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Objective: Coronary artery disease (CAD) is a serious global health concern. Current 
diagnostic methods for CAD involve risk to the patient and are costly, so better diagnostic 
tools are needed. We defined four classifiers based on gene expression profiles in peripheral 
blood mononuclear cells and determined their potential for CAD detection.
Methods: We downloaded a CAD-related data set (GSE113079) from the Gene Expression 
Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in peripheral 
blood mononuclear cells between CAD samples and healthy controls. DEGs were analyzed 
for functional enrichment. To create a robust CAD classifier, DEGs were identified by feature 
selection using the principal component analysis. Then, least absolute shrinkage and selec-
tion operator (LASSO) logistic regression, random forest, and support vector machine 
(SVM) models were created. Gene set variation analysis (GSVA) score and gene set enrich-
ment analysis (GSEA) were also conducted. The performance of the models was evaluated in 
terms of the area under receiver operating characteristic curves (AUC).
Results: In the training set, we found 135 up-regulated genes and 104 down-regulated genes 
in CAD patients compared with controls. The DEGs were involved in some pathways 
associated with CAD, such as pathways involving calcium and interleukin-17 signaling. 
Twenty genes were identified as optimal features and used to generate the logistic classifier 
based on LASSO. The AUC for the classifier was 1.00 in the training set and 0.997 in the test 
set. Using the 20 DEGs, SVM and random forest classifiers were also generated and showed 
high diagnostic efficacy, with respective AUCs of 0.997 and 1.00 against the training set. 
A GSVA score was also established using the top 20 significant DEGs, which showed an 
AUC of 0.971 in the training set and 0.989 in the test set. Furthermore, GSEA showed 
autophagy and the proteasome to be major pathways involving the DEGs.
Conclusion: We identified a set of genes specific for CAD whose expression can be 
measured non-invasively. Using these genes, we defined four diagnostic classifiers using 
multiple methods.
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Introduction
Coronary artery disease (CAD) is a complex pathology associated with behavioral 
and environmental factors.1–3 CAD shows high prevalence and is associated with 
a high fatality rate among cardiovascular diseases. The main manifestations of 
CAD are stable or unstable angina pectoris and identifiable or unrecognized 
myocardial infarction.4 The main risk factors for this disease are diabetes, 
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hypertension, smoking, hyperlipidemia, and obesity,5 and 
its most common complications are myocardial infarction, 
heart failure, stroke, and death.6

Coronary angiography has become a standard diagnos-
tic method for CAD that has improved early detection of 
subclinical disease.7 Furthermore, new biological mechan-
isms and biomarkers of CAD have been reported that can 
be identified by histological techniques.8 However, coron-
ary angiography is costly and invasive, and therefore bet-
ter diagnostic methods are needed.9 High-precision 
circulating biomarkers have emerged as a valid alternative 
for the diagnosis of several diseases. Combinations of 
biomarkers have been integrated using various methods 
in order to create diagnostic or prognostic tools in CAD. 
These methods include the least absolute shrinkage and 
selection operator (LASSO),10 random forest (RF) 
classifier,11 support vector machine (SVM),12 and the 
gene set variation analysis (GSVA) score.13

LASSO is a commonly used penalty regression 
method, which can be applied for selection of variables 
in high-dimensional data.10 LASSO performs via 
a continuous shrinking operation, minimizing regression 
coefficients in order to reduce the likelihood of 
overfitting.14 RF is a model that can deal with unbalanced 
sample distribution, generating less biased classifiers,11 but 

it often fails to be robust and is vulnerable to overfitting. 
However, when used as an ensemble classifier, RF builds 
a forest of decision trees, where each tree is based on 
a different subset of the features and observations of the 
data, thereby reducing the variance and increasing robust-
ness. SVM is a supervised learning algorithm that analyzes 
data for patterns15 in order to find a max-margin separator 
hyperplane to classify data.16 It can quantify tumor mar-
kers as well as classify or diagnose diseases.12 GSVA is an 
open source R package that robustly estimates path activ-
ity changes in the sample population in an unsupervised 
way. However, in contrast to the other methods, GSVA 
calculates first an expression statistic with the kernel esti-
mation of the empirical cumulative distribution function 
over the samples, which should help in protecting the 
method against systematic gene specific effects, such as 
probe effects, and thereby increase sensitivity.13

Previous studies used LASSO regression17 to predict 
prognosis of patients with CAD, while another study com-
bined the k-nearest neighbor, RF and SVM into a novel 
heterogeneous ensemble method to diagnose CAD.18 

GSVA, in contrast, has rarely been used for diagnosis or 
prognosis in CAD. Previous work has attempted to 
develop a non-invasive method to diagnose CAD based 
on the degree of vascular stenosis.19 Another CAD 

Figure 1 Flow chart of the present study. PCA, principal component analysis. 
Abbreviations: LASSO, Least absolute shrinkage and selection operator; GSVA, Gene set variation analysis; ROC, Receiver operating characteristic curve.
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diagnostic model was established based on an active pulse 
wave velocity index and an artificial neural network.20 

Despite these advances, better diagnostic methods are 
still needed to detect CAD detection.9

The purpose of the present study was to develop novel 
classifiers based on circulating biomarkers that may serve 
as diagnostic tools for CAD. We conducted 
a bioinformatic analysis of differentially expressed genes 
(DEGs) between CAD patients and healthy controls using 
data from the Gene Expression Omnibus (GEO) database. 
We explored the potential underlying molecular mechan-
isms for those DEGs. Using different techniques we estab-
lished four classifiers for diagnosing CAD, and we 
evaluated their diagnostic utility.

Materials and Methods
Data Preprocessing
Gene expression profiles in the peripheral blood mononuc-
lear cells were downloaded from the labeled data set 
GSE113079,21 based on the GPL20115 platform, in the 
Gene Expression Omnibus (GEO, https://www.ncbi.nlm. 
nih.gov/geo/) database.22 The voom function23 in the limma 
package24 in R was applied to normalize gene expression 
profiles. GSE113079 includes 93 CAD samples and 48 
healthy control samples. All 141 samples were randomly 
assigned to a training set (70%, 66 CAD samples and 34 
healthy samples) or a test set (30%, 27 CAD samples and 14 
health samples). If a gene was detected using multiple 
probes, the average value across all those probes was con-
sidered the expression level of the gene. The flow chart of the 
study is shown in Figure 1.

Differential Expression Analysis
The limma package23 in R was used to identify DEGs 
between CAD and healthy samples in the training set. 
The genes with an expression difference of | log2 (fold 
change, FC) | >1 and P < 0.01 were considered DEGs. The 
| log2 FC | >1 was the filter standard for DEGs and P < 
0.05 was considered to be statistically significant.25

Functional Enrichment Analysis and Gene 
Set Enrichment Analysis (GSEA)
To further explore the biological processes and pathways 
involving DEGs, we performed Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analyses using the clusterProfiler package in 

R.26 Pathways associated with P < 0.01 were considered 
significantly enriched. In addition, gene expression profiles 
of all training set genes were used for GSEA using GSEA 
software.27 The reference gene sets were immunologic sig-
natures (c7.all.v7.0.symbols.gmt) and canonical KEGG path-
ways (c2.cp.kegg.v7.0.symbols.gmt), both from the MsigDB 
V7.0 database.28 Nominal P < 0.05 was considered signifi-
cant. Moreover, biological processes were analyzed using the 
ClueGO plug-in29 in Cytoscape software.30

Feature Selection Using the LASSO 
Method and Principal Component 
Analysis (PCA)
Using the LASSO method, we selected the optimal features 
from DEGs to construct a logistic regression model. 
LASSO logistic regression was performed using the glmnet 
package (CRAN.R-project.org/package=glmnet).31 The 
nflods parameter for cross-validation was set to 10. The 
most concise LASSO model was obtained, defined as the 
one using the fewest characteristic genes to predict the 
grouping of samples well. The results of LASSO regression 
were output using the plotimhistory function. Five indexes 
were calculated to evaluate the performance of the models: 
sensitivity, specificity, positive predictive value, negative 
predictive value, and accuracy.

A subset of relevant features were selected from the 
original feature set.32 After feature selection, PCA was 
performed using the expression profiles of the optimal 
features. Samples were plotted in two-dimensional plots 
across the first two principal components. In addition, to 
reveal the biological functions of optimal features in CAD, 
we used the median expression value of each optimal 
feature as a threshold, and we divided the CAD samples 
into high- and low-expression groups to perform GSEA. 
A P value < 0.05 adjusted by the Benjamini & Hochberg 
method33 was defined as the significance threshold. GSEA 
was performed using the clusterProfiler package,26 and 
results were visualized using the enrichplot package 
(https://github.com/YuLab-SMU/enrichplot).

CAD Diagnostic Model Based on the 
SVM Method
An SVM model was constructed based on the feature 
genes from the LASSO model. In the tune function in 
the e1071 package in R,34 given a labeled training data 
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Figure 2 Differential gene expression analysis and functional enrichment analysis. (A) Volcano map. Red indicates genes that were up-regulated in coronary artery disease 
(CAD) patients compared to healthy samples, green indicates genes that were down-regulated, and gray indicates genes with similar expression between both groups. (B) 
Heat map of differentially expressed genes (DEGs). The depth of color reflects the level of differential expression. (C) The biological processes where DEGs may be involved 
according to enrichment analysis. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in which DEGs may be involved. (E) Biological processes where DEGs 
may be involved according to Clue GO analysis. (F) KEGG pathways enriched in CAD samples.
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set

X1;Y1
� �

; X2;Y2
� �

. . . Xn;Ynð Þ;Xn 2 Rn
;Yn 2 ð� 1; 1Þ;

n ¼ 1; 2 . . . :N;

where Xn is a feature vector representation and Yn is the 
class label (negative or positive) of a training compound n, 
the optimal hyperplane can be defined as:

WXiTþb � þ1 if Yi ¼ 1 

WXiTþb � þ1 if Yi ¼ � 1 

The purpose of the SVM model is to discover W and b, 
from which the separation hyperplane can be determined 
and optimal genes obtained.35 In addition, we built the 
SVM by filtering for the optimal gamma and performing 
cross-validation 10 times.

Feature Selection Using Boruta and RF 
Classifier Construction
Feature selection was performed using the Boruta package 
(http://www.jstatsoft.org/article/view) in R. In order to 
eliminate irrelevant variables, feature genes were searched 
from top to bottom. The algorithm performed 99 iterations 
to define the significance of variables in the data set: in the 
end, it determined whether characteristic genes were 
rejected, important or provisional.36 We used the plotim-
history function in the Boruta package to show the impor-
tance of candidate genes. Then, the expression profiles of 
characteristic genes were extracted, and the RF model was 
constructed using the randomForest function in R.

Implementation of GSVA
We extracted DEGs and defined the top 20 genes with the 
largest π - value as central genes, ie for which the absolute 
value of log2FC*-log10 (P)).37 Then we calculated the GSVA 

Figure 3 Least absolute shrinkage and selection operator (LASSO) model and principal component analysis (PCA). (A) Ten-times cross-validation of parameter selection in 
the LASSO model. (B) PCA after LASSO variable reduction. (C) Receiver operating characteristic (ROC) curve of the training set. (D) ROC of the test set. 
Abbreviations: AUC, area under the ROC curve; var., variance.
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score for these genes in individual samples using the GSVA 
package13 in R.

Receiver Operating Characteristic (ROC) 
Curve Analysis
Dynamically adjusting the cut-off points to be executed, 
each cut-off point corresponds to a False Positive Rate and 

True Positive Rate, and the corresponding position of each 
cut-off point is drawn on the ROC diagram. The ability of 
each classifier model to diagnose CAD was evaluated in 
terms of the area under the receiver operating character-
istic curve (AUC). Feature genes obtained from the 
LASSO method and GSVA score were extracted, and 
AUCs were calculated using the pROC package.38

Results
Biological Processes and Pathways of 
DEGs in CAD
To explore alterations in gene expression in CAD 
patients, we performed a differential gene expression 
analysis (Figure 2A), identifying 19,877 DEGs in the 
training set that were up or down-regulated in CAD 
(Figure 2B). Based on enrichment analysis, the DEGs 
were involved mainly in the positive regulation of inter-
leukin (IL)-2 biosynthesis, positive regulation of vascu-
lar endothelial growth factor production, 3ʹ-UTR- 
mediated mRNA stabilization, polyadenylation- 
dependent RNA catabolism and cell-related biological 
processes (Figure 2C). Additionally, these genes were 
involved in tumor necrosis factor (TNF) and IL-17 sig-
naling, interactions of viral proteins with cytokine and 
cytokine receptors, and nuclear factor (NF)-kappa 
B signaling (Figure 2D). ClueGO analysis also sug-
gested the involvement of these genes in TNF and IL- 
17 signaling pathways, wound healing during the 
inflammatory response and replacement of connective 

Table 1 The 20 Feature Genes Selected by Least Absolute 
Shrinkage and Selection Operator (LASSO) Method

Feature Gene Coefficient

MTRNR2L9 0.001973493

IL1A 0.045115135

HOPX 0.41611678
SH2D2A 0.094835346

XLOC_001392 −0.001822156

PAX8 −0.59780644
XLOC_010247 −0.516403532

LGR6 0.097081831
DLG3 0.099024616

PIK3R1 0.006243573

XLOC_009416 0.482317217
DDX23 0.044157509

DUX4 −0.94458075

PPT2 0.203846629
THOC4 0.019290091

NEURL1B −1.053835989

KCNK9 −1.060114652
KRTAP6.1 −0.56392575

SIK1 0.225232958

GNG2 1.565124099

Figure 4 Support vector machine (SVM) model. (A) Receiver operating characteristic (ROC) curve of the training set. (B) ROC of the test set. 
Abbreviation: AUC, area under the ROC curve.
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tissue during wound healing (Figure 2E). GSEA results 
showed that CAD-associated DEGs were involved in 
calcium signaling, chemokine signaling, dilated cardio-
myopathy, interactions between neuroactive ligands and 
receptors, vascular smooth muscle contraction, and 
interactions between cytokines and cytokine receptors 
(Figure 2F).

Feature Selection Using LASSO and PCA
A total of 20 DEGs were identified as the optimal genes 
(Figure 3A and Table 1). The results of PCA following 
feature selection using LASSO showed that the expres-
sion patterns of the 20 genes easily distinguished CAD 
from healthy samples (Figure 3B). The samples of the 

training set and the test set were used to verify the 
robustness of the model: the AUC was 1.00 in the 
training set (Figure 3C) and 0.997 in the test set 
(Figure 3D).

SVM Classifier
The 20 optimal feature genes obtained from the LASSO 
model were 10-fold cross-validated in order to construct 
the SVM model. A crucial characteristic of the SVM 
model is that it can significantly reduce the number of 
false positives.39 The samples in the training and test sets 
were used to verify the model performance: the AUC was 
1.00 in the training set (Figure 4A) and 0.997 in the test set 
(Figure 4B).

Figure 5 Evolution of the Z-score during Boruta operation. (A) The Boruta function was used to further select features in the 20 differentially expressed genes. (B) 
Receiver operating characteristic (ROC) curve of the training set. (C) ROC of the test set. 
Abbreviation: AUC, area under the ROC curve.

International Journal of General Medicine 2021:14                                                                             https://doi.org/10.2147/IJGM.S329005                                                                                                                                                                                                                       

DovePress                                                                                                                       
5657

Dovepress                                                                                                                                                               Liu et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Random Forest Classifier
The 20 feature genes selected by LASSO model were 
further used to perform feature selection (Figure 5A). 
Nineteen of these were identified as important genes: 
IL1A, HOPX, SH2D2A, XLOC_001392, PAX8, 
XLOC_010247, LGR6, DLG3, PIK3R1, XLOC_009416, 
DDX23, DUX4, PPT2, THOC4, NEURL1B, KCNK9, 
KRTAP6-1, SIK1, GNG2 and provisionally MTRNR2L9. 
The diagnostic performance of the model was evaluated: 
the AUC was 1.00 for both the training set (Figure 5B) and 
test set (Figure 5C).

Construction of GSVA Score Using DEGs
Among the DEGs in the training set, the top 20 significant 
DEGs (ranked by π value) were KIF17, SHANK1, OPN4, 
BIRC7, TRPM5, NUPR1, OR4C3, C16orf73, 

XLOC_12_013427, XLOC_001485, CSNK1A1, 
NMNAT2, FAM154A, GCLM, XLOC_001392, TM4SF5, 
AKAP5, ARHGEF33, DUX4, and FTMT. These genes were 
considered as the CAD-specific gene set. The CAD-specific 
gene set variation score for each individual in the dataset 
was calculated using the GSVA package. The AUC of the 
GSVA score was 0.971 for the training set (Figure 6A) and 
0.989 for the test set (Figure 6B).

Four diagnostic classifiers for CAD were defined based 
on GEO data and bioinformatics analysis. All four diag-
nostic classifiers showed robust performance (Table 2).

Identification of Signaling Pathways
In order to reveal the biological pathways where these 20 
genes may be involved, GSEA was performed (Figures 7 and 
8). The genes were involved mainly in biological pathways 

Figure 6 Gene set variation analysis (GSVA) score model. (A) Receiver operating characteristic (ROC) curve of the training set. (B) ROC of the test set. 
Abbreviation: AUC, area under the ROC curve.

Table 2 Performance of the Four Classifiers for Diagnosing CAD

Classifier Dataset Se S p PPV NPV Accuracy AUC

LASSO Training set 1.00 1.00 1.00 1.00 1.00 1.00
Test set 1.00 1.00 0.960 1.00 0.980 0.997

SVM Training set 1.00 1.00 1.00 1.00 1.00 0.997
Test set 0.960 0.930 1.00 0.930 0.980 0.997

Random forest Training set 1.00 1.00 1.00 1.00 1.00 1.00
Test set 0.980 0.970 1.00 0.97 0.990 1.00

GSVA Training set – – – – – 0.971

Test set – – – – – 0.989

Abbreviations: AUC, area under the receiver operating curve; NPV, negative predictive value; PPV, positive predictive value; Se, sensitivity; Sp, specificity.
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Figure 7 Gene set expression analysis (GSEA) of optimal genes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the 10 differentially 
expressed genes.
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Figure 8 Gene set expression analysis (GSEA) of optimal genes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the 10 differentially 
expressed genes.
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related to immune, metabolic, and autophagy processes. In 
particular, the four genes DDX23, DLG3, GNG2, and 
THOC4 were involved in autophagy-related pathways.

Discussion
CAD is one of the most common causes of death in the 
world, and its early diagnosis is essential to avoid compli-
cations and improve prognosis.40 Current CAD diagnostic 
methods present several limitations that can be overcome 
by the use of adequate combinations of circulating bio-
markers. In this study, we performed functional enrich-
ment analysis and GSEA in order to develop four 
diagnostic models for CAD DEGs, whose diagnostic 
potential we assessed in terms of AUCs.

GSEA of the gene set revealed a total of six pathways, 
but only two pathways were common among intersection: 
calcium signaling pathway and IL-17 between neuroactive 
ligands and receptors. Substantial clinical evidence has 
shown that calcium ion plays a crucial role in tumor 
occurrence, angiogenesis, development, and metastasis 
through homeostasis.41 The “neuroactive ligand receptor 
interaction signal pathway” has shown a cardioprotective 
effect.42

Previous studies showed that LASSO regression can 
predict the prognosis of patients with CAD. RF and SVM 
have been shown to help diagnose CAD in early stages.18 

Nevertheless, GSVA shows higher mean and median con-
cordance than the other methods against both training and 
testing data sets involving leukemia and ovarian carci-
noma datasets.13 However, GSVA has rarely been applied 
to CAD. All four models that we assessed in this study 
have potential for diagnosing many diseases.

In our study, LASSO, SVM, and RF classifiers showed 
high diagnostic accuracy against both the training and test 
sets when the feature selection algorithm was used to 
select the 20 DEGs. The first 20 DEGs with the largest π 
value were extracted for GSVA scoring, which also per-
formed well against both the training and test sets. The 
four classifiers were robust and therefore have good poten-
tial for future research on CAD diagnosis.

Several feature genes were extracted from the LASSO 
model: IL1A, HOPX, SH2D2A, XLOC_001392, PAX8, 
XLOC_010247, LGR6, DLG3, PIK3R1, XLOC_009416, 
DDX23, DUX4, PPT2, THOC4, NEURL1B, KCNK9, 
KRTAP6-1, SIK1, GNG2 and MTRNR2L9. Several of 
these genes have previously been linked to CAD. During 
the progression of CAD, there is a significant up regulation 
of IL-1A, which suggests the potential of this interleukin 

as a biomarker and treatment targets.43 Differential methy-
lation of PIK3R1 and its expression have been associated 
with CAD pathogenesis.44 A single-nucleotide polymorph-
ism in KCNK9 may be associated with increased risk of 
premature CAD and its severity.45 Other feature genes that 
we identified have not previously been linked to CAD. 
Therefore, further work needs to explore what genes may 
contribute to CAD and therefore serve as diagnostic bio-
markers or therapeutic targets.

In our study, the models performed quite well in the 
training set, suggesting the possibility of overfitting. 
However, the models also showed good performance in the 
test set, confirming their robustness. Additionally, the 
LASSO and SVM models were cross-validated to reduce 
risk of overfitting. The RF model is not vulnerable to over-
fitting. Thus, we consider the risk of overfitting to be negli-
gible. The main limitations of our study are that it is based 
entirely on bioinformatics analysis and that the sample is 
small. Given that dataset size and presence of noise can affect 
model performance,46 our results should be verified and 
extended with larger samples and in experimental studies.

Conclusions
Our study proposes four diagnostic classifiers for CAD based 
on GEO data and bioinformatics analysis. The performance 
of the four diagnostic classifiers was robust, so they merit 
further investigation for non-invasive diagnosis of CAD.
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