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Background: Dust generated during various wood-related activities, such as cutting, sanding, or pro-
cessing wood materials, can pose significant health and environmental risks due to its potential to cause
respiratory problems and contribute to air pollution. Understanding the factors influencing dust emission
is important for devising effective mitigation strategies, ensuring a safer working environment, and
minimizing environmental impact. This study focuses on developing an artificial neural network (ANN)
model to predict dust emission values in the machining of black poplar (Populus nigra L.), oriental beech
(Fagus orientalis L.), and medium-density fiberboards.
Methods: The multilayer feed-forward ANN model is developed using a customized application built
with MATLAB code. The inputs to the ANN model include material type, cutting width, number of blades,
and cutting depth, whereas the output is the dust emission. Model performance is assessed through
graphical and statistical comparisons.
Results: The results reveal that the developed ANN model can provide adequate predictions for dust
emission with an acceptable level of accuracy. Through the implementation of the ANN model, the study
predicts intermediate dust emission values for different cutting widths and cutting depths, which are not
considered in the experimental work. It is observed that dust emission tends to decrease with reductions
in cutting width and cutting depth.
Conclusion: This study introduces an alternative approach to optimize machining-process conditions for
minimizing dust emissions. The findings of this research will assist industries in obtaining dust emission
values without the need for additional experimental activities, thereby reducing experimental time and
costs.

� 2024 Occupational Safety and Health Research Institute. Published by Elsevier B.V. on behalf of
Institute, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health

Agency. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

In the forest industry, the utilization of cutting and processing
technologies for wood and wood-based materials is a critical
component of production. However, these activities inherently give
rise to various detrimental factors that significantly impact the
work environment and the well-being of workers. Among these,
the generation of dust stands out as a particularly concerning issue.
When workers cut, grind, and manipulate wood, substantial
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quantities of dust are released into the air [1]. Continuous inhala-
tion of wood dust by workers can lead to serious health issues,
including asthma, emphysema, and chronic bronchitis. This can
significantly diminish both their quality of life and work produc-
tivity [2]. Furthermore, there is a correlation between exposure to
wood dust and an elevated risk of upper respiratory tract cancers
[3]. The accumulation of wood dust on surfaces and in the air not
only poses a threat to respiratory health but also elevates the po-
tential for fire hazards within industrial settings. This risk
id.org/0000-0001-5133-683X; Yunus E. Şenel: https://orcid.org/0009-0002-9085-

, Bolu Abant Izzet Baysal University, Gölköy Campus, 14030, Bolu, Turkey.

blishedbyElsevierB.V.onbehalf of Institute,Occupational SafetyandHealthResearch
r the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0003-0884-2555
https://orcid.org/0000-0001-5133-683X
https://orcid.org/0009-0002-9085-8651
https://orcid.org/0009-0002-9085-8651
https://orcid.org/0000-0002-1769-3232
mailto:hilal.singer@hotmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.shaw.2024.06.006&domain=pdf
www.sciencedirect.com/science/journal/20937911
http://www.e-shaw.net
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.shaw.2024.06.006
https://doi.org/10.1016/j.shaw.2024.06.006
https://doi.org/10.1016/j.shaw.2024.06.006


Saf Health Work 2024;15:317e326318
substantially increases the likelihood of workplace explosions [4].
Proactive strategies, such as regular equipment maintenance, the
incorporation of dust collection systems, and the adoption of
advanced technologies, are crucial. These measures not only create
a safer and healthier work environment but also enhance opera-
tional efficiency and overall safety standards [5].

In an effort to mitigate the adverse impacts of harmful factors on
human health, various institutions and organizations have estab-
lished exposure limits. In 1999, the European Union (EU) took a
significant step by implementing regulations to address the dan-
gers associated with breathable wood dust. The specified limit was
set at 5 mg/m3, and this standard was based on an 8-hour workday.
Several European countries have chosen to adopt exposure limits
that are more stringent than the recommendations outlined in EU
legislation. For instance, Germany and Slovenia have established a
limit of 3 mg/m3, Sweden maintains a threshold of 2 mg/m3, and
France has implemented a stringent standard at 1 mg/m3 [6].

Machining processes encompass a range of activities such as
cutting, sanding, and shaping, all of which contribute to the gen-
eration of wood dust. To ensure optimal performance andminimize
environmental impact, it is important to analyze various variables
during machining procedures [7]. Several researchers have exam-
ined the effect of grit size, wood species, feed speed, depth of cut,
temperature modification, step over, cutting speed, feed per tooth
rate, and drying mode on dust generation and distribution [8e11].
The majority of previous studies have concentrated on comparing
the rate of dust emission among various wood species and products
derived from wood [12]. Some research studies have focused on
confirming the issues linked to exposure towood dust [13e15]. The
complete elimination of wood dust is unfeasible. Nonetheless, ef-
forts can be directed toward minimizing its quantity by identifying
and optimizing factors influencing dust emission [16]. Experi-
mentation aimed at understanding the impact of these factors is a
common approach, but it often entails significant costs and time
requirements. An alternative and more efficient solution lies in
using artificial neural networks (ANNs). These networks provide a
cost-effective, time-efficient, and data-driven approach to under-
standing and optimizing processes [17].

ANNs are computational models inspired by the functioning of
biological neural networks in the human brain. The ability of ANNs
to capture nonlinear relationships makes them particularly useful
in situations where interactions between process variables are
intricate [18]. ANNs learn from data, and by exposing them to a
diverse set of data, they can identify patterns and trends that might
be challenging for traditional methods. ANNs can be continuously
updated and improved as more data become available. Instead of
relying solely on physical experiments, researchers can leverage the
computational power of ANNs to explore various scenarios and
predict outcomes. This accelerates the decision-making process
and minimizes the need for resource-intensive experiments
[19,20].

In recent years, there has been a notable surge in research
focusing on the application of ANNs to address various challenges
within the field of wood science. Noteworthy studies have delved
into diverse aspects such as wood density prediction [21], modeling
formaldehyde emission [22], estimating wood resistance [23],
minimizing power consumption [24], optimizing surface roughness
and adhesion strength of wood [20], classifying wood species [25],
improving wood surface quality [26], predicting the modulus of
elasticity of bamboo-wood composites [27], quantifying the wood
volume [28], wood classification [29], predicting the modulus of
rupture of laminated wood products [30], analyzing the color
change of thermally treated wood surfaces [31], and optimizing the
drilling process of medium-density fiberboards (MDFs) [32]. On the
other hand, ANNs have been successfully utilized to predict dust in
various contexts: material sawing [12], atmospheric investigations
[33], open-pit mine blasting [34], wind erosion [35], limestone
storage piles [36], and almond harvesting [37]. The previous studies
have highlighted that ANNs are reliable tools for predicting the
amount of inhalable dust. The current body of literature lacks
comprehensive insights into the mathematical modeling of dust
generation during the machining of wood and wood-based
materials.

The objective of the current study is to create a neural network
model for predicting the influence of material type, cutting width,
number of blades, and cutting depth on dust emission levels. This
study provides valuable insights into the complex relationships
between the specified variables and dust emission. The research
can inform the creation of optimized procedures to minimize
environmental impact and improve efficiency. Furthermore, the
findings of this study offer practical guidance for industry practi-
tioners. Understanding the factors contributing to dust emission
enables the implementation of preventive measures, resulting in a
safer working environment and reduced potential health risks
associated with prolonged exposure to wood dust.

2. Materials and methods

2.1. Data collection

In this study, black poplar (Populus nigra L.), oriental beech
(Fagus orientalis L.), and MDF are used as experimental materials. A
conditioning chamber is utilized to adjust the samples to the air-
dry moisture content (12%). Large-sized MDFs are transformed
into narrow pieces measuring 105 � 30 cm for each cutting-width
group. Poplar and beech woods are initially transformed into 1-
meter short lumbers through length cutting. From these lumbers,
draft sample pieces are produced with a net cutting width and
width tolerance of þ8 mm. The sample pieces are subjected to
waiting in a closed and heated environment. At the end of this
period, 15 sample pieces, each measuring 1 meter in length and 9
cm in width, are produced from each cutting-width group. The
samples are planned using two different blade numbers (1 and 4),
five different cutting widths (6, 12, 18, 25, and 30 mm), and three
different cutting depths (1, 2, and 3 mm). The TSI SIDEPAK AM 510
device is utilized for measuring dust emission. Operation for 20
minutes on themachiningmachine is carried out for each situation.

2.2. Artificial neural network

ANNs draw inspiration from the structural and functional as-
pects of biological nervous systems. The ANN approach stands out
from traditional statistical methods due to its capacity to learn
intricate and nonlinear relationships between variables. Among the
diverse types of networks, the multilayer perceptron (MLP) is
widely utilized. The MLP’s architecture comprises an input layer for
receiving data, one output layer for presenting outputs, and t in-
termediate (hidden) layers for processing information. In Fig. 1, a
representative illustration of the MLP structure is presented [38].

The layers of the MLP network are composed of processing
units, commonly referred to as neurons. Each neuronwithin a layer
establishes connections with neurons in adjacent layers through
specific weights (wij). An artificial neuron (j) combines the bias (qj)
and weighted inputs (xiwij), applies an activation function to the
sum (netj), and then conveys the outcome (yj) to the subsequent
layer. This process is visually presented in Fig. 2 [24].

ANNs undergo training and testing processes to enhance their
ability to make accurate predictions. In the training phase, the
network learns from a dataset by adjusting its weights and biases.
This process continues until a stopping criterion is met. A separate



Fig. 1. Multi-layered ANN architecture. Abbreviation: ANN, artificial neural network.
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dataset, not used during training, is used to assess model perfor-
mance. After successful testing, the ANN model can be ready for
deployment in real-world scenarios [39].
2.3. Artificial neural network analysis

This study focuses on developing an ANN model to predict dust
emission values during the machining of various wood and wood-
based materials. The choice to use the ANN approach is driven by
several factors. Machining processes involve complex interactions
between multiple variables. These interactions are inherently
nonlinear. Unlike traditional statistical models, ANNs are designed
to effectively handle nonlinear patterns [39]. ANNs can be adjusted
in terms of architecture and parameters to improve model perfor-
mance. Considering the variety of materials and the diversity in
machining settings, this flexibility is important for achieving
optimal prediction accuracy. Machining processes can introduce
variability and noise into the data. ANNs are effective at handling
noisy data due to their ability to learn underlying patterns [40]. In
this study, a substantial amount of data is collected across various
materials and machining parameters. ANN models thrive in data-
rich environments [20]. This allows for more accurate predictions
based on our extensive data collection.

The input variables considered for the ANN model are the ma-
terial type, cutting width, number of blades, and cutting depth. The
Fig. 2. General opera
output variable of the ANN model is the dust emission. The
development and execution of the ANNmodel are carried out using
MATLAB. The methodological steps of the ANN modeling process
are visually elucidated in Fig. 3.

The experimental data are organized in a random and homo-
geneous manner to form distinct training and testing datasets. A
total of 90 data points are utilized. The training phase involves the
utilization of 60 data points, constituting 66.67% of the total data-
set, to teach the network and enhance its learning capabilities.
Subsequently, the model’s performance is assessed using a separate
set of 30 data points, equivalent to 33.33% of the overall dataset. The
training and testing datasets are presented in Tables 1 and 2.

The modeling process utilizes a feed-forward backpropagation
neural network. The activation functions are the hyperbolic tangent
sigmoid function and the linear transfer function. Training is per-
formed using the LevenbergeMarquardt algorithm, whereas the
gradient descent with a momentum backpropagation algorithm
serves as the learning rule. The monitoring of training progress is
carried out using the mean square error (MSE).

MSE ¼ 1
N

XN
i¼1

ðti � tdiÞ2 (1)

Here, ti represents the actual value, tdi denotes the model output,
and N stands for the number of measurements.

The normalization process involves mapping all the variables to
the [�1, 1] interval. This data standardization is preferred because
the model uses the hyperbolic tangent sigmoid function. A reverse
normalizing process is applied to convert themodel outputs back to
their original values. The normalization is accomplished using
Equation (2).

Xnorm ¼ 2� X � Xmin

Xmax � Xmin
� 1 (2)

Here, Xnorm represents the normalized value, X is the actual value,
and Xmin and Xmax correspond to the minimum and maximum
values of X, respectively.

To optimize the performance of ANN-based models, thorough
experimentation is important. This process entails systematically
testing different combinations of network parameters and config-
urations to narrow the divide between actual andmodel outputs. In
this study, it is observed that optimal performance is attained with
a configuration comprising 4-4 neurons in the hidden layers (Fig.
4). The chosen ANN model, which yields values closest to the
experimental results, is used for predictions.
tion of a neuron.



Fig. 3. Model-design steps.
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To assess the performance of the established models, three
widely used metrics are considered: the mean absolute percentage
error (MAPE), represented by Equation (3); the root mean square
error (RMSE), denoted by Equation (4); and the coefficient of
determination (R2), expressed through Equation (5).

MAPE ¼ 1
N

 XN
i¼1

�����ti � tdi
ti

����
�!

� 100 (3)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðti � tdiÞ2
vuut (4)

R2 ¼ 1�

PN
i¼1

ðti � tdiÞ2

PN
i¼1

ðti � tÞ2
(5)

where t is the average of model outputs.
3. Results

A neural network model for dust emission is developed based
on material type, cutting width, number of blades, and cutting
depth. Tables 1 and 2 present the model results for the training and
testing datasets, respectively. The MAPE, RMSE, and R2 metrics are
used to evaluate the accuracy and reliability of the tried models.
Table 3 displays the performance statistics derived from assessing
the selected model.

MAPE is a widely used metric for assessing the reliability of
prediction models. It measures the average percentage difference
between predicted and actual values. In this study, the MAPE values
for the training and testing datasets are calculated to be 4.86% and
5.01%, respectively. A MAPE of �10% is considered indicative of a
highly accurate prediction model [41], and the results presented in
this study meet that criterion. The low MAPE values indicate that
the predicted values closely align with the actual observations.

RMSE is a valuable metric for assessing the performance of
prediction models by measuring the average magnitude of errors
between observed and calculated values. A lower RMSE suggests
better agreement between predicted and actual values. The calcu-
lated RMSE values for the training and testing datasets are 0.01 and
0.02, respectively. The slight discrepancies between the predicted
dust emission values and the actual observations specify the
model’s success in modeling dust emission.

R2 serves as a measure of the degree of association between
observed and calculated values. Its values range from 0 to 1. A
prediction model with an R2 value exceeding 90% is considered to
demonstrate high performance [22]. Regression analysis is used to
compute R2 values for the proposed model. As seen in Fig. 5, the R2

values calculated for the training and testing datasets are 0.995 and
0.987, respectively. This result indicates that the developed
network possesses the capability to elucidate a minimum of 98.7%
of the actual data pertaining to dust emission.

The comparative plots illustrating the actual values versus the
predicted values are presented in Fig. 6. The proximity of these
values is clearly evident from the visualization. This close
alignment enhances the applicability and reliability of the ANN
model.

Neural network models play an important role in optimization
studies by enabling the computation of intermediate values. Well-
trained ANNs can not only efficiently process existing data but also
extrapolate to provide untested experimental results [38]. In this
research, the material type and the number of blades remain con-
stant, whereas the cutting width and cutting depth are varied. The
ANN model predicts intermediate dust emission values across
numerous combinations of cutting widths and cutting depths, as
depicted in Fig. 7. The study’s findings reveal that dust emission
tends to decrease with the reduction of cutting width and cutting
depth.



Table 1
Training dataset and prediction model results

Material type Cutting width (mm) Blade no. Cutting depth (mm) Dust emission level (mg/m3)

Actual Predicted %Error

Populus nigra L. 6 1 2 0.05 0.06 �12.50

Populus nigra L. 6 1 3 0.12 0.09 22.32

Populus nigra L. 6 4 1 0.06 0.07 �15.44

Populus nigra L. 6 4 3 0.16 0.16 �2.36

Populus nigra L. 12 1 1 0.11 0.11 �1.20

Populus nigra L. 12 1 2 0.11 0.11 �1.01

Populus nigra L. 12 4 2 0.13 0.15 �12.30

Populus nigra L. 12 4 3 0.16 0.17 �8.72

Populus nigra L. 18 1 1 0.16 0.17 �5.89

Populus nigra L. 18 1 3 0.19 0.20 �5.77

Populus nigra L. 18 4 1 0.18 0.18 2.46

Populus nigra L. 18 4 2 0.20 0.20 1.41

Populus nigra L. 25 1 1 0.20 0.20 1.08

Populus nigra L. 25 1 3 0.31 0.29 5.77

Populus nigra L. 25 4 2 0.27 0.27 �0.96

Populus nigra L. 25 4 3 0.33 0.33 �0.45

Populus nigra L. 30 1 1 0.27 0.27 1.23

Populus nigra L. 30 1 2 0.29 0.31 �7.49

Populus nigra L. 30 4 1 0.30 0.29 3.14

Populus nigra L. 30 4 3 0.40 0.40 �0.12

Fagus orientalis L. 6 1 1 0.05 0.06 �14.10

Fagus orientalis L. 6 1 3 0.06 0.09 �47.59

Fagus orientalis L. 6 4 2 0.15 0.14 8.90

Fagus orientalis L. 6 4 3 0.18 0.16 8.43

Fagus orientalis L. 12 1 2 0.14 0.12 11.44

Fagus orientalis L. 12 1 3 0.14 0.13 6.37

Fagus orientalis L. 12 4 1 0.13 0.12 7.63

Fagus orientalis L. 12 4 2 0.15 0.15 0.06

Fagus orientalis L. 18 1 1 0.18 0.18 1.25

Fagus orientalis L. 18 1 2 0.20 0.20 1.41

Fagus orientalis L. 18 4 1 0.19 0.19 1.40

Fagus orientalis L. 18 4 3 0.25 0.25 1.46

Fagus orientalis L. 25 1 2 0.27 0.28 �4.23

Fagus orientalis L. 25 1 3 0.33 0.32 3.08

Fagus orientalis L. 25 4 1 0.25 0.26 �2.75

Fagus orientalis L. 25 4 3 0.37 0.37 �0.37

Fagus orientalis L. 30 1 1 0.31 0.30 3.09

Fagus orientalis L. 30 1 3 0.36 0.36 �0.10

Fagus orientalis L. 30 4 1 0.32 0.32 �0.13

Fagus orientalis L. 30 4 2 0.35 0.35 �0.38

MDF 6 1 1 0.10 0.08 16.75

MDF 6 1 3 0.11 0.12 �5.06

MDF 6 4 2 0.17 0.16 3.10

MDF 6 4 3 0.20 0.20 �2.09

MDF 12 1 1 0.17 0.18 �4.57

MDF 12 1 2 0.18 0.19 �2.87

MDF 12 4 1 0.17 0.18 �5.48

MDF 12 4 3 0.26 0.25 3.64

MDF 18 1 2 0.32 0.32 �0.94

MDF 18 1 3 0.37 0.37 �0.72

MDF 18 4 1 0.32 0.31 3.17

MDF 18 4 3 0.43 0.43 �0.64

MDF 25 1 1 0.38 0.38 �0.79

MDF 25 1 2 0.45 0.45 �0.25

MDF 25 4 2 0.51 0.50 1.14

MDF 25 4 3 0.69 0.69 �0.14

MDF 30 1 1 0.46 0.45 1.43

(continued on next page)
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Table 1 (continued )

Material type Cutting width (mm) Blade no. Cutting depth (mm) Dust emission level (mg/m3)

Actual Predicted %Error

MDF 30 1 3 0.58 0.58 0.68

MDF 30 4 1 0.50 0.50 �0.39

MDF 30 4 2 0.56 0.57 �1.83

Abbreviation: MDF, medium-density fiberboard.

Table 2
Testing dataset and prediction model results

Material type Cutting width (mm) Blade no. Cutting depth (mm) Dust emission level (mg/m3)

Actual Predicted %Error

Populus nigra L. 6 1 1 0.05 0.05 �6.61

Populus nigra L. 6 4 2 0.13 0.14 �8.25

Populus nigra L. 12 1 3 0.12 0.12 �1.80

Populus nigra L. 12 4 1 0.11 0.11 0.99

Populus nigra L. 18 1 2 0.18 0.18 �1.00

Populus nigra L. 18 4 3 0.22 0.22 �2.07

Populus nigra L. 25 1 2 0.25 0.25 1.22

Populus nigra L. 25 4 1 0.22 0.22 �0.89

Populus nigra L. 30 1 3 0.32 0.34 �6.60

Populus nigra L. 30 4 2 0.32 0.33 �2.79

Fagus orientalis L. 6 1 2 0.06 0.06 2.42

Fagus orientalis L. 6 4 1 0.06 0.07 �14.72

Fagus orientalis L. 12 1 1 0.11 0.12 �13.20

Fagus orientalis L. 12 4 3 0.18 0.18 0.41

Fagus orientalis L. 18 1 3 0.21 0.22 �5.76

Fagus orientalis L. 18 4 2 0.22 0.21 2.97

Fagus orientalis L. 25 1 1 0.23 0.23 �0.49

Fagus orientalis L. 25 4 2 0.31 0.30 2.09

Fagus orientalis L. 30 1 2 0.33 0.34 �1.92

Fagus orientalis L. 30 4 3 0.42 0.44 �4.50

MDF 6 1 2 0.10 0.09 12.56

MDF 6 4 1 0.09 0.10 �7.47

MDF 12 1 3 0.22 0.20 9.59

MDF 12 4 2 0.20 0.21 �5.53

MDF 18 1 1 0.29 0.28 3.64

MDF 18 4 2 0.37 0.36 2.94

MDF 25 1 3 0.51 0.51 �0.55

MDF 25 4 1 0.39 0.44 �11.57

MDF 30 1 2 0.51 0.51 �0.19

MDF 30 4 3 0.69 0.80 �15.51

Abbreviation: MDF, medium-density fiberboard.

Fig. 4. Proposed network architecture.
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Table 3
Results of the performance criteria for the ANN model

Dataset Performance criterion

MAPE RMSE R2

Training 4.86 0.01 0.995

Testing 5.01 0.02 0.987

Abbreviations: MAPE, mean absolute percentage error; RMSE, root mean square
error.
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4. Discussion

The reduction in dust emission as cutting width and cutting
depth decrease can be explained by considering the physics of
material cutting and the mechanics of dust generation. Dong et al.
[42] reported that thewidth and depth of the cut significantly affect
Fig. 5. Relationship between the measured and predicted values.

Fig. 6. Comparison between the measured and predicted values.
the production of dust and chips. Cutting width and depth are
directly related to the volume of material removed during the
machining process. When these parameters are reduced, the total
volume of material removed also decreases [11]. In previous works
[43,44], the average chip thickness emerged as the most important
factor influencing the amount of dust emissions. Kos et al. [45]
stated that the machining process affects the range of chip thick-
ness produced. The researcher also noted that the average chip
thickness impacts machine efficiency, specific cutting energy, dust
emissions, and the quality of the machined surface. Therefore, chip
thickness is important for managing dust levels. Ugulino and Her-
nández [46] reported the importance of controlling cutting depth
tomanage dust emissions and surface roughness. The study found a
significant relationship between cutting depth and the amount of
dust emitted during the machining process. Additionally, it was
observed that dust emissions increased with greater cutting
depths. This was attributed to the larger volume of wood being
removed with each cut. Rautio et al. [47] indicated that the average
chip thickness was the most crucial factor influencing the amount
of dust generated during the machining process. The researchers
suggested that to minimize dust production, milling parameters
should be adjusted to ensure that the average chip thickness ex-
ceeds 0.05 mm. Similar results were also reported by Palmqvist and
Gustafsson [48]. Rabiei and Souri [11] carried out a Pareto analysis
to analyze the effect of cutting depth, step-over, cutting speed, and
feed rate on wood dust. According to the results, cutting depth had
the greatest effect. Furthermore, it was reported that by increasing
cutting depth, wood dust increases up to amaximumvalue. Smaller
cutting widths and depths require less force and energy to achieve



Fig. 7. Variations in dust emission across various cutting widths and cutting depths.
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the cut. This reduction in force can lead to fewer particles being
dislodged during the cutting process. High-energy cutting can
cause more violent material breakage, leading to increased dust
production [9]. Friction between the cutting tool and thematerial is
another crucial factor. High friction and heat can cause materials to
break apart more violently [7]. In an experimental study conducted
by O�ckajová et al. [10], it was observed that the highest percentage
of particles occurred at the highest heat. Undesirable effects can be
reduced by adjusting machining parameters [7].

Wood dust emission is a common concern in industries
involved in woodworking activities such as cutting, sanding, and
shaping wood. The fine particles generated during these processes
can pose significant health risks to workers, including respiratory
issues and allergic reactions. Different wood types produce dust
with varying compositions, and certain species may contain sub-
stances that contribute to specific health concerns [8]. One key
strategy for controlling dust emission levels is the use of local
exhaust ventilation systems. These systems capture dust at the
source, typically near machinery or tools, preventing its dispersion
into the air. Dust collection systems, which centralize the capture
and containment of wood dust, play a crucial role in maintaining
air quality [49]. Additionally, personal protective equipment, such
as respirators, can be used to reduce inhalation exposure, espe-
cially in situations where other control measures may not be fully
effective [50]. Workplace design also contributes to dust control.
Optimizing the layout of machinery and workstations helps
minimize the spread of wood dust, and the use of enclosures and
barriers can contain dust within specific areas. Regular cleaning is
essential to prevent the accumulation of dust, and proper disposal
methods help avoid resuspension of particles into the air [51].
Employee training on the risks associated with wood-dust expo-
sure and the proper use of control measures are critical for
creating awareness and ensuring compliance. Monitoring air
quality, conducting regular equipment maintenance, and
exploring alternative materials or processes that generate less dust
are additional components of a comprehensive wood dust control
strategy [5]. By combining these measures, industries can effec-
tively reduce wood dust emission levels and safeguard the health
of their workforce. This study not only demonstrates the reliability
of ANNs in this domain but also highlights their capacity to
generate intermediate dust emission values. The significance of
this lies in eliminating the need for resource-intensive and time-
consuming experimental endeavors.

The predictions generated by the chosen ANN model exhibit a
remarkable correspondence with the actual values. In the predic-
tive examples derived from the ANNmodel, it is observed that dust
emission tends to decrease with reductions in cutting width and
cutting depth. The adoption of the ANN approach offers a strategic
advantage for decision-makers investigating the influence of
various decision variables on dust levels. By relying on the ANN
model, substantial savings in terms of both time and costs associ-
ated with experimental studies can be realized. The study affirms
the efficacy of the ANN approach in providing reliable predictions
and facilitating informed decision-making in the context of dust
emission management during wood machining.

The significance of the current study can be elucidated as
follows: (1) the study provides important insights into how ma-
terial type, cutting width, number of blades, and cutting depth
influence dust emissions in wood machining; (2) the current
model considers different machining variables and predicts in-
termediate values that are not directly derived from the experi-
mental process; (3) the study’s findings enable decision-makers
to optimize their processes without extensive trial and error,
leading to significant time and cost savings; (4) the study serves
as a valuable resource for decision-makers seeking to create safer,
more sustainable, and more efficient machining environments;
(5) the study contributes to the existing body of knowledge on
the relationship between machining parameters and dust emis-
sions; and (6) the study serves as a valuable reference for future
modeling efforts aimed at predicting dust emissions during the
machining of different wood and wood-based materials. Future
research endeavors can consider different influential factors to
expand our knowledge on dust generation and distribution. An
examination of different wood species and their characteristics
could enhance the generalizability of findings. Future studies
could also extend their focus to the environmental impact of dust
emission from wood machining.
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