risk

222 174 100 70 51 33 20 4 3 1 0
146 90 43 23 15 10 9 5 3 3 1

Log-rank
P < 0.0001

Log-rank
P < 0.0001

1.00

0.75

0.50

0.25

0.00

Pe
rc

en
ta

ge

1.00

0.75

0.50

0.25

0.00

Pe
rc

en
ta

ge

1.00

0.75

0.50

0.25

0.00

Pe
rc

en
ta

ge

1.00

0.75

0.50

0.25

0.00

Pe
rc

en
ta

ge

1.00

0.75

0.50

0.25

0.00

Pe
rc

en
ta

ge

1.00

0.75

0.50

0.25

0.00

Pe
rc

en
ta

ge

C1 C2

P = 0.030 P = 0.001P = 8.57e – 05

P = 1.601e – 06 P = 0.007P = 0.002

Cluster

C1 C2

Cluster

C1 C2

Cluster

C1 C2

Cluster

C1 C2
Cluster

C1 C2
Cluster

C1 C2
Cluster

C1 C2
Cluster

4.4

4.2

4.0

3.8

3.6

Es
tim

at
ed

 IC
50

Es
tim

at
ed

 IC
50

Sorafenib

Willcoxon, p = 9e – 10

Obatoclax

Willcoxon, p = 7.3e – 0.84

2

0

–2

1.00

0.75

0.50

0.25

0.00Re
lap

se
-fr

ee
 su

rv
iv

al

0 1 2 3 4 5 6 7 8 9 10
Time (years)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Number at risk
197 131 62 41 27 18 7 1 0 0 0
121 48 19 10 7 4 3 2 2 2 1

(a)

(d) (e) (f) (j)

(g) (h) (i) (k)

(c)

(b)

Figure 5:.e clinical characteristics and prognosis of hypoxia subtypes in TCGA cohort. (a).e expression heatmap of 24 HAGs in TCGA-
LIHC cohort. Survival status, age, gender, BMI, vascular invasion, histology grade, AJCC stage, and hypoxia subtypes were displayed as
patient annotations. (b, c) Kaplan–Meier curves of OS (b) and RFS (c) between C1 and C2 in TCGA-LIHC cohort. (d–f) Composition
percentage of clinical characteristics such as age (d), gender (e), and BMI (f) between C1 and C2. (g–i) Composition percentage of AJCC
stage (g), grade (h), and vascular invasion (i) between C1 and C2. (j, k) Distribution of the estimated IC50 of sorafenib (j) and obatoclax (k)
between C1 and C2 in TCGA-LIHC cohort.

Journal of Oncology 9



1000
500

0
47%
32%
23%
14%
12%

9%
8%

C1

400300
200
100

0

56%
22%
12%
11%

8%
7%
3%
5%

Variants
CTNNB1
TP53
ALB
ARID1A
AXIN1
ARID2
ACVR2A

0 510
–Log10

(q value)

0 51015
–Log10

(q value)

TP53
CTNB1
RB1
ALB
TSC2
AXIN1
BRD7
RPSKA3

Alterations

Nonsense_Mutation
Missense_Mutation
Frame_Shi�_Del
Frame_Shi�_Ins
Frame_Site
In_Frame_Del
Multi_Hit

10000

1000

100

10

10000

1000

100

10

1Bu
rd

en
 o

f c
op

y 
nu

m
be

r g
ai

n
Bu

rd
en

 o
f c

op
y 

nu
m

be
r g

ai
n

Bu
rd

en
 o

f c
op

y 
nu

m
be

r L
os

s
Bu

rd
en

 o
f c

op
y 

nu
m

be
r L

os
s

Arm-level Arm-level

Wilcoxon, p = 0.0011 Wilcoxon, p = 2.5e–06

Wilcoxon, p = 5.9e–05 Wilcoxon, p = 0.00028

C1 C2
Cluster

C1 C2
Cluster

C1 C2
Cluster

C1 C2
Cluster

10000

1000

100

10

3000

1000

300

100

30

Focal Focal

C1

C2

1 2
3

4
5

6 7 8 9 10 11 12
13

14 15 16 17 18 19 20 2122
X

Y

C2

Signature_5like; cosine-similarity: 0.86
aetiology: unknown

Signature_22like; cosine-similarity: 0.907
aetiology: exposure to aristolochic acid

Signature_6like; cosine-similarity: 0.894
aetiology: defective DNA mismatch repair

Signature_22like; cosine-similarity: 0.95
aetiology: exposure to aristolochic acid

Signature_24like; cosine-similarity: 0.859
aetiology: exposure to aflatoxin

Signature_6like; cosine-similarity: 0.885
aetiology: defective DNA mismatch repair

C>A C>G C>T T>A T>C T>G C>A C>G C>T T>A T>C T>G

0.3

0.2

0.1

0.0

0.3

0.2

0.1

0.0

0.3

0.2

0.1

0.0

0.3

0.2

0.1

0.0

0.3

0.2

0.1

0.0

0.3

0.2

0.1

0.0

0.75

0.50

0.25

0.00

Pe
rc

en
t g

en
om

e a
lte

re
d

FGA FGG FGL
Alteration

Cluster
C1
C2

∗∗∗∗ ∗∗∗∗∗

C1 C2

(a) (f) (g)

(d) (e)

(b)

(c)

(h)

Figure 6: .e genomic alterations of hypoxia subtypes in TCGA cohort. (a) Significantly mutated genes (SMGs) in two hypoxia subtypes.
Each column represented individual patient. .e upper bar plot showed TMB, and the percentage on the left showed the proportion of
samples with mutations. .e right bar plot indicated the MutSigCV q-value. .e mutation alternations types were indicated by different
colors. (b) Mutation signatures extracted from the two hypoxia subtypes..e three mutation signatures with the highest cosine similarity to
COSMIC signatures exhibited in C1 and C2, respectively. .e etiology of each signature and the cosine similarity between the original and
the reconstructed mutation signatures were indicated. (c) Gain (red) or loss (blue) frequencies of copy number alterations (CNAs) in the
chromosomes. (d–g).e burden of copy number gain (d) and loss (e) in arm level were compared between C1 and C2. .e burden of copy
number gain (f ) and loss (g) in focal level were compared between C1 and C2. (h) .e distribution of fraction genome altered (FGA),
fraction genome gained (FGG), and fraction genome lost (FGL) in C1 and C2. ∗P< 0.05; ∗∗∗∗P< 0.0001.

10 Journal of Oncology



3.7.DevelopmentandValidationof aHypoxia-AssociatedRisk
Score. A total of 299 DEGs were identified between C1 and
C2, including 80 upregulated and 219 downregulated genes
(Figure 8(a) and Table S7). GO and KEGG enrichment
analysis suggested DEGs were mainly associated with mo-
lecular transport and metabolism, such as anion transport,
bile secretion, and nitrogen metabolism (Figures 8(b) and
8(c)). According to these DEGs, we constructed protein-
protein interaction (PPI) networks and further extracted a key
module. .e top 10 genes from MCC algorithm were filtered
out as key genes (Figure 8(d)), which might play an essential

role in the hypoxia pattern of HCC. Notably, it contained four
kinesin family members. According to the previous litera-
tures, KIF15 promoted the development of HCC by reactive
oxygen species imbalance, while KIF18B advanced HCC
progression through activating WNT pathway [44, 45]. We
also found that all key genes had a higher expression in C2
(Figure 8(e)). .e univariate Cox regression analysis further
revealed the high expression of all key genes was significantly
associated with unfavorable prognosis (Figure 8(e)). Subse-
quently, we evaluated the accuracy of 299 DEGs for predicting
prognosis by ROC (Table S8). Interestingly, the top AUC
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value of nine genes were all from the key genes screened
through MCC algorithm, and another key gene, RAD54L,
ranked 11th (Table S8). .ese results not only indicated that
these genes might be involved in shaping the hypoxia pattern
of TME but also were not negligible for predicting the
prognosis of HCC..us, we applied the principal component
analysis (PCA) algorithm to develop a risk signature based on
the 10 key genes. Principal component 1 was extracted to
serve as the gene signature score..e gene signature score was
named hypoxia-associated risk score (HARS). We calculated
the HARS of each patient in TCGA, NCI, and ICGC cohorts
and further classified HCC patients into high-risk group and
low-risk group according to the median value of HARS. It
turned out the low-risk group displayed favorable OS and RFS
compared to high-risk group (Figures 8(g), 8(h), 8(j), 8(k),
and S5(a)). In TCGA cohort, the AUCs of 1-, 2-, 3-, and 5-
year prognostic prediction for HARS were 0.798, 0.769, 0.723,
and 0.702, respectively (Figure 8(i)). In NCI cohort, 1-, 2-, 3-,
and 5-year AUCs were 0.831, 0.804, 0.748, and 0.733, re-
spectively (Figure 8(l)). In ICGC cohort, 1-, 2-, 3-, and 5-year
AUCs were 0.771, 0.731, 0.725, and 0.714, respectively
(Figure S5(b)). .e above results demonstrated HARS per-
formed well at prognostic prediction and displayed potential
clinical value. In addition, based on the nearest centroid
method and Pearson correlation, we developed a R package
termed HCCS (https://github.com/Zaoqu-Liu/HCCS). .e
pipeline could divide each sample into the corresponding
hypoxia subtype and calculate the HARS of each sample.

3.8. Two Nomograms for Assessing OS and RFS. To facilitate
clinical management of HARS, we also recruited the
clinical features encompassing hypoxia subtypes, age,
gender, histological grade, AJCC stage, and vascular in-
vasion, and planning to develop a feasible nomogram. We
found the HARS was an independent prognostic factor for
both OS and RFS (Table S9). Moreover, univariate Cox
analysis indicated both gender and histological grade had
no prognostic significance for OS, and age, gender, as well
as histological grade had no prognostic significance for RFS
(Table S9). To facilitate clinical applicability, we included
HARS and clinical features with univariate Cox P< 0.05 to
develop two nomograms for predicting 1-, 3-, and 5-year
OS and RFS, respectively (Figures 9(a) and 9(d)). .en, the
calibration curve, Harrell’s concordance index (C-index),
and ROC were applied to assess the predictive ability of the
two nomograms. .e calibration curves for predicting 1-,
3-, and 5-year OS and RFS exhibited great agreement
between expected value and actual observation
(Figures 9(b) and 9(e)). .e C-index was 0.714 (95%
confidence interval [CI]: 0.65–0.78) and 0.713 (95% CI:
0.67–0.76) for the nomogram predicting OS and RFS.
Besides, the 1-, 3-, and 5-year AUC values for the OS
relevant- and RFS relevant-nomogram were 0.762, 0.719,
and 0.709 and 0.743, 0.715, and 0.712, respectively
(Figures 9(c) and 9(f )). .e above indicated the two no-
mograms were reliable and promising clinical management
tools, which could assist in making clinical decisions and
recommendations.

3.9. Immunotherapy Response Prediction Based on HARS.
As illustrated, HARS not only exhibited dominant corre-
lation with ICPs such as CD80, CTLA4, PD-1, PD-L1, and
FAS but also was significantly associated with .2, .17,
CD4+ T cell, and natural killer T cell (Figures S6(a) and
S6(b)). .ese results suggested the HARS might be a po-
tential immunotherapy marker. .erefore, we further de-
tected the clinical value of HARS in predicting the response
to immunotherapy in four independent cohorts. Consistent
with the previous results, high HARS decreased OS although
three cohorts had no statistical significance (GSE100797:
P � 0.129; GSE91061: P � 0.058; VanAllen cohort: P � 0.088),
which might be due to the small sample size (Figures 10(a),
10(d), and 10(g)). For IMvigor210 cohort encompassed 298
eligible samples, the high HI groups exhibited significant
unfavorable prognosis with P � 0.0086 (Figure 10(j)). In
addition, it was exciting that the low HARS groups displayed
superior response rate to immunotherapy, which was 3–6
times higher compared to the high HARS groups
(GSE100797 : 64% vs 20%; GSE91061 : 32% vs 8%; VanAllen
cohort: 30% vs 5%; IMvigor210 cohort: 30% vs 10%)
(Figures 10(b), 10(e), 10(h), and 10(k)). .e ROC was used
to evaluate the accuracy of immunotherapy prediction based
on HARS. We observed HARS affords a greater accuracy in
the prediction of immunotherapeutic benefits, and the AUC
values of GSE100797, GSE91061, VanAllen cohort, and
IMvigor210 cohort were 0.904, 0.852, 0.929, and 0.712, re-
spectively (Figures 10(c), 10(f ), 10(i), and 10(l)). .e above
indicated HARS had the excellent performance for pre-
dicting immunotherapy response, and it was a reliable and
promising immunotherapy marker.

4. Discussion

Hypoxia was a typical microenvironment characteristic in
HCC and played an indispensable role in the progression,
metastasis, treatment tolerance, and prognosis of tumor
[6, 23]. In this research, we observed most of HAGs dis-
played aberrant expression and significant prognosis value
in HCC. .e CNA and methylation might have dominant
regulation on HAGs relative to mutation. .erefore,
according to the expression of HAGs, we decoded the two
hypoxia subtypes in both metacohort and TCGA-LIHC
cohort, C1 with the low hypoxia pattern and C2 with the
high hypoxia pattern. .e two hypoxia subtypes were
characterized by distinct biological characteristics, immune
cell infiltrations, ICPs expression, genomic drivers, and
clinical outcomes. .ese results boosted the understanding
of hypoxia pattern and facilitated the deciphering of mo-
lecular characteristics and precise treatment in HCC. In
addition, we developed a risk signature and two nomograms
to advance clinical management and immunotherapy.

Hypoxia was a significant barrier to antineoplastic
therapy and a major contributor to immunotherapy resis-
tance [13, 23]. Hypoxia had profound impacts on immune
cells infiltration, angiogenesis, and even the decreasing drug
penetration, ultimately giving rise in therapy resistance [6].
In our research, we observed C2 has a better response to
immunotherapy via the prediction of TIDE and submap
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algorithm. C1 was characterized by the inferior infiltration
of immune cells and fibroblasts cells, low expression of ICPs,
and high metabolic activity. Previous study suggested that
high metabolism activities disordered TME and eventually
impaired the immune cell function [46]. .erefore, high
metabolism activities as well as the absence of immune cells
and ICPs in C1 might contribute to the unfavorable re-
sponses to immunotherapy. Conversely, due to the superior
level of immune cells infiltration and ICP expression, C2 was

significantly sensitive to immunotherapy such as anti-PD-
L1. Notably, hypoxia could enhance the suppressive activ-
ities of immunosuppressive cells and decrease the cytotoxic
effects of lymphocytes in TME [16]. Nonetheless, C2 still has
more advantages for immunotherapy than C1 lacking im-
mune cells. Overall, we recommended patients in the C2
subtype take consideration for immunotherapy. Immune
infiltration was crucial to the tumor progression, indirectly
affecting the prognosis of HCC patients by regulating the
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TME. For, example, MDSCs, macrophage, and mast cell
were associated with short survival in HCC [1]. Interestedly,
these cells were found to be highly expressed in C2, which
might explain its adverse OS and RFS. In addition, genomic
alternations such as mutation, CNA, and methylation
modification had important connection with responsiveness
to targeted drugs and clinical outcomes of HCC patients [2].
.e two hypoxia subtypes showed distinct genomic alter-
ations, which might be driving factors in the formation of
different subtypes, prognostic predictors, and potential drug
targets. C1 wasmainly characterized by the drivenmutations
of CTNNB1, TP53, ARID1A, and ARID2. Previous studies
demonstrated the mutation of CTNNB1 was a feature of
“immune excluded subtype” in HCC, which displayed the
tight correlation with T cell exclusion and ineffective im-
munotherapy by enhancing the activation of WNTsignaling
pathway [3]. Chromatin remodeling factors ARID1A and
ARID2 were specific SMGs in C1. .e mutation of ARID2
strengthened the cytotoxicity of T cell and improved clinical
benefits of patients with massive immune cells infiltration
[4]. In addition, C1 with the amplification of VEGFA was
conducive to the formation of immunosuppressive micro-
environment and induced T cell exhaustion, which even-
tually leads to immune escape [5]. .ese genomic-driven
events might contribute to the immunodeficiency and im-
munotherapy resistance of C1. Furthermore, both C1 and
C2 showed massive methylation modification which might
contribute to tumorigenesis. Especially, in C2, the burden of
methylation level was higher. With the development of
epigenetics, methylation modification was responsible for
caner initiation and methylation sites could be potential
therapy targets [6]. For example, the methylation modifi-
cation of CDO1 was common in multiple human cancer and
the methylation silencing of CDO1 increased tumor cells
growth [7]. Targeted the CDO1 might accomplish the
precise therapy, making impressive effects. .e high CNA

burden was dominated genomic characteristic of C2, such as
the amplification of 7q31.2 (MET) and 8q24.21 (MYC).
Previous study demonstrated the high-level amplification of
MET has driven the tumorigenesis and conferred an adverse
prognosis [8]. MYC amplification improved the RUVBL2
expression, while the overexpression of RUVBL2 exhibited
shorter RFS by regulating AKTand ERK/MAPK pathway in
HCC [9]. RB1 identified as the first tumor suppressor gene in
human history was specific SMG in C2..emutation of RB1
was a characteristic of HCC patients who had high levels of
drosophila prune protein (h-prune) [10]. High expression of
h-prune promoted the tumor metastasis and performed the
adverse OS and RFS [10]. .erefore, these molecular al-
terations further proved the C2 presented the poor OS and
RFS. Overall, we had uncovered distinct genomic alterations,
methylation modification, and immune in clinical perfor-
mance between C1 and C2. .e insensitive immunotherapy
of C1 and inferior prognosis of C2 were deeply explained.
Moreover, the comprehensive explorations of genomic al-
ternations provided vital theoretical supports for precise
treatment of HCC.

.e hypoxia subtypes also demonstrated heterogeneous
clinical outcomes. Compared to C1, the C2 displayed poor
sensitivity to sorafenib. However, the antiangiogenic function
of sorafenib led to intratumoral hypoxia, increasing the
number of adapted hypoxia cells [53]. .erefore, the high
hypoxia pattern could limit the efficacy of sorafenib, further
giving rise to the poor sensitivity of C2 [36]. Moreover, C2
exhibitedmore sensitivity to obatoclax, whichmight be due to
obatoclax promoted tumor cells apoptosis by antagonizing
WNT/β-catenin signaling that significantly was enriched in
C2 [54]. In addition, we developed a risk signature termed
HARS. .e HARS performed excellent at predicting the
prognosis and was an independent risk prognosis signature
for OS and RFS in HCC. Meanwhile, the HARS was also a
robust indicator for immunotherapy, and the efficacy was
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Figure 10: .e performance of HARS for predicting the immunotherapy response. (a–c) .e Kaplan–Meier analysis (a), immunotherapy
response ratio (b), and ROC curve (c) of HARS in GSE100797 cohort. (d–f) .e Kaplan–Meier analysis (d), immunotherapy response ratio
(e), and ROC curve (f ) of HARS in GSE91061 cohort. (g-i) .e Kaplan–Meier analysis (g), immunotherapy response ratio (h), and ROC
curve (i) of HARS in VanAllen cohort. (j–l) .e Kaplan–Meier analysis (j), immunotherapy response ratio (k), and ROC curve (l) of HARS
in IMvigor210 cohort.
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verified in four independent cohorts. Besides, combining the
HARS and vital clinical features, two nomograms with good
performance were also constructed for assessing the possi-
bility of OS and RFS to facilitate clinical management. .e
nomograms could be applied to provide more precise and
individualized evaluation of OS and RFS for HCC patients.
Eventually, based on the nearest centroid method and
Pearson correlation, we developed a R package termed HCCS
(https://github.com/Zaoqu-Liu/HCCS). .e pipeline could
divide each sample into the corresponding hypoxia subtype
and calculate the HARS of each sample.

.e study still had some limitations. Firstly, we indirectly
evaluated the relative hypoxia status of each patients based
on the expression of HAGs. Secondly, the prediction of
HARS response to immunotherapy was verified based on
four retrospective cohorts, but prospective cohort studies are
still necessary.

5. Conclusions

We revealed two hypoxia subtypes with distinct biological
function, immune cell infiltrations, ICPs expression, ge-
nomic driven events, and clinical outcomes in HCC. .e
HARS was a robust and promising indicator for prognosis
and immunotherapy, and two nomograms were proposed to
advance the prognosis assessment of HCC patients. .ese
results enhanced the acknowledgment of hypoxia hetero-
geneity in HCC and facilitated individual therapy and
clinical management.
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Supplementary Materials

Figure S1: the identification of molecular subtypes in
metacohort. (a) Using the unsupervised clustering algo-
rithm to classify patients into different molecular subtypes
in metacohort. .e consensus score matrix of 831 HCC
samples (K � 2∼9). A higher consensus score between two
samples indicates they were more likely to be grouped into
the same cluster in different iterations. .e figure dem-
onstrated k � 2 was the best choice. (b) .e proportion of
ambiguous clustering (PAC) score, a low value of PAC
implied a flat middle segment in cumulative distribution

functions (CDFs), allowing conjecture of the optimal k
(k � 2) by the lowest PAC. (c) Recommended number of
clusters using 26 criteria of Nbclust package in the met-
acohort. .e highest of the column represented the optimal
k (k � 2). Figure S2: the differences of HAG expression,
known signatures, and fibroblast infiltration between C1
and C2 in metacohort. (a) .e expression heatmap of 24
HAGs between C1 and C2. High expression, red; low
expression, blue. (b) .e expression box plot of 24 HAGs
between C1 and C2. (c) Comparison of the signatures score
between C1 and C2. (d) .e abundance of fibroblasts was
compared between C1 and C2. ns, P> 0.05; ∗P< 0.05;
∗∗P< 0.01; ∗∗∗P< 0.001. Figure S3: the difference of im-
mune checkpoints (ICPs) and immune cells between C1
and C2. (a) .e expression boxplot of ICPs between C1 and
C2. ns, P> 0.05; ∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001. (b) .e
heatmap of 23 immune cells between C1 and C2. High
expression, red; low expression, blue. (c) Correlations
between immune cells and HAGs using Spearman analysis.
Negative correlation was marked with blue, and positive
correlation was marked with red. No asterisks represented
no statistical significance; ∗P< 0.05; ∗∗P< 0.01. Figure S4:
the mutation signatures and significantly mutated genes
(SMGs) in TCGA-LIHC cohort. (a) Comparison of tumor
mutation burden (TMB) between C1 and C2. (b) .e
expression difference of 12 SMGs between mutation group
and wild group. Mutation group, blue; wild group, yellow.
(c, d) Using NMF package, the mutational signatures were
extracted from the mutation count matrix. .e optimal
rank was both 3 (c, d). (e, f ) .e pie chart showed the
proportion of mutation signatures in C1 (e) and C2 (f ),
respectively. Figure S5: the Kaplan–Meier and ROC
analysis of HARS in ICGC cohort. (a) Kaplan–Meier curves
for OS between low HARS and high HARS groups in ICGC
cohort. (b) Estimation of the prognosis prediction by re-
ceiver operating characteristic curve (ROC) in ICGC co-
hort. Figure S6: correlations of HARS with immune
checkpoints and immune cells. (a) Spearman correlation
analysis between HARS and immune checkpoints. (b)
Spearman correlation analysis between HARS and immune
cells. .e circle size represents the strength of correlation.
Table S1: the details of seven datasets enrolled in this study.
Table S2: a total of 24 hypoxia-associated genes (HAGs)
were recruited in our research. Table S3: the known gene
signatures enrolled in this study. Table S4: the gene sets for
marking 23 immune cell types and fibroblasts. Table S5: the
mutation-driven genes from MutSigCV algorithm in C1
and C2. ∗SMGs are marked in red; the common SMGs are
marked with bold. Table S6: the significant focal copy
number alterations (including amplification and deletion)
of each subtype. Table S7: a total of 299 subtype-related
differentially expressed genes (DEGs). ∗DEGs are marked
in red. Table S8: the univariable Cox regression and ROC
analysis of each DEGs. ∗.e key genes are marked in red.
Table S9: the Cox regression analysis of overall survival
(OS) and relapse-free survival (RFS). ∗.e factors with
univariable Cox P value <0.05 are marked in green, and the
factors with multivariable Cox P value <0.05 are marked in
red. (Supplementary Materials)
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