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Abstract

We study how the synaptic connections in a pair of excitable electronic neurons affect the coherence of their spike trains
when the neurons are submitted to noise from independent sources. The coupling is provided by electronic circuits which
mimic the dynamics of chemical AMPA synapses. In particular, we show that increasing the strength of an unidirectional
synapse leads to a decrease of coherence in the post-synaptic neuron. More interestingly, we show that the decrease of
coherence can be reverted if we add a synapse of sufficient strength in the reverse direction. Synaptic symmetry plays an
important role in this process and, under the right choice of parameters, increases the network coherence beyond the value
achieved at the resonance due to noise alone in uncoupled neurons. We also show that synapses with a longer time scale
sharpen the dependency of the coherence on the synaptic symmetry. The results were reproduced by numerical
simulations of a pair of synaptically coupled FitzHugh-Nagumo models.
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Introduction

Neurons are highly nonlinear dynamical systems which are

typically connected to tens of thousands of other neurons, the

whole system being subjected to fluctuations whose stochasticity

cannot be dismissed. This interplay between nonlinearity, high

dimensionality and noise is what renders the brain a difficult and

interesting system to study [1,2]. More generally, the last decades

witnessed a surge in theoretical studies of collective phenomena of

interacting nonlinear units. Since the seminal work of Kuramoto

[3], for example, several aspects of synchronization have been

addressed [4]. With the emergence of complex networks becoming

a research topic in itself [5], the effects of topology on

synchronization have been thoroughly investigated (see e.g. [6–

8] for recent examples, or [9] for a review). Recently, even the

notion of networks of networks have emerged in the context of

climate studies [10].

Even single neurons, however, can reveal surprises. In 1997, for

instance, Pikovsky and Kurths unveiled the phenomenon of

coherence resonance (CR), whereby an excitable system driven by

white noise produces a spike train whose regularity (or coherence)

attains a maximum at some finite value of the noise intensity [11].

In the low-noise regime, the spike train approaches a Poissonian

incoherent behavior with small firing rate, whereas in the high-

noise regime incoherence coexists with a large firing rate. At the

resonance, the spike train looks almost periodic, despite the fact

that the system is in an excitable regime, not tonic.

The collective effects of coupling on CR were subsequently

investigated. It was shown that global coupling, either by square

pulses [12] or via electrical synapses (gap junctions) [13], can lead

to network synchronization with strong coherence. It was also

shown that a network of excitable elements can exhibit system size

CR, where increasing the number of elements in system leads, at

first, to an increase in global coherence, while very large networks

have reduced global coherence [13,14]. In addition, chemical

synapses were shown to be better at increasing global coherence

than gap junctions, even when the analyzed network contained

only two neurons [14]. This highlights the importance of the

characteristic times introduced by the chemical coupling in the

post-synaptic response.

Our aim in this contribution is twofold. First and foremost, we

depart from previous studies on CR in networks of model neurons

in that all of them have focussed on the effects of some coupling

among the units which was uniform across the network: Wang et al.

have employed the same uniform coupling intensity among all

pairs of Hodgkin-Huxley neurons [12]; Toral and Mirasso had a

single variable to parameterize the gap junction conductance

among their FitzHugh-Nagumo elements [13]; and Balenzuela

and Garca-Ojalvo simulated Morris-Lecar systems with chemical

and electrical synapses: in either case, the same coupling intensity

that connected neuron i to neuron j was also applied from j to i. In

other words, previous analyses of collective effects have dramat-

ically reduced the dimensionality of coupling space by focussing on

the single-axis projection of uniform coupling. This is a convenient

choice to render parameter space scanning feasible, but not very

realistic. In nature, mutually connected neurons most probably are

not symmetrically coupled. Here we set forth to investigate what

happens to the coherence of spike trains when the coupling among

the units is not necessarily uniform. Specifically, we fully explore

the space of coupling intensities by focussing on the analysis of the

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e82051



simplest network, namely, a pair of neurons. We will show that: 1)

synaptic asymmetry can deteriorate the coherence of a pair of

neurons that were previously uncoupled; 2) synaptic symmetry

leads the system to a more coherent state, compared with the

uncoupled case; 3) the effects of synaptic symmetry on the system

coherence is strongly dependent on the characterstic time scale of

the synapses.

Second, we go beyond numerical simulations by employing

type-II-excitable [15] electronic neurons which are connected via

electronic circuits that mimic chemical synapses (see Materials and

Methods). These electronic neurons are set at the edge of their

Hopf bifurcation, as previously described [16]. The use of such

electronic circuits gives our results an additional degree of

robustness due to the variability of the electronic components

and influence of external effects (such as thermal noise), all of

which contribute to a more biologic-like scenario of noise and

heterogeneities. Finally, we briefly discuss the potential applica-

tions of our results beyond neuroscience, in other experimental

setups where CR has been observed.

Materials and Methods

Electronic neurons and electronic synapses
Previously, we have introduced a FitzHugh-Nagumo-like

electronic circuit which models neurons with type-II excitability,

operating in the ms time scale and receiving a noisy input with

controllable intensity [16]. The circuit diagrams for both the

electronic neuron and the noise generator are shown in Fig. 1A

and Fig. 1B respectively. The equations of motion that model the

behavior of the electronic neuron can be readily obtained from

Kirchoff’s law and a simple model for the dynamics of the

operational amplifier [16]:

dVout

dt
~Ssr sign Vb{Voutz(Va{Vb)H aVout{V{ð Þ½ � , ð1aÞ

dV{

dt
~

1

R3C
bVoutzcVin{V{½ � , ð1bÞ

where H is the Heaviside function, Va and Vb are the operational

amplifier supply voltages and a = R1/(R1 + R2), b = R4/(R4 + R5)

and c = R5/(R4 + R5) (see Fig. 1A). The time scale for the

dynamical variable Vout is controlled by the slew rate Ssr of the

operational amplifier (Fig. 1A), with a typical value Ssr~20V=ms.

The characteristic time scale 1=(R3C) controls the dynamical

variable V2 and is set to yield Vout as the fast variable and V2 as the

slow one. The input variable Vin receives the sum of a constant DC

signal VDC, a noisy signal Vnoise provided by the noise generator

(independently for each electronic neuron) and the synaptic input

gVC (see details below) which couples the two electronic neurons:

Vin~VDCzVnoisezgVC : ð2Þ

The phase space of an uncoupled neuron (i.e. for Eqs. 1a and 1b

with g = 0 in Eq. 2) is shown in Fig. 1C. The nullclines _VVout~0

and _VV{~0 resemble those of the FitzHugh-Nagumo model (see

below) and the single fixed point can have its stability changed via

a Hopf bifurcation (controlled by the VDC) which generates a limit

cycle and puts the system in a tonic regime. The membrane

potential undergoing a spike (like the one showed in Fig. 2A, for

instance), is obtained through a weighted subtraction of both

dynamic variables, V~1:5V{{0:67Vout. In the actual electronic

neuron circuit this is achieved with the use of an analog subtractor

[16,17].

When set near its Hopf bifurcation, the electronic neuron is

excitable, and its noise-induced spike train can be described

approximately by the first two moments of the inter-spike interval

(ISI) distribution P(tp) [11]. The incoherence of the spike train is

characterized by the parameter Rp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
St2

pT{StpT2
p

StpT
and attains a

minimum as a function of the noise intensity, which is controlled

by the resistance Rnoise (Fig. 1B). Further details about the

electronic neuron circuit, its model and the noise generator can be

found in [16].

In order to connect two such electronic neurons, we have

employed the electronic synapse shown in Fig. 1D. Due to the

diode at its input, it is activated whenever the output Vpre of the

pre-synaptic neuron becomes positive (Vz
pre), which happens only

during a spike [16]. Applying Kirchoff’s law to the circuit, one

obtains the dynamics for the voltage Vc at the capacitor:

dVc

dt
~

1

t
V?(t){Vc½ � , ð3Þ

where the characteristic time is t~
RaRbC

RazRb
and the asymptotic

value is V?(t)~
Rb

RazRb

� �
Vz

pre(t). The electronic analog Vs of the

excitatory post-synaptic potential (EPSP) is obtained by multiply-

ing Vc by a controllable gain with a standard amplifier [17] which

effectively controls the strength of the coupling between the two

electronic neurons:

Vs~gVc : ð4Þ

Here we focus on excitatory synapses (gw0), but an inhibitory

synapse (i.e. with gv0) can easily be mimicked with an inverter

amplifier. First-order kinetics such as that of Eq. 3 is considered a

reasonable approximation for the dynamics of some classes of

synapses (e.g. based on AMPA or GABA receptors) [2].

As shown in Fig. 2, this setup allows us to control several

interesting features of the electronic EPSP: Ra controls the rise

time of Vs (Fig. 2A). Both Ra and Rb have influence on the decay

time of Vs, as well as on its maximal value S (Fig. 2B), which can

also be independently controlled by the gain g (Fig. 2C).

With a neuron in its excitable regime, we can control its

spontaneous firing rate by adjusting the root mean square (rms)

Vrms of the zero-mean noise voltage Vnoise that stimulates it (i.e.

Vrms:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SV2

noiseT
q

). Figure 2D shows a time series of a pre-synaptic

neuron (labeled 1) with noise intensity Vpre
rms^1:2(1)V and the

corresponding EPSPs it generates whenever it spikes. A post-

synaptic neuron (labeled 2), also in its excitable regime, receives

these EPSPs as well as noise, but with lower intensity

Vpost
rms ^1:0(1)V (noise sources in different neurons are indepen-

dent). Driven by this lower-intensity noise alone, the post-synaptic

neuron is extremely unlikely to fire, which it eventually does upon

receiving an EPSP with peak voltage S12~1:3V (see Figs. 2D and

E). In Fig. 2F we show that the post-synaptic spike probability

increases monotonically with the synaptic amplitude S, with a

sensitivity threshold that decreases with increasing noise intensity

Vpost
rms .

In what follows, experimental results were obtained with

electronic neurons whose parameters were chosen to be as similar

Synaptic Symmetry Increases Coherence
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as possible (within the ,5% tolerance of the electronic compo-

nents). Where not shown, error bars are smaller than symbol sizes

and uncertainties in experimental values are in the range of 1%.

The noise intensity will be denoted by the resistance Rnoise

controlling the gain of the noise amplifier, as the voltage rms

increases linearly with Rnoise [16]. Experimentally, the peak value

(amplitude) S of the EPSP VS (see Fig. 2B) is easier to measure

than the gain parameter g, and will therefore be used as a measure

of the synaptic strength, with Sij denoting the coupling from

neuron i to neuron j (with (i,j)[f(1,2),(2,1)g, in the present case).

Computer simulations
Numerical simulations using the FitzHugh-Nagumo model for

neuronal excitability were made to confront the experimental

results. This model was chosen due to its simplicity and close

similarity with our model for the electronic neuron dynamics (see

Eqs. 1 and 2):

e
dx

dt
~x{

x3

3
{y , ð5aÞ

dy

dt
~xzfzDj(t)zgvc , ð5bÞ

where e~0:001 is set to reproduce the ratio of the time scales

governing the variables in Eqs. 1 and j is an assumed delta-

correlated Gaussian noise with zero mean whose intensity is

controlled by the parameter D. Similarly to Eqs. 1 and 2, the

strength of the synaptic coupling between the two model neurons

is controlled by the gain constant g. The parameter f~{1:05
ensures that each FitzHugh-Nagumo model is in a excitable

regime but very close to its Hopf bifurcation [11]. Coupling

between the two FitzHugh-Nagumo systems is achieved using the

model for the electronic synapse, as previously described in Eq. 3:

dvc

dt
~

1

t
0:1 H x(t)ð Þ x(t){vc½ � , ð6Þ

where again vc integrates pre-synaptic activity x only when it is

positive. We will employ the gain gij as a measure of the coupling

strength from model neuron i to model neuron j. The equations

were integrated using Euler-Maruyama’s method with a time step

Dt~0:005.

Results and Discussion

Coherence deteriorates with an incoming synapse, but is
restored with an outgoing synapse

To investigate the effects of symmetry in the synaptic coupling

on the coherence of spike trains, we started by the asymmetrical

extreme of connecting two neurons unidirectionally. As shown in

Fig. 3A, the incoherence R1
p of the pre-synaptic neuron 1 exhibits a

minimum as a function of the noise intensity, as is typical of CR

[11,16]. Due to the synapse from neuron 1 to neuron 2 (with

synaptic amplitude S12~1:0V), the spike trains of neuron 2 are

less coherent than those of neuron 1 (Fig. 3A). This could be

expected, since neuron 2 is receiving noise-induced spikes from

neuron 1 in addition to its own (independent) noise source. In this

Figure 1. Electronic circuits. (A) Excitable electronic neuron circuit. Va~{Vb~12:0V are the supply voltages, Vout and V{ are the dynamic
variables and Vin is an input voltage. VDC~{7:30(2)V. (B) Noise generator circuit. The noise intensity is controlled by the resistance Rnoise. (C) Phase

space diagram for the system described by Eqs. 1. The nullclines _VVout~0 (black solid line) and _VV{~0 (black dashed line) intersect at the stable fixed
point. Due to the noise provided by the noise generator at the input Vin , the system is forced out of the rest state, often having to perform a long
excursion in the phase space, producing a spike (red line). (D) Circuit that mimics the behavior of a chemical synapse. Vpre is the pre-synaptic input,
while Vz

pre takes into account only positive values of Vpre . The resistances Ra , Rb and the capacitor C~10 nF control the time scale t of the synapse

(see text for details). The equivalent of the synaptic conductance g can be set by a standard amplifier, which yields the post-synaptic potential
Vs~gVC (see text for details).
doi:10.1371/journal.pone.0082051.g001
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simple scenario, the behavior of the pre-synaptic neuron is, as

expected, unaffected by its outgoing synapse.

Keeping the synapse from neuron 1 to neuron 2, we added

another synapse in the opposite direction, with the same synaptic

amplitude (S21~1:0V). This reverted the effect of the single

synapse, causing neuron 2 to reattain a minimum in the R2
p vs

Rnoise curve, as shown in Fig. 3B. This is perhaps counterintuitive,

since one might expect that, by synaptically coupling the less

coherent neuron-2 spike train with neuron 1, R1
p should increase.

What happens, however, is that not only the coherence of neuron

1 is weakly affected, but also neuron 2 recovers its coherence.

More importantly, it does so by means of an outgoing synapse.

We explored how the above phenomenon unfolds as we

gradually change the synaptic strengths. We started with initially

uncoupled electronic neurons (S12~S21~0V) and noise intensity

near its resonance value (Rnoise~10kV). This choice of noise

intensity was made in order to maximize the variation of the

incoherence parameter Rp as the coupling is varied (see Fig. 3A

and Fig. 3B). Increasing only the synaptic strength S12,

incoherence R2
p in the post-synaptic neuron increased monoton-

ically, while R1
p remained essentially unchanged (Fig. 3C). With

S12~1:4V fixed, we then increased S21, which led to a rapid

increase in the coherence of neuron 2. Neuron 1, on its turn,

showed a small decrease of incoherence (Fig. 3D), in a

phenomenon similar to what has been reported in numerical

simulations of symmetrically coupled neurons [14].

Coherence depends weakly on synaptic symmetry for
fast synapses

The above results suggest that symmetry between the synaptic

strengths S12 and S21 plays an important role in the spike train

coherence of both neurons. To perform a thorough investigation

of this phenomenon, we looked into the dependency of both R1
p

and R2
p on S12 and S21 in a large region of the parameter space. In

Fig. 4A we show the EPSP for both synapses with different

synaptic strengths and the corresponding spike times on both

neurons when the synaptic time scale is t~0:04ms (in what

follows, Ra~5kV is kept fixed and t is controlled only by the

resistance Rb). The dependency of the incoherence parameter R2
p

on the synaptic strengths is shown in Fig. 4B (of which Figs. 3C

and 3D are cross-sections). The firing rate of neuron 2 was also

measured as a function of the synaptic strengths and is shown on

Fig. 4C. Note that in this case an increase in the excitatory synapse

(with strength S21) from neuron 2 induces a decrease in its own

firing rate, which leads to an increase in the spike train coherence.

Figure 2. Output Vs of the electronic synapse when subjected to a pre-synaptic spike. (A) Black line corresponds to the pre-synaptic spike
(scale on the right). The rise time of Vs is governed by Ra (Rb~10kV, Rg~2kV), while (B) changes in both Ra and Rb influence the decay time of Vs

(when Vz
pre(t)~0V; Ra~5kV, Rg~2kV). (C) The gain g (see text for details and Fig. 1) is proportional to the amplifier resistance Rg , which affects

only the maximum amplitude S of VS (Ra~5kV, Rb~20kV). (D) Spike train of a pre-synaptic neuron excited by noise (Vpre
rms^1:2(1)V) and the

resulting VS with S12^1:3V (red). (E) Spike train of a post-synaptic neuron (blue) excited by VS and a lower noise intensity (Vpost
rms ^1:0(1)V). (F) Post-

synaptic spike probability as a function of S for two values of Vpost
rms . In both cases, the pre-synaptic neuron is subjected to V pre

rms^1:2(1)V.
doi:10.1371/journal.pone.0082051.g002
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The parameters R1
p and F1 for neuron 1 behave in the same way if

the indexes 1 and 2 are exchanged.

The total effect of the synaptic coupling on the system can be

measured if we define the mean incoherence parameter

SRpT~(R1
pzR2

p)=2. We show its dependence on S12 and S21 in

Fig. 4D. This graph suggests that the incoherence parameter can

be described as a function of symmetry and asymmetry parameters

defined as s~S12zS21 and a~S12{S21 respectively. The s and a

axes are also shown in Fig. 4D. Although for large values of jaj an

increase in SRpT is observed, there is a large flat region in which

no significant change in coherence is observed. The larger the

symmetry s, the larger the flat region along the a axis (Fig. 4E). For

fixed asymmetry a, increasing s causes an increase in the system

coherence, as shown Figure 4F.

Coherence depends strongly on synaptic symmetry for
slow synapses

The flat region in Fig. 4D might suggest that synaptic symmetry

is not so relevant for coherence, after all. This scenario changes

significantly, however, when the synaptic time scale increases.

Figure 5 shows similar results to those of Fig. 4, but with

t^0:048ms (Rb~100kV). This 20% increase in the value of the

synaptic time, as compared with the previous value, leads to a

significant qualitative change in the EPSPs, as shown in Fig. 5A.

For these slower synapses, R2
p now displays a narrow valley of

local minima as a function of S12 and R21 (Fig. 5B). If one revisits

the situation in which S12=0V and S21 is increased from zero,

once more an increase in coherence is observed in neuron 2 owing

to an outgoing synapse (Fig. 5B). Differently from the scenario of

the fast synapses (Figs. 4B and 4C), however, now the increase in

the coherence of neuron 2 occurs with an increase in its firing rate,

as shown in Fig. 5C.

The effect of synaptic symmetry on the overall coherence is

much more pronounced for slower synapses, as shown in Fig. 5D.

A much sharper minimum of SRpT emerges near a = 0, regardless

of the value of s (Fig. 5E). Furthermore, for fixed a = 0, an increase

in symmetry s (which amounts to an increase in overall synaptic

strength) leads to an increase in coherence, which attains values

above those seen for uncoupled neurons (Fig. 5F).

Comparison with computer simulations
We attempted to reproduce the above results in numerical

simulations using the widely known FitzHugh-Nagumo model, as

described in Eqs. 5. As in the experiments made with the

electronic circuits, we set the model neurons in the excitable

regime (f~{1:05 in Eq. 0) but close to its Hofp bifurcation (at

f~{1), so that the system can fire under the influence of the

Gaussian noise input j with intensity D. The two model neurons

are connected through our model of the electronic synapse (Eq. 6)

with a coupling coefficent g (see Eq. 5). The resulting EPSP gvC

generated by a pre-synaptic spike is then added (alongside with the

noise) to the variable f of the post-synaptic model neuron (see Eq.

5b). We find the noise intensity that yields the minimum of the

incoherence parameter Rp for the uncoupled case (D~3|10{3)

and then vary the synaptic strengths g12 (from the model neuron 1

to model neuron 2) and g21 (from 2 to 1) measuring the mean

incoherence parameter SRPT for each value of the pair (g12,g21)
as we did with the electronic circuits. Note that the approach here

is to measure the synaptic strength directly from the amplification

factors g12 and g21 instead of measuring the amplitude of the

EPSPs. The simulations were performed for two different values of

the synaptic time scale t, first for t~0:1 (fast synapse) and then for

t~1:0 (slow synapse).

The results of the numerical simulations are shown in Fig. 6.

Comparing first Fig. 6A with Fig. 4D, we observe that the

numerical model corroborates the results of the electronic circuits:

Figure 3. Incoherence parameter Rp as a function of the noise intensity and synaptic amplitudes. (A) Neuron 1 (pre-synaptic) is
connected to neuron 2 (post-synaptic) through a synaptic circuit with parameters Ra~5kV, Rb~20kV and synaptic amplitude S12~1V. R1

p presents
a minimum, as expected, but neuron 2 has increased incoherence R2

p . (B) Addition of an identical reciprocal connection leads to a coherence recovery

in neuron 2. (C) R1
p and R2

p as functions of the synaptic amplitude S12 when S21~0V (unidirectional connection). (D) R1
p and R2

p as functions of the

synaptic amplitude S21 with S12~1:4V. In (C) and (D), noise is set at the coherence resonance value for a single neuron (Rnoise~10kV).
doi:10.1371/journal.pone.0082051.g003
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with fast synapses, the dependence of the incoherence on the

synaptic symmetry is weak. The mean incoherence parameter as a

function of the symmetry parameter s and asymmetry parameter a

is shown in Fig. 6B and Fig. 6C and there is good agreement with

Fig.4E and Fig. 4F. Note that in the case of the computer

simulations, we employ a~g12{g21 and s~g12zg21.

Next we increase the synaptic time scale of the model (Fig. 6D)

and compare the results with those of Fig. 5D. Although the shape

of the surface obtained through the simulations does not exactly

reproduce the one obtained experimentally with the electronic

circuits, the dependence of the mean incoherence parameter on a

and s keeps its main features for the case of slow synapses: the

SRPT dependency on a is sharper than in the case of fast synapses

(Fig. 6E). It also reaches smaller values when s increases, as

compared to faster synapses (Fig. 6F).

Conclusions

We have studied the effects of synaptic coupling between

excitable electronic neurons on the coherence of their spike trains.

We have shown that the coherence resonance observed in

uncoupled neurons deteriorates in the post-synaptic neuron when

the synaptic connection is unidirectional. Furthermore, coherence

Figure 4. Influence of symmetry on CR for fast synapses. Noise intensities are set at the coherence resonance value (Rnoise~10kV) for each
neuron. Synaptic parameters are Rb~20kV and t~0:04ms. (A) Time series showing spike times for neuron 1 (black dots) and neuron 2 (blue dots) as

well as the EPSP of the synapse connecting neuron 1 to neuron 2 with S12~0:4V and the reverse synapse with S21~0:2V. (B) Incoherence R2
p of

neuron 2 as a function of both synaptic strengths. (C) Firing rate of neuron 2 as a function of the synaptic strengths. In (B) and (C) R1
p and F1 behave

similarly if the indexes 1 and 2 are reversed. (D) Mean network incoherence SRpT vs S12 and S21. The symmetry and asymmetry axes are drawn on the
horizontal plane. (E) SRpT vs the asymmetry parameter a. (F) SRpT vs the symmetry parameter s.
doi:10.1371/journal.pone.0082051.g004
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resonance is restored and strengthened when the synaptic loop is

closed in a bidirectional coupling.

It is important to emphasize that, although this phenomenon

may look similar to the synchronization between bidirectionally

coupled spiking neurons [4,18], here neurons are excitable and the

only attractor of the system is a fixed point with both neurons

quiescent. In this sense, it is interesting that the interplay between

noise and synaptic coupling leads a post-synaptic neuron to regain

its coherence by means of an outgoing synapse.

Furthermore, the mechanism by which this increase in

coherence is attained depends on the synaptic time scale. With

faster synapses, moving from a unidirectional coupling to

bidirectional coupling by strengthening one of the synapses leads

to an increase in coherence while firing rates decrease (despite the

fact that all synapses are excitatory). For slower synapses, the same

coherence increase is achieved with an increase in firing rates.

Overall, our results show that, for fast synapses, the average

coherence of the spike trains can be maintained in a broad region

of synaptic-strength parameter space. However, as synapses

become slower, maximal coherence is achieved only in a much

more restricted region, around the symmetry axis S12~S21. Along

this axis, strengthening synaptic connections lead to an increase in

coherence beyond the values attained by isolated neurons.

All the results above for electronic neurons were qualitatively

reproduced with computer simulations of synaptically coupled

FitzHugh-Nagumo models, suggesting the phenomenon is robust.

It would be worth exploring whether it remains valid when

neurons have a different excitability class, such as those near a

saddle-node bifurcation [19]. Such type-I-excitable neurons can

often be further reduced to simpler descriptions [20] which then

might allow an analytical understanding of the results presented

here.

Figure 5. Influence of symmetry on CR for slow synapses. Same as Fig. 4, except that synaptic parameters are Rb~100kV and t^0:048ms).
doi:10.1371/journal.pone.0082051.g005
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Naturally, the ultimate test of our results would come from

electrophysiological recordings of real neurons in which the

symmetry of the synaptic coupling could be controlled. Although

we are unaware of experiments in that direction, our results could

also be useful to (or validated in) other systems not directly related

to neuroscience, but where CR has been experimentally observed.

The experimental setups range from semiconductor lasers [21] to

the famous Belousov-Zabotinsky chemical reaction [22], recently

also reaching nanoscopic scales in the ionic transport through

single-walled carbon nanotubes [23]. If, for instance, applications

on these setups depend on highly coherent states, then symmetry

in the coupling may prove useful to overcome coherence

degradation due to external factors.

The emergence of self-sustained activity, a recurrent theme in

the field of excitable media [24], could also be the subject of future

studies regarding the effects of coupling asymmetry. Even in our

simple two-neuron network, for example, preliminary results

suggest that increasing the time constant t beyond the values used

in this work can throw the system in an self-sustained attractor,

despite the fact that both neurons are individually in a excitable

state. Similar effects have been observed in a pair of electrically-

coupled h-neurons [20] and are likely to be important in an

electronic implementation of neuro-inspired artificial sensors,

which are predicted to have maximal dynamic range and

sensitivity at the transition to a self-sustained state [25].

Taken together, our results point to the importance of allowing

for inhomogeneity in CR studies of coupled excitable elements.

Our study of a coupled pair, where inhomogeneity is reduced to

the asymmetry of the synaptic connections, can be regarded as a

first step towards larger networks.
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