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Abstract: Intracerebral hemorrhage (ICH) is the second most common subtype of stroke, and it is
often associated with a high mortality rate and significant morbidity among survivors. Recent studies
have shown that bilirubin, a product of heme metabolism, can exhibit cytoprotective, antioxidant
and, anti-inflammatory properties. However, little is known about the role of bilirubin in combating
several pathophysiological pathways caused by intracerebral bleeding in patients with ICH. In this
study, data were collected retrospectively on 276 patients with ICH who were admitted to a university
hospital between 5 January 2014 and 31 December 2017. We assessed the relationship between levels
of total, direct, and indirect serum bilirubin and assessments of initial stroke severity and clinical
outcomes by using Spearman’s rank correlation and Kruskal-Wallis H tests. A secondary examination
of the carrier protein albumin was also undertaken. Our study found that higher levels of direct
bilirubin were correlated with worse admission Glasgow Coma Scales (GCS) (rs = −0.17, p = 0.011),
worse admission ICH Scores (rs = 0.19, p = 0.008), and worse discharge modified Rankin Scales
(mRS) (rs = 0.15, p = 0.045). Direct bilirubin was still significantly correlated with discharge mRS
after adjusting for temperature at admission (rs = 0.16, p = 0.047), oxygen saturation at admission
(rs = 0.15, p = 0.048), white blood cell count (rs = 0.18, p = 0.023), or Troponin T (rs = 0.25, p = 0.001)
using partial Spearman’s correlation. No statistical significance was found between levels of total
or indirect bilirubin and assessments of stroke severity and outcomes. In contrast, higher levels of
albumin were correlated with better admission GCS (rs = 0.13, p = 0.027), discharge GCS (rs = 0.15,
p = 0.013), and discharge mRS (rs = −0.16, p = 0.023). We found that levels of total bilirubin, direct
bilirubin, and albumin were all significantly related to discharge outcomes classified by discharge
destinations (p = 0.036, p = 0.014, p = 0.016, respectively; Kruskal-Wallis H tests). In conclusion,
higher direct bilirubin levels were associated with greater stroke severity at presentation and worse
outcomes at discharge among patients with ICH. Higher levels of albumin were associated with
lower stroke severity and better clinical outcomes. Future prospective studies on the free bioactive
bilirubin are needed to better understand the intricate relationships between bilirubin and ICH.
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1. Introduction

Stroke is the fifth leading cause of death in the United States, affecting nearly
800,000 Americans each year [1]. An epidemiology study found that the incidence of
stroke per 100,000 population was approximately 218 in men and 127 in women [2]. In-
tracerebral hemorrhage (ICH) is the second most common type of stroke, constituting
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10% to 15% of all stroke cases in the United States, and it is associated with a high case
fatality rate of up to 40% at 30 days [3]. ICH occurs when a blood vessel ruptures inside the
brain, leaking toxic blood components to the surrounding tissues and causing irreversible
damage. The extravasated blood can collect and grow into an expanding hematoma that
increases intracranial pressure and causes mechanical compression of other brain structures.
Secondary brain injuries from the hemorrhage can be attributed to several parallel physi-
ologic responses to the cytotoxic, oxidative, and inflammatory effects of blood products
and hematoma [4–8]. Although trials for new ICH treatments have grown significantly
in recent years, few surgical or pharmacologic therapies have been demonstrated to be
effective in reducing mortality or improving outcomes among survivors [9]. The lack of
established treatments for this devastating disease makes it necessary to search for novel
therapies that target the pathophysiological mechanisms of ICH.

Bilirubin is a yellow, lipophilic, linear tetrapyrrole compound generated by the
catabolism of heme, a component mostly derived from hemoglobin in red blood cells.
In the heme catabolism pathway, heme is first cleaved by heme oxygenase enzymes to
produce biliverdin, which is reduced to unconjugated bilirubin by biliverdin reductase.
Because the unconjugated bilirubin is toxic and insoluble, it must be bound to albumin, a
transport protein in plasma, before being delivered to the liver. Once reaching the liver,
unconjugated (or indirect) bilirubin undergoes conjugation with glucuronic acid, a step
that is catalyzed by glucuronosyltransferase. The conjugated (or direct) bilirubin is subse-
quently excreted to the intestines as part of bile [10]. In the past, bilirubin was generally
considered to have few physiological functions and even toxic if it accumulated in the
human body. However, recent studies have shown that bilirubin also exhibits antioxidant,
anti-inflammatory, and cytoprotective properties [11–15]. When acting as an antioxidant,
bilirubin can reduce reactive oxygen species, and it is consequently oxidized back to
biliverdin. If the level of biliverdin reductase is high enough, biliverdin can be reduced to
regenerate bilirubin. This bilirubin-biliverdin redox cycle might explain its ability to reduce
oxidative stress, inflammation, and cytotoxicity even when it is present in low physiologic
concentrations [15–17]. These therapeutic properties are especially important for organs
that do not have strong endogenous cytoprotective defenses. For example, there is evidence
that bilirubin can protect neurons against oxidative stress injuries, which commonly occur
after ICH [12].

A small fraction of bilirubin circulates as free, unbound, and unconjugated bilirubin.
The fraction of free bilirubin increases when the concentration of unconjugated bilirubin
exceeds the binding capacity of albumin or when the binding affinity for bilirubin is inter-
fered with by certain medical conditions or the presence of inhibitors that compete with
bilirubin for albumin binding [10]. Due to its small size, hydrophobicity, and amphipathic
nature, free bilirubin can freely cross the intact blood-brain barrier and penetrate neuronal
membranes. There is strong evidence that free bilirubin concentration, rather than total
bilirubin or unconjugated bilirubin, determines bilirubin distribution and the risk of neuro-
toxicity induced by hyperbilirubinemia [10]. However, routine clinical chemistry analyzers
in the United States, unfortunately, do not determine free bilirubin, and no widely available
method that rapidly and accurately measures the concentration of free bilirubin exists.
Current FDA-approved methods, such as Zone Fluidics (a peroxidase method) and UB
Analyzer (a modified peroxidase method), have technical and practical limitations that
prevent them from being used routinely; therefore, they are confined to only specialized
clinical laboratories [18–21]. Some studies have shown that total bilirubin or the ratio of
total bilirubin to albumin could be used to estimate free bilirubin [22–24].

Existing clinical studies on the relationship between bilirubin and stroke yield conflict-
ing and mixed results [25–30]. Overall, studies generally show that higher serum bilirubin
levels are correlated with reduced stroke risk but increased stroke severity and worse
clinical outcomes for ischemic stroke. The association between serum bilirubin and hem-
orrhagic stroke remains unclear. In addition, many studies did not differentiate between
different types of bilirubin (direct, indirect, and total). Some studies only considered either
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the stroke severity or clinical outcome but not both. Therefore, this retrospective study was
designed to investigate the association between different forms of bilirubin (direct, indirect,
and total) with the initial stroke severity at admission and clinical outcomes at discharge.
Because of the close association between bilirubin and its carrier protein albumin, we also
explored the relationship between albumin and ICH. Additionally, we investigated the
correlation of different forms of bilirubin and albumin with factors known to be associated
with ICH outcomes (e.g., age, blood pressure, and laboratory measurements).

2. Materials and Methods
2.1. Human Subject Selection Criteria

This retrospective study included 276 patients with ICH who were 18 and older and ad-
mitted to UF Health Shands Hospital for ICH between 5 January 2014 and 28 December 2017.
The University of Florida Institutional Review Board approved the study. All subjects in
this study had available data on total and/or direct bilirubin levels, which were collected
within a week of admission and recorded in a standardized fashion in their electronic
medical records. Study exclusion criteria included pregnancy, current cocaine or am-
phetamine use, sepsis, and medications known to alter bilirubin levels (see Table S1).
Patients with intraventricular hemorrhage and patients who suffered hemorrhagic trans-
formation from a primary ischemic stroke were also excluded from our study. A total of
697 patients were admitted to UF Health Shands Hospital for ICH between 5 January 2014
and 28 December 2017. Available medical records of 519 patients were thoroughly re-
viewed. Of the 519 patients, 333 patients had available data on total bilirubin and/or direct
bilirubin after admission, and 276 patients met the exclusion criteria mentioned above.

2.2. Data Extraction

Three trained investigators extracted data from the electronic medical record. General
health and demographic characteristics including vital signs, social history, and past
medical history were recorded. In addition, laboratory measurements, taken mostly
within 7 days of admission, such as the liver function test, complete blood count, and
comprehensive metabolic panel, were included.

The initial stroke severity was assessed using Glasgow Coma Scale (GCS) and ICH
scores that were recorded at hospital admission. The GCS is a clinician-assigned rating
scale intended to assess the level of consciousness based on patient behaviors observed in
the domains of eye opening, motor response, and verbal response. The GCS generates a
total score with a minimum value of 3 and a maximum of 15, with higher scores indicating
better neurological status. The ICH Score is a scale used by physicians to clinically grade
the medical severity of patients presenting with ICH and gauge the associated risk of
mortality. The score is calculated by assigning ICH Score points across four prognostic
indicators: GCS upon admission, patient age, ICH volume, and lesion location. The ICH
Score generates a total score with a minimum value of 0 and a maximum value of 6, with
worse ICH scores associated with higher mortality risk.

Clinical outcomes were recorded across several indices: mortality, length of hospital
stays, GCS at discharge, modified Rankin Scales (mRS) at discharge, and discharge des-
tinations. Given the rate of missing data for discharge GCS and mRS scores, mortality
and discharge destination information were used to classify patients into either “positive,”
“negative,” or “death” outcome categories. This was used as the primary measurement
of clinical outcomes. More specifically, patients discharged to home or acute inpatient
rehabilitation facilities were considered to have a good or “positive” clinical outcome. In
contrast, patients discharged to long-term care facilities, skilled nursing homes, subacute
rehabilitation facilities, or hospice were considered to have a poor or “negative” clinical
outcome. GCS and mRS scores at discharge were also examined and considered when
classifying the discharge outcome. The discharge GCS follows the same description as the
admission GSC score (see above). The mRS is used by physicians to measure the degree of
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disability or dependence in daily activities at discharge. Scores range from 0 (no disability)
to 6 (death), with higher scores indicating worse functional outcomes at discharge.

2.3. Statistical Analysis

Statistical analyses in this study were performed using SAS version 9.4 (SAS Inc., Cary,
NC, USA) software. The levels of indirect bilirubin were calculated by subtracting direct
bilirubin from total bilirubin. Data were first inspected for missing values and distributional
forms. Descriptive data were determined for all variables of interest. The associations
between total, direct, and indirect bilirubin and various assessments of initial severity and
clinical outcomes were analyzed using Spearman’s correlation. The levels of bilirubin were
compared among patients with positive, negative, and death outcomes using Kruskal-
Wallis H tests. To identify possible confounding variables, relationships between discharge
mRS and candidate variables including medical conditions, vital signs, albumin, and other
laboratory measurements were analyzed by using Spearman’s correlation (for ordinal and
continuous variables) and Wilcoxon rank-sum tests (for binary variables). Analyses were
then conducted to investigate the association between bilirubin and discharge mRS after
adjusting for significant confounding variables using partial Spearman’s correlation testing.
All testing was two-tailed, with a level of significance of 0.05. A sample size of 276 allows
for the detection of a correlation of 0.17 or higher in magnitude.

3. Results

A total of 276 patients met the study inclusion and exclusion criteria. The average
age of patients was 65.8 ± 16.2 years. One hundred forty-eight (54.6%) were males and
128 (46.4%) were females. General characteristics of patients, including medical history
and social history, are shown in Table 1. Hypertension was the most common pre-existing
medical condition, present in 184 (70.2%) patients. Fifty-six (21%) and 49 (18.7%) patients
had diabetes and hyperlipidemia, respectively. Around half of the patients (87, 52.1%)
smoked cigarettes or had smoked cigarettes in the past. A little more than a third of the
patients (68, 39.5%) drank alcohol either socially or regularly.

Table 1. Demographic and clinical characteristics of participants 1.

Variable Mean (SD) or n (%)

Age (years) 65.8 (16.2)
Sex
Male 148 (54.6%)
Female 128 (46.4%)
Medical history
Hypertension 184 (70.2%)
Diabetes 56 (21.0%)
Hyperlipidemia 49 (18.7%)
History of stroke 43 (21.6%)
Atrial fibrillation 42 (16.0%)
Coronary artery disease 31 (11.8%)
Thyroid disease 21 (8.0%)
Chronic obstructive pulmonary disease 21 (8.0%)
Congestive heart failure 20 (7.6%)
Chronic kidney disease 18 (6.9%)
Asthma 16 (6.1%)
Myocardial infarction 12 (4.6%)
Liver disease 8 (3.0%)
Deep vein thrombosis 8 (3.0%)
Obstructive sleep apnea 7 (2.7%)
Valve disease or surgery 7 (2.7%)
Social history
Tobacco use

Smoker 87 (52.1%)
Nonsmoker 80 (47.9%)

Current alcohol use 68 (39.5%)
Current marijuana use 10 (5.9%)

1 Note: frequencies were calculated based on patients with available data.
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Initial evaluations, including vital signs, GCS scores, and ICH Scores at admission,
and primary hemorrhage locations are shown in Table 2. The mean blood pressure was
155/83 mmHg. Eighty-three patients (30.2%) were already at a GCS score of 8 or lower at
admission. The most common lesion location was lobar structures in 111 (40.2%) patients.
Lobar structures were the most common location where bleeding takes place. A total of 208
(75.4%) patients did not receive any surgical treatments besides the diagnostic angiography.

Table 2. Vitals, severity indicators at admission, and locations of hemorrhage 1.

Variable Mean (SD) or n (%)

Vital signs
Heart rate (beats/minute) 84.4 (18.9)
Systolic pressure (mmHg) 155.0 (35.2)
Diastolic pressure (mmHg) 82.7 (23.6)
Temperature (◦C) 37.7 (1.0)
SpO2 (%) 97.1 (2.9)

Admission GCS n = 275
8 or lower 83 (30.2%)
9 or higher 192 (69.8%)

Admission ICH Score n = 250
Score 0 52 (20.8%)
Score 1 64 (25.6%)
Score 2 55 (22.0%)
Score 3 48 (19.2%)
Score 4 20 (8.0%)
Score 5 11 (4.4%)

Primary location of hemorrhage n = 276
Lobar 111 (40.2%)
Deep 84 (30.4%)
Brainstem and cerebellum 30 (10.9%)
Uncertain 51 (18.5%)

Surgical interventions n = 276
Yes 68 (24.6%)
No 208 (75.4%)

1 Note: frequencies were calculated based on patients with available data.

Outcome measurements, including lengths of stay, in-hospital deaths, GCS and mRS
scores at discharge, and discharge destinations are shown in Table 3. The mean length
of hospital stay was 8.7 days. Sixty-one (22.1%) patients died during their hospital stay,
and another 22 (8.0%) patients were discharged to either a hospice facility or home with
hospice services. A total of 81 (30.0%) patients were at a GCS score of 8 or less at discharge.
Overall, less than a third of the patients (29.0%) were considered to have positive discharge
outcomes, and 136 (48.9%) patients were considered to have negative discharge outcomes
based on our discharge location classification, described in the previous section.

Descriptive data regarding levels of serum bilirubin, albumin, and other laboratory
measurements are presented in Table S2. The mean values of serum total, direct, and
indirect serum bilirubin and albumin were 0.65 mg/dL, 0.51 mg/dL, 0.16 mg/dL, and
3.72 g/dL, respectively. As a reference, the normal range is 0.1 to 1.2 mg/dL for total
bilirubin, <0.3 mg/dL for direct bilirubin, and 3.5 to 5.5 g/dL for albumin. Correlations
between different forms of bilirubin or albumin and other clinical and laboratory factors
known to be associated with ICH outcomes (e.g., age and blood pressure) are displayed in
Table S3.

Compared to patients who died or who had other negative outcomes (e.g., hospice),
patients with better outcomes had lower levels of total bilirubin (p = 0.036) and direct
bilirubin (p = 0.014) but higher levels of the bilirubin transport protein albumin (p = 0.016).
The distributions of total serum bilirubin and albumin levels observed in the different
outcome subgroups are depicted in Figures 1 and 2.
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Table 3. Outcome assessments at discharge 1.

Variable Mean (SD) or n (%)

Length of hospital stay (days) 8.7 (8.5)
In-hospital deaths 61 (22.1%)
Discharge GCS n = 271

8 or lower 80 (29.5%)
9 or higher 191 (70.5%)

Discharge mRS n = 209
Score 0 (no symptoms) 12 (5.7%)
Score 1 (no significant disability despite symptoms) 21 (10.1%)
Score 2 (slight disability) 23 (11.0%)
Score 3 (moderate disability) 18 (8.6%)
Score 4 (moderate severe disability) 42 (20.1%)
Score 5 (severe disability; requiring constant care) 32 (15.3%)
Score 6 (deceased) 61 (29.2%)

Discharge destination outcome classification n = 276
Positive 80 (29.0%)
Negative 135 (48.9%)
Death 61 (22.1%)

1 Note: frequencies were calculated based on patients with available data.
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According to the Spearman’s correlation results in Table 4, direct bilirubin was cor-
related with the GCS at admission (rs = −0.17, p = 0.011), admission ICH score (rs = 0.19,
p = 0.008) and discharge mRS (rs = 0.15, p = 0.045). No statistical significance was found
in the correlation between levels of total or indirect bilirubin and assessments of stroke
severity and outcomes. Serum albumin was found to be positively correlated with dis-
charge GCS (rs = 0.13, p = 0.02) and negatively correlated with discharge mRS (rs = −0.16,
p = 0.023).

Table 4. Spearman’s Correlation results between levels of bilirubin or albumin and variables of stroke
severity or outcomes (n = 276) 1.

rs
p-Value

(n) 1
Total Bilirubin Direct Bilirubin Indirect

Bilirubin Albumin

Admission GCS
−0.08
0.1978
(275)

−0.17
0.0114 *

(225)

−0.03
0.6722
(225)

0.13
0.0269 *

(271)

Admission ICH
Score

0.07
0.2537
(250)

0.19
0.0075 **

(204)

0.03
0.6332
(204)

−0.06
0.3822
(247)

Discharge GCS
−0.07
0.2668
(271)

−0.12
0.0661
(222)

0.01
0.8940
(222)

0.15
0.0133 *

(267)

Discharge mRS
0.09

0.1991
(209)

0.15
0.0454 *

(171)

0.06
0.4146
(171)

−0.16
0.0227 *

(207)

Length of
hospital stay

−0.09
0.1553
(276)

0.01
0.8882
(226)

−0.07
0.3274
(226)

−0.03
0.5774
(272)

1 Each analysis included only patients with available data, thus explaining the different numbers of patients
analyzed in each cell. * p < 0.05, ** p < 0.01.

We ran bivariate analyses (Wilcoxon rank-sum tests for binary variables and Spear-
man’s correlation tests for ordinal and continuous variables) for variables of interest that
are potential predictors of discharge mRS (see results in Table S4). Subsequently, we in-
cluded variables that were significantly correlated with discharge mRS (p < 0.05) in partial
Spearman’s correlation tests, and we found that direct bilirubin was only correlated with
discharge mRS after adjusting for temperature at admission (rs = 0.16, p = 0.047), oxygen
saturation at admission (rs = 0.15, p = 0.048), white blood cell count (rs = 0.18, p = 0.023), or
Troponin T (rs = 0.25, p = 0.001).

4. Discussion

Our results suggest that higher direct bilirubin levels are associated with greater initial
stroke severities and worse clinical outcomes in patients with ICH. Overall, patients with
higher direct bilirubin levels at admission had worse neurological statuses and poorer prog-
noses upon admission (as evidenced by worse admission GCS and ICH scores). Patients
with higher direct bilirubin also had greater levels of post-stroke disability at discharge, as
evidenced by worse discharge mRS. These relationships could suggest that direct bilirubin
could be a marker of oxidative stress in ICH. There are only a few existing clinical studies
that examined the relationship between bilirubin and brain hemorrhages. A 2003 study
on 23 patients with ICH found that serum bilirubin levels significantly increased in the
early phases after the stroke onset [31]. One meta-analysis of five studies in the Chinese
population found that patients with acute cerebral hemorrhage had elevated serum biliru-
bin [32]. A recent study by Xu et al. found that direct bilirubin was positively correlated
with the mortality of patients with traumatic brain injury [33]. The authors of all three
studies posited that higher serum bilirubin levels might have reflected the initial intensity
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of oxidative stress. Though, it is still possible that the level of protection conferred by
bilirubin increased as more bilirubin was produced to meet the increased oxidative demand
after a hemorrhagic stroke.

We found that total and indirect bilirubin was not associated with either stroke severity
or clinical outcomes. It is unclear why total bilirubin did not show significant associations,
but direct bilirubin did. This difference warrants future investigation with a larger patient
population. A study on bilirubin and ischemic stroke yielded similar results; the authors
found an independent relationship between stroke severity and direct bilirubin, but not
with total bilirubin [30]. The authors reported that direct bilirubin may have better prognos-
tic values than total bilirubin. However, previous studies also reported that total bilirubin
or the ratio of total bilirubin to albumin could predict the level of free bilirubin and the neu-
rological dysfunction caused by hyperbilirubinemia [22–24]. More work will be necessary
to verify the hypothesis that direct bilirubin is a better prognostic factor. We also found that
higher serum albumin levels were generally associated with more favorable outcomes, in
contrast to bilirubin. Patients with higher albumin levels were more conscious at discharge
and suffered less from disability or dependence, as indicated by the negative relationship
between albumin and mRS. We found only few articles on albumin and hemorrhagic stroke.
Our findings are supported by a study of 2010 ICH patients, which found that low serum
albumin at admission is associated with lower admission GCS, higher mortality rates, and
poorer functional outcomes [34]. However, numerous clinical studies on albumin and
ischemic stroke overwhelmingly suggest that higher albumin levels are associated with
better outcomes in ischemic stroke patients [35–38]. Albumin’s neuroprotective properties
could be attributed to its antioxidant functions, hemodilution effects, ability to reduce
edema, and modulation of immune responses [39,40]. Experimental studies suggest that
human albumin therapy can improve neurological conditions following acute cerebral
ischemia, but a randomized clinical trial did not find high-dose albumin therapy to have
clinical benefits for patients with ischemic stroke [41–43].

Serum direct bilirubin levels were correlated with several vital signs and laboratory
measurements. We found that higher serum bilirubin was generally associated with
lower systolic and/or diastolic blood pressures. However, patients in our study were
generally hypertensive at admission, as indicated by the elevated mean blood pressure in
Table S2. A clinical trial found that reducing blood pressure after ICH onset resulted in
better functional outcomes [9,44]. On the other hand, hypotension can also worsen clinical
outcomes due to resulting acute cerebral vasospasm or cerebral ischemia after ICH [45,46].
Higher serum direct bilirubin levels were correlated with lower platelet counts, which
might indicate increased platelet consumption and severity of bleeding. However, impaired
platelet functions in patients could also have led to an increased propensity and severity
of ICH. Finally, we found a significant positive correlation between serum bilirubin and
liver enzymes ALT and AST. Previous studies have found that elevated liver enzymes
are correlated with increased risk of ICH and worse clinical outcomes [47–49]. The exact
mechanism is unclear, but alcohol consumption, hepatotoxic medications, and abnormal
hemostasis may partially contribute to the adverse effects of liver dysfunction on ICH. Like
other studies, we are reporting these correlations (see Table S3), and more work is needed
to understand the physiological mechanism and clinical significance of these correlations.

There are several limitations associated with our study. First, the high number of
statistical tests conducted increases the Type I error rate and effect sizes observed in key
analyses were relatively small. Thus, the findings should be interpreted with caution and
warrant reproduction in a larger sample size. Second, because this was a retrospective
study, data were collected as documented in the electronic medical record, and some
patients did not have all of the data points needed. In one study, a subgroup of patients
with ICH determined to be lacunar hemorrhagic stroke likely due to hypertension had a
favorable prognosis compared to non-lacunar hemorrhagic stroke [50]. Because our study
was limited to retrospective chart review, we did not review the CT images to determine
if patients had a hemorrhagic lacunar stroke. Third, most of the bilirubin data used in
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our study were collected within 3 days after admission with a few exceptions that were
collected within 7 days. Thus, the limitation is that the first bilirubin value collected after
admission may be different from the actual initial value, and various factors such as medical
treatments could have interfered with the measurement. In future prospective studies,
liver function tests should be consistently obtained within a few hours of admission to
minimize such potential variabilities. Fourth, and most importantly, we did not have free
bilirubin measurements in the patient data because the specific assay was not originally
requested. Because free bilirubin is more bioactive and can cross the blood-brain barrier,
free bilirubin is more likely to be responsible for bilirubin’s protective effects found in
past studies [51]. Furthermore, the baseline functional status before ICH was also not
documented, and data on the long-term functional outcome (after discharge) were not
available. The lack of baseline functions could be a potential confounding factor when
evaluating outcomes, especially if patients already had poor baseline functions before the
onset of ICH. Finally, our study was limited in its outcome measurement as data were
constrained to clinical outcome tools typically used in hospital settings that have lower
measurement precision. Future studies with larger sample sizes and improved outcome
precision measurements across different timepoints may allow for a better understanding
of the relationship between bilirubin levels and the broad range of outcomes after ICH.

Some studies have attempted to estimate free bilirubin through the ratio of total
bilirubin to albumin. However, this is potentially problematic and does not improve total
bilirubin prediction alone because there is a sizeable albumin polymorphism in the human
population [43]. We considered several other ways to model or calculate bilirubin. For
example, Ahlfors et al. modeled free bilirubin binding through a Henderson-Hasselbalch
approach [52]. The bilirubin-albumin equilibrium was first simplified to Equation (1),
where Bfree represents free bilirubin, BBC represents bilirubin binding constant, Btotal
represents total bilirubin, and KD represents the bilirubin-albumin equilibrium dissociation
constant. Subsequently, the mass action equation and Henderson-Hasselbalch equation
were used to derive the formula to calculate free bilirubin; see Equation (2). They measured
the Bfree and Btotal of newborns by using the peroxidase method, and they calculated KD by
using Equation (3), an equation derived from Equation (2) [51]. After multiple calculations,
they generated a table to show the relationship between KD and levels of Bfree and Btotal.
However, our study included only adult patients who were over the age of 18, so it would
be incorrect to assume that adults have the same dissociation constant as newborns because
the albumin binding constants can change with age and vary between individuals. It
would be optimal for future studies to include data on free bilirubin that are measured
directly from the patients rather than calculated or estimated using a generalized formula.

Bfree + BBC− Btotal KD ↔ Btotal (1)

Bfree
∼=

KD × Btotal
BBC− Btotal

(2)

KD ∼=
Bfree × (BBC− Btotal)

Btotal
(3)

In terms of future directions, a prospective clinical study with a larger sample size
from multiple centers, blood samples collected immediately after admission, available
free bilirubin measurement, and use of precision measurements of functional outcome
collected prospectively up to 6 months after discharge are needed to better understand
the relationship between bilirubin and ICH. Prospective clinical studies investigating the
relationships between bilirubin and other forms of stroke, such as ischemic stroke and
subarachnoid hemorrhage, are also required to distinguish further the effects of free and
bioactive bilirubin in different oxidative environments.
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5. Conclusions

The present work suggests that direct bilirubin levels are associated with greater
initial stroke severity and worse clinical outcomes for patients with ICH. Total and indirect
bilirubin were not associated with either stroke severity or clinical outcomes. Besides
bilirubin, we also examined the association of serum albumin with ICH; higher levels of
albumin were correlated with better clinical outcomes. Larger, controlled, multicenter
prospective studies with available analytical data on free bilirubin, baseline function, and
longer follow-ups are needed to better illustrate and understand the bilirubin’s potential
prognostic value, beneficial effects, and biological significance.
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