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Abstract: The study of drugs diffusion through different biological membranes constitutes an es-
sential step in the development of new pharmaceuticals. In this study, the method based on the
monolayer cell culture of CHO-K1 cells has been developed in order to emulate the epithelial cells
barrier in permeability studies by laser interferometry. Laser interferometry was employed for the
experimental analysis of nickel(II) and cobalt(II) complexes with 1-allylimidazole or their chlorides’
diffusion through eukaryotic cell monolayers. The amount (mol) of nickel(II) and cobalt(II) chlorides
transported through the monolayer was greater than that of metals complexed with 1-allylimidazole
by 4.34-fold and 1.45-fold, respectively, after 60 min. Thus, laser interferometry can be used for the
quantitative analysis of the transport of compounds through eukaryotic cell monolayers, and the
resulting parameters can be used to formulate a mathematical description of this process.

Keywords: metal complex; cobalt(II); nickel(II); imidazole; 1-allylimidazole complex; laser interfer-
ometry; diffusion; eukaryotic cell monolayer

1. Introduction

Transport of substances through biological membranes plays a crucial role in many
physiological processes and influences the effectiveness of drug-based therapies. The
mechanisms of molecular transport through membranes have been widely studied on both
theoretical and experimental levels by many researchers [1–7]. Various theoretical models
of molecule transport through membrane channels have been proposed [2,8–13]. These
models take into account both the geometric parameters of the membrane channel [10],
binding sites of transported particles inside the channel [3,7], and various types of channel-
solute interactions [7,8]. The experimental testing of the validity of these models helps to
better understand membrane transport processes. This facilitates the design of synthetic
membranes with increased permeability [3], and the development and optimization of more
complicated processes such as controlling the flux of macromolecules through membrane
proteins [6,14]. Moreover, the optimization of diffusion diffusive transport through the cell
membrane is particularly important for the design of molecules intended for clinical use.
Membrane permeability barriers are among the factors determining drug pharmacokinetics,
and they contribute to the intrinsic resistance of bacteria and eukaryotic cells to antibiotics
and chemotherapeutic drugs, respectively [4]. For example, the limited penetration of
anticancer drugs into tumor tissue depends on the cellular packing density and adhesion
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between cells. In order for a drug to be effective, it must reach all cancer cells at a cytotoxic
concentration. The limited distribution of chemotherapeutic agents is a likely cause of
clinical drug resistance. Therefore, the quantitative description of the transport properties
of the drugs is of crucial importance for medical treatment and allows one to formulate
and test theoretical models that explain this process.

Laser interferometry was previously used by us to test various theoretical models
of diffusion, to study membrane substance transport, to determine membrane transport
parameters under concentration polarization conditions, to analyze anomalous diffusion
(subdiffusion) in gel systems, and to probe hydrodynamic instability [15–18]. After various
modifications, we also employed laser interferometry to test the release and interactions
of macromolecules with biologically active substances, such as bacterial liposaccharide
(LPS) endotoxin with colistin, chitosan and saponin [19–21]. Laser interferometry was also
used to measure bacterial biofilm degradation by bacteriophages [22–24]. This method
allows for a comprehensive analysis of diffusion, including the visualization of diffusion
layer formation. The technique utilizes the interference of two laser beams: one that
passes through the experimental system and a reference beam. Based on changes in the
refractive index in the experimental beam, a temporo-spatial concentration distribution
of the diffusing substance is determined. Concentration field evolution is the basis for
determining multiple parameters characterizing the studied diffusion process, such as
the amount and flow of substances and the diffusion coefficient of the substance. These
parameters are crucial for testing theoretical diffusion descriptions [25].

In this study, we presented the mathematical description of metal complexes’ diffusion
through the eukaryotic cell monolayer on the basis of laser interferometric analysis. The
laser interferometry method was used in such a type of study for the first time. The
interferometric method of concentration measurement does not require sampling and the
assumption that the concentrations of solutions in measuring vessels are homogeneous.
The obtained empirical results depend on the space variable x as well as the time t. The
theoretical model presented by us in this paper is based on the diffusion equation. In the
description of the diffusion process, both the variables x and t appear. The parameters used
in the model ensure a good fit of theoretical functions to empirical data. On the basis of
these parameters, we calculated the monolayer permeability parameters and the diffusion
coefficient of substance.

The transport properties of nickel(II) and cobalt(II) complexes with 1-allylimidazole
(1-allim) and their salts through a monolayer of CHO-K1 eukaryotic cells served as a model
of metal compounds. These compounds were chosen due to their potential for application
as anticancer drugs. The chemical structure of the tested metal complexes is presented in
Figure 1 [26].

2. Materials and Methods
2.1. Metal Complexes

The study included the coordination compounds of Ni(II) and Co(II) with 1-allylimidazole
(1-allim). The 1-allylimidazole complexes (Figure 1) have the molecular formulae [Ni(1-
allim)6](NO3)2 and [Co(1-allim)6](NO3)2. The properties of these complexes were previ-
ously characterized with the use of crystallography and physicochemical analyses (infrated
(IR), far-IR, Ultraviolet-Visible-near-IR (UV-vis-NIR) spectroscopy, magnetic moment, mo-
lar conductivity) [27].
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Figure 1. Chemical structures of the tested compounds.

2.2. Cell Monolayer Construction

The Chinese Hamster Ovary (CHO-K1) cell monolayer was formed on a polyethy-
lene terephthalate (PET) membrane with a porosity of 1 µm (Cell Culture Insert, Becton
Dickinson, NJ, USA). Cells were incubated at 37 ◦C in an atmosphere of 5% carbon dioxide
for 48 h. The cell monolayer was washed in phosphate-buffered saline (PBS; Corning,
New York, NY, USA) and examined in terms of PET membrane coverage by CHO-K1
cells using ImageJ software [28] or Giemsa staining before/after a diffusion analysis by
laser interferometry.

Images of monolayers were obtained using optical microscopy and were converted
into gray-scale digital images (1 denotes black, and 256 denotes white). Using ImageJ
software [28], the degree of PET membrane coverage by cells (confluence) was estimated at
around 95%. The CHO-K1 cells forming a monolayer on the PET membrane were washed
with PBS (Corning) and fixed in 100% methanol (Sigma–Aldrich, St. Louis, MO, USA) for
5 min. Next, the cells were incubated with a 5% solution of Giemsa in Sorensen buffer
(Sigma–Aldrich, St. Louis, MO, USA) for 20 min. Slides were rinsed in water and dried,
and images were captured using an A1R inverted microscope (Nikon, Tokyo, Japan) at a
100×magnification.

2.3. Laser Interferometry

A detailed description of the laser interferometry method has already been presented
in our previous work [19,29]. The measuring system for this study consisted of two
glass cuvettes horizontally separated by a PET membrane and a CHO-K1 cell monolayer
(Figure 2). The lower cuvette contained an aqueous solution of the tested metal complex,
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and the cuvette above the monolayer contained pure distilled water. Metal complexes
diffused from the bottom cuvette to the upper cuvette from an initial concentration of 1 mM.
An atmospheric pressure compensation system was connected to the lower cuvette. The
measurement system was constructed in such a way as to ensure a uniform concentration
in the diffusion layer in the plane parallel to the membrane (i.e., the concentration of
the substance changed only in the vertical plane). Interferograms resulting from the
interference of the two laser beams were determined from the refractive index of the
solute, which in turn depended on the concentration of solution, C(x,t). The interferogram
recording was carried out with a time interval (∆t) of 2 min. The amount of metal complex
N(t) that diffused in time (t) through the monolayer of CHO-K1 cells formed on the PET
membrane into water was calculated by integrating the concentration profile C(x,t) in the
upper cuvettes according to the following equation:

N(t) = S
h∫

0

C(x, t)dx, (1)

where S denotes the surface of the biofilm–water interface, and h is the height of the upper
measurement cuvette. All experiments were carried out at 37 ◦C.

Entropy 2021, 23, x FOR PEER REVIEW 4 of 11 
 

 

USA) for 5 min. Next, the cells were incubated with a 5% solution of Giemsa in Sorensen 
buffer (Sigma–Aldrich, St. Louis, MO, USA) for 20 min. Slides were rinsed in water and 
dried, and images were captured using an A1R inverted microscope (Nikon, Tokyo, 
Japan) at a 100× magnification. 

2.3. Laser Interferometry 
A detailed description of the laser interferometry method has already been presented 

in our previous work [19,29]. The measuring system for this study consisted of two glass 
cuvettes horizontally separated by a PET membrane and a CHO-K1 cell monolayer 
(Figure 2). The lower cuvette contained an aqueous solution of the tested metal complex, 
and the cuvette above the monolayer contained pure distilled water. Metal complexes 
diffused from the bottom cuvette to the upper cuvette from an initial concentration of 1 
mM. An atmospheric pressure compensation system was connected to the lower cuvette. 
The measurement system was constructed in such a way as to ensure a uniform 
concentration in the diffusion layer in the plane parallel to the membrane (i.e., the 
concentration of the substance changed only in the vertical plane). Interferograms 
resulting from the interference of the two laser beams were determined from the refractive 
index of the solute, which in turn depended on the concentration of solution, C(x,t). The 
interferogram recording was carried out with a time interval (Δt) of 2 min. The amount of 
metal complex N(t) that diffused in time (t) through the monolayer of CHO-K1 cells 
formed on the PET membrane into water was calculated by integrating the concentration 
profile C(x,t) in the upper cuvettes according to the following equation: 

ܰሺݐሻ = ܵ න ,ݔሺܥ ௛,ݔሻ݀ݐ
଴  (1)

where S denotes the surface of the biofilm–water interface, and h is the height of the upper 
measurement cuvette. All experiments were carried out at 37 °C. 

 
Figure 2. Scheme showing the laser interferometer and the experimental system used in this work. The barrier consisted 
of a PET membrane with a monolayer of CHO-K1 cells formed for 48 h at 37 °C with 5% CO2. 

Figure 2. Scheme showing the laser interferometer and the experimental system used in this work. The barrier consisted of
a PET membrane with a monolayer of CHO-K1 cells formed for 48 h at 37 ◦C with 5% CO2.

Data were analyzed using the Statistica software package (StatSoft, Tulsa, OK, USA).
All the values obtained by laser interferometry are expressed as the mean from three
independent experiments ± SD. The differences were compared by an ANOVA test.

3. Results
3.1. Diffusion of Metal Complexes Through a Eukaryotic Cell Monolayer
3.1.1. Experiment

Figure 3 shows that nickel(II) and cobalt(II) chlorides diffused better through the
monolayer of CHO-K1 cells than their complexes with 1-allylimidazole (1-allim). The
amount of transported NiCl2 (3.08 × 10−8 mol) was ~4.34 times greater than [Ni(1-
allim)6](NO3)2 (7.09 × 10−9 mol) after 60 min using 1-mL solutions at an initial con-
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centration of 1 mM (p < 0.001). Cobalt(II) chloride was transported ~1.45 times better
than the [Co(1-allim)6](NO3)2 complex (2.51 × 10−8 mol and 1.73 × 10−9 mol, respec-
tively; p = 0.027). The diffusion coefficients of the tested compounds confirmed that
both metal chlorides exhibited better diffusion properties than [Ni(1-allim)6](NO3)2 and
[Co(1-allim)6](NO3)2.
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Figure 3. The amount of [Ni(1-allim)6](NO3)2, [Co(1-allim)6](NO3)2 and metal chlorides transported
through a monolayer of CHO-K1 cells formed on a PET membrane after 48 h at 37 ◦C with 5% CO2.
Symbols represent empirical data, and solid lines represent theoretical functions.

Optical microscopy images of the cell monolayer formed from the polyethylene
terephthalate (PET) membrane (Figure 4A–D) show that the CHO-K1 cells were contracted
after the diffusion measurement of the [Co(1-allim)6](NO3)2 complex when compared with
the nontreated (control) cell monolayer. The same effect was observed for all tested metal
chlorides and their complexes with 1-allylimidazole after 60 min.
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Figure 4. Microscopy images of the CHO-K1 cell monolayer. (A,C) show optical microscopy images
(100× magnification) of the cell monolayer stained by Giemsa before and after the diffusion mea-
surement of the [Co(1-allim)6](NO3)2 complex (60 min), respectively. (B,D) show optical microscopy
images (100× magnification) of the cell monolayer before and after the diffusion measurement of the
[Co(1-allim)6](NO3)2 complex (60 min), respectively.
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3.1.2. Theory

Diffusion in the monolayer system is a particular case of diffusion in a system includ-
ing an obstacle as a thin membrane. The general model of this system is described in details
in [30–32]. This model is based on equations describing a random walk in a system with
discrete time and space variables. Within the model, we determine so-called generating
functions for difference equations describing a particle random walk in a discrete system;
next, we move to continuous variables. Finally, we obtain probability densities (the Green
functions) for finding a particle at point x at time t, and the Green’s functions are used to
derive the boundary conditions at the membrane. Mathematical calculations that involve,
among others, fractional calculus are rather long and too complicated to be presented here
(the fractional time derivative is present in the boundary conditions even in the case of
normal diffusion). Underneath, we present a qualitative description of the model and the
results provided by this model, and the details of the calculation are presented in [30–32].
In this paper, a monolayer and nucleopore membrane system is treated as a thin membrane
(Figure 5).
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We denote region x < −d by A and region x > 0 by B, and d is the thickness of a
thin membrane. The permeability of the monolayer–nucleopore membrane system is
characterized by probabilities σA and σB; σA is a probability of a particle passing across the
thin membrane over time τ from region A to B, and σB is a similar probability for a particle
moving in the opposite direction, and τ is the mean time needed for a particle to pass from
point x = −d to x = 0 in the homogeneous diffusive system in which the membrane has
been removed. Since the system consisting of a monolayer and nucleopore membrane
is asymmetrical we accept that σA 6= σB. We assume that at the initial moment t = 0, all
diffusing particles are in region A and the initial concentration of the particles is C0.

The model presented in [30–32] assumes that the permeability of the membrane does
not change over time. However, in the considered system the permeability of the monolayer
can change over time. Thus, we assume that σA and σB are the functions of time, which
should be found from additional considerations.

We compare the time evolution of the total amount of substance N(t) that has diffused
across the membrane to the region B, obtained experimentally and calculated theoretically
by means of the formula:

N(t) = S
∫ ∞

0
CB(x, t)dx, (2)

where S denotes the area of thin membrane surface in a plane perpendicular to the x axis
and CB(x, t) denotes the concentration of diffusing substance in the region B. In order to
find the theoretical function CB(x, t), we solve the diffusion equation with two boundary
conditions at the membrane. As has been mentioned earlier, the boundary conditions can
be derived on the basis of the stochastic model in a system with a thin membrane [30–32].
These conditions depend on the probabilities of a particle passing across the thin membrane
and the kind of diffusion in the considered system. For example, in the case of subdiffusion
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(this process occurs in many biological processes, such as antibiotics transport in a bacterial
biofilm [17,25]), the mean time that a particle waits to take its next step is infinite, as opposed
to the diffusion process in which this time is finite. This means that the frequencies of
a particle’s attempts to pass across the membrane for these processes are described by
qualitatively different functions; for subdiffusion, this frequency is significantly lower than
for normal diffusion. The conclusion is that the boundary conditions at the membrane
cannot be adopted for another diffusive system without any justification. Below, we show
that the boundary conditions derived in [30–32], and consequently the functions CB(x, t)
and N(t) derived in the long time limit, can be used to describe the diffusion in the system
considered in this paper within the quasi-stationary approximation.

In practice, the derivation of N(t) for the system considered in this paper is analogous
with the derivation of a similar function in the system in which antibiotics diffuse across
the bacterial biofilm [17,25].

When the probabilities σA and σB do not change over time, we have, in a long time
limit [30–32]:

N(t) = C0S

(
η

√
Dt
π
− η2 d

σA

)
(3)

where
η =

2
1 + σB

σA

(4)

D is the diffusion coefficient and η controls the symmetry of the membrane (η = 1
when σA = σB).

Since the monolayer permeability may change over time, we assume that changes of
the permeability coefficients of the monolayer and nucleopore membrane system over time
are relatively slow. This assumption enables us to apply the quasi-stationary approximation.
Within this approximation, we replace the coefficients σA and σB by the time-dependent
functions σA —› σA(t) and σB —› σB(t) in Equations (3) and (4). Using the trial and error
method, we find that the following functions provide the best fit of the theoretical function
to the empirical data in the long time limit:

σA(t) = σ0A(1 + κt), σB(t) = σ0B(1 + κt) (5)

where coefficients σ0A and σ0B are the initial permeability coefficients, and κ controls the
time evolution of the coefficients; we assume that κ is the same for both functions. In
Figure 3, we can see that the theoretical function N(t) coincides well with the empirical
results for t > 25 min.

We note that the above functions cannot be used for extremely long times (much
longer than the duration of the experiment) because the condition for the probabilities
0 ≤ σA, σB ≤ 1 would not be met. Thus, we match the following function:

N(t) = a
√

t− b
1 + κt

, (6)

where

a = C0Sη

√
D
π

(7)

b = C0Sη2 d
4σ0A

(8)

to empirical data for long times, and the matching parameters are a, b and κ. We obtain

• for NiCl2, a = 4.25 × 10−9 mol/
√

min and b = 0,
• for [Ni(1-allim)6](NO3)2, a = 0.97 × 10−9 mol/

√
min and b = 0,

• for CoCl2, a = 5.70 × 10−9 mol/
√

min, b = 3.3 × 10−8 mol and κ = 0.14 1/min,
• for [Co(1-allim)6](NO3)2, a = 2.80× 10−9 mol/

√
min, b = 4.0× 10−8 mol and κ = 0.14 1/min.
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For the first two cases it is not possible to estimate κ since b = 0. In practice, the
expression b = 0 means that the second term on the right side of Equation (5) is negligibly
small compared with the first term in the long time limit. In this case, function (5) depends
on the ration σ0B/σ0A and does not depend on the values of the permeability parameters
σA and σB for t > 0. This indicates that a molecule can pass through the surfaces of the
barrier with certain probabilities, which may be different for both surfaces, but that inside
the barrier the molecule diffuses ‘almost freely’. In other words, the obstacle makes it
difficult for particles when they enter the barrier but not for their transport within the
barrier. When b 6= 0, the influence of the barrier on particle diffusion inside it is certainly
larger than in the previous case.

From Equations (6) and (7), we can calculate some parameters of the system. The
following parameters were used in the experiment: C0 = 1 mol/m3, S = 7 × 10−5 m2 and
d = 1.5 × 10−5 m.

Calculations for Nickel Compounds

For the initial concentration C0 = 1 mol/m3, the diffusion coefficient of NiCl2 is
D = 1.23 × 10−9 m2/s [33]. Substituting the above values of parameters a,b extracted from
the empirical data into Equation (6), we get η = 0.39, which provides σB = 4.14σA for nickel
chloride. Assuming that η is the same for both nickel compounds, from Equation (6) we
get D = 0.07 × 10−9 m2/s for the nickel complex.

Calculations for Cobalt Compounds

For the initial concentration C0 = 1 mol/m3, the diffusion coefficient of CoCl2 is
D = 1.35 × 10−9 m2/s. This coefficient was estimated from the results presented in [34].
Substituting the above values of parameters a, b extracted from the empirical data into
Equations (6) and (7), we get η = 0.51, which provides σB = 2.95σA. Assuming that η is
the same for the cobalt complex, from Equation (6) we get σA = 2.04 × 10−3 for cobalt
chloride and σA = 1.68 × 10−3 for the cobalt complex. From Equation (6), we obtain
D = 0.33 × 10−9 m2/s for the cobalt complex.

In summary, (i) since b = 0 for nickel compounds and b 6= 0 for cobalt compounds,
the barrier is much more permeable for nickel compounds than for cobalt compounds,
and (ii) the monolayer permeability, controlled by σA, is larger for CoCl2 than for [Co(1-
allim)6](NO3)2. Thus, smaller particles of cobalt chloride can more easily pass through the
monolayer than larger cobalt complex particles.

4. Discussion

Over the past few decades, the biological properties of transition metal complexes,
including complexes with imidazole derivatives, have received great interest from re-
searchers [14,35–41]. The imidazole ring is widespread in nature. It is a structural element
of alkaloids, histamine and histidine, all of which possess a biological activity [42]. Metal
complexes with imidazole derivatives have anticancer, anti-inflammatory, antibacterial,
antifungal and antiviral properties [43–49].

The biological activity of metal complexes is generally associated with their ability
to penetrate tissues. Therefore, the laser interferometry method was optimized for the
quantitative analysis of the transport of compounds across a cell monolayer as a model
tissue. The determination of the diffusion parameters of substances in eukaryotic cells
allows for the precise determination of the amount of substance that reaches the target site.
Laser interferometry is an appropriate method for determining diffusion parameters and
could contribute to the generation of mathematical descriptions of this process.

The results obtained in this study revealed that nickel(II) and cobalt(II) chlorides
diffused better through the cell monolayer than metal complexes with 1-allylimidazole.
This observation indicates that metal complexes with imidazole derivatives as a lipophilic
moiety have a worse distribution in the cell monolayer than their chlorides. All compounds
tested herein affected the CHO-K1 cells forming the monolayer. It appears that the extra-



Entropy 2021, 23, 360 9 of 11

cellular environment is hypertonic when compared with the cellular space, and this likely
promotes the efflux of water from the cell via osmosis; hence, cells in the monolayer were
found to contract following treatment.

We have shown that the laser interferometric method is useful for the experimental
study of metal complexes’ diffusion in a system with a cell monolayer. We have also
presented a theoretical model that can be used to determine the diffusion coefficient and
monolayer permeability parameters from experimental data.
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