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Accumulating evidence has shown that nutrient metabolism is closely associated with the
differentiation and functions of various immune cells. Cellular metabolism, including aerobic
glycolysis, fatty acid oxidation, and oxidative phosphorylation, plays a key role in germinal
center (GC) reaction, B-cell trafficking, and T-cell-fate decision. Furthermore, a quiescent
metabolic status consolidates T-cell-dependent immunological memory. Therefore, dietary
interventions such as calorie restriction, time-restricted feeding, and fasting potentially
manipulate immune cell functions. For instance, intermittent fasting prevents the
development of experimental autoimmune encephalomyelitis. Meanwhile, the fasting
response diminishes the lymphocyte pool in gut-associated lymphoid tissue to minimize
energy expenditure, leading to the attenuation of Immunoglobulin A (IgA) response. The
nutritional status also influences the dynamics of several immune cell subsets. Here, we
describe the current understanding of the significance of immunometabolism in the
differentiation and functionality of lymphocytes and macrophages. The underlying
molecular mechanisms also are discussed. These experimental observations could offer
new therapeutic strategies for immunological disorders like autoimmunity.
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INTRODUCTION

Abnormal nutritional conditions, such as malnutrition and diet-induced obesity, considerably affect
the immunological status of the body. For instance, undernourished children are highly susceptible
to infectious diseases and frequently show insufficient vaccine efficacy. In addition, multiple cohort
studies have indicated that overnutrition and the prevalence of a westernized diet are associated with
an increased incidence of inflammatory disorders, namely, metabolic syndrome, type 2 diabetes,
allergy, and autoimmune disorders. Thus, diet and nutritional status significantly influence immune
response. Furthermore, accumulating evidence has shown the importance of cellular metabolism in
many aspects of immune cell biology. Inflammation-related M1 macrophages rely mainly on
glycolysis, while immunosuppressive M2 macrophages utilize fatty acid oxidization (FAO) (1, 2).
Naïve B and T lymphocytes are characterized by quiescent cellular metabolism, mainly depending on
mitochondrial respiration (3, 4). Conversely, upon antigen recognition, naïve lymphocytes undergo
org February 2021 | Volume 11 | Article 6239891
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metabolic rewiring to aerobic glycolysis to acquire effector
functions. The amount of ATP production by glycolysis is much
lower than that produced by mitochondrial respiration.
Nevertheless, activated lymphocytes and macrophages exploit
the prompt generation of ATP by glycolysis to fulfill the
metabolic requirements for their proliferation and its provision
of intermediate metabolites essential for the biosynthesis of nucleic
acids, amino acids, and fatty acids.

Nutrient sensing is essential for the survival of cells and whole
organisms, and thus the machinery of nutrient sensing and the
downstream responses are highly preserved among eukaryotes (5).
Cellular metabolic status is thus markedly affected by the
extracellular milieu. For example, colonocytes at the luminal
surface and upper crypts utilize short-chain fatty acids (e.g.,
butyrate), which is abundant in the colonic lumen, as a major
energy source (6). In addition, white adipose tissue (WAT)-resident
memory T cells and group 2 innate lymphoid cells (ILC2s) enhance
FAO when activated (7, 8). Dietary intervention such as fasting
prominently changes energymetabolism systemically, which in turn
affects the immune cell biology, including cellular metabolism, cell
dynamics, and survival. These findings raise the possibility that
dietary intervention could offer novel approaches to ameliorate
inflammatory disorders by modulating the immune response
through metabolic rewiring. To date, a variety of dietary
intervention protocols including calorie restriction, fasting, and
nutrient supplementation have been proposed to regulate body
weight, aging, the intestinal barrier, specific immune functions, and
cognitive ability. In this review, we discuss the immunological
significance of dietary intervention as well as the underlying
mechanisms at both molecular and cellular levels. We also
explore immunometabolism from a clinical perspective.
THE IMPACT OF DIETARY INTERVENTION
ON IMMUNE RESPONSES

In the modern age, the food supply is generally stable thanks to
agriculture and animal husbandry. Therefore, people residing in
developed countries rarely face famine. Overnutrition has
become a global health concern as a factor conferring a
predisposition to metabolic syndrome, cancer, allergic diseases,
and autoimmune disorders. Adjustment of dietary intake,
frequency of meals, and dietary composition has emerged as a
potential option to protect against the development of these
diseases. However, recent studies have also demonstrated that
certain intervention protocols occasionally lead to adverse
events, such as the development of metabolic disorders (9, 10).
Therefore, it is important to clarify the immunological
consequences and underlying molecular mechanisms of
various types of dietary intervention to maximize beneficial
effects. In this section, we focus on four major types of dietary
intervention in the context of immune–metabolic interaction.

Calorie Restriction
Calorie restriction (CR) without malnutrition involves a chronic
reduction of energy intake by 15% to 40% compared with
Frontiers in Immunology | www.frontiersin.org 2
ad libitum conditions while maintaining an adequate intake of
micronutrients such as vitamins and minerals. The link between
CR and immunological functions was revealed nearly half a
century ago (11). Since then, a number of studies have proven
that CR suppresses the development of multiple diseases, such as
cardiovascular disease, diabetes, cancer, and autoimmune
disorders in human disease models (12–15). The activation of
effector T (Teff) cells and M1 macrophages is highly dependent
on the phosphatidylinositol-3 kinase (PI3K)-Akt-mechanistic
target of rapamycin (mTOR) signaling, and persistent
activation of this pathway by overnutrition drives M1-skewed
inflammation (Figure 1). Conversely, the low-energy status
conferred by CR suppresses the PI3K/Akt/mTOR axis with
reciprocal activation of adenosine monophosphate-activated
protein kinase (AMPK) and sirtuin family proteins (16–18)
(Figure 1).

AMPK inhibits the activity of acetyl-coenzyme A carboxylase
1 (ACC1), which leads to a reduction of fatty acid synthesis
(FAS) (19) (Figures 1 and 2). The alteration of lipid metabolism
is associated with the T-cell fate decision. For example, a 30%
reduction of food intake for 4 weeks limited differentiation into
Th17 cells and enhanced the development of regulatory T (Treg)
cells by the inactivation of ACC1 in naïve T cells. Consequently,
this treatment improved ischemic brain injury in a transient
middle cerebral artery occlusion-induced ischemia model (20).
Likewise, pharmacological inhibition of ACC1 by Soraphen A
was reported to shape the Th17/Treg balance to improve the
clinical score in an experimental autoimmune encephalomyelitis
(EAE) model (21). The development of Th17 cells, but not Treg
cells, requires ACC1-mediated de novo FAS. In addition, Th17
cells mainly utilize the glycolytic-lipogenic pathway to produce
phospholipids for cellular membranes, whereas Treg cells
actively take up exogenous fatty acids (21, 22). Furthermore,
the other Teff cell subsets, such as Th1 and Th2 cells, rely on de
novo FAS for their differentiation, and thus the inhibition of
ACC1 can suppress their differentiation (21, 23). Conversely,
ACC1 is dispensable for the activation of dendric cells and
macrophages, even though de novo FAS is augmented upon
mycobacterial infection (23). Therefore, ACC1 has emerged as a
molecular target for drug development to regulate Teff cell-
dependent inflammation.

A low-energy status during CR and fasting raises an intracellular
level of nicotinamide adeninedinucleotide (NAD+) (24, 25).NAD+ is
essential for glycolysis as well as oxidative phosphorylation
(OXPHOS) as an electron transmitter. NAD+ also serves as a co-
substrate forpoly (ADP-ribose)polymerases (PARPs) and the sirtuin
family (26–28). The intracellular NAD+ level is one of the critical
determinants of differentiation and functions in macrophages. In
human monocyte-derived macrophages, treatment with
lipopolysaccharide (LPS) suppresses de novo NAD+ synthesis by
inhibiting the kynurenine pathway and promotes the utilization of
NAD+ by PARPs, lowering the intracellular level of NAD+ (29).
Consequently, the LPS-induced decrease in NAD+ inactivates
mitochondrial SIRT3, increases mitochondrial reactive oxygen
species (ROS), suppresses mitochondrial respiration, and
reciprocally activates glycolysis-dependent energy metabolism.
February 2021 | Volume 11 | Article 623989

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Okawa et al. Immune Regulation by Metabolic Rewiring
Notably, such metabolic rewiring in response to the NAD+ levels
substantially influences M1/M2 macrophage polarization. The
augmentation of intracellular NAD+ by either overexpression of
quinoline phosphoribosyltransferase (QPRT), a rate-limiting
enzyme in the kynurenine pathway, or by supplementation of an
NAD+ precursor rescues mitochondrial respiration in LPS-
stimulated macrophages and thereby induces polarization to
immunosuppressive M2 phenotype. Although the reduction of
intercellular NAD+ pool facilitates differentiation into M1
phenotype, depletion of NAD+ leads to functional defect or reduces
the viability of M1 macrophage due to the arrest of glycolysis (30).
Indeed, NAD+ is integral to the simultaneous phosphorylation and
oxidationof glyceraldehyde-3-phosphate to 1, 3-biphosphoglycerate,
an essential step in glycolysis. Therefore,M1macrophages utilize the
NAD+ salvage pathway to maintain glycolysis and their functions,
such as the production of pro-inflammatory cytokines (30).
Inhibition of NAD+ salvage pathway by FK866 in LPS and/or IFN-
g-treated macrophages suppressed IL-1b and IL-6 production and
decreased viability in vitro. Further, administration of FK866
ameliorated disease severity in an LPS-induced sepsis model.
Frontiers in Immunology | www.frontiersin.org 3
Sirtuin 1 (SIRT1) is one of the NAD+-dependent deacetylases
and serves as a significant regulator of metabolism and immune
response. SIRT1 protein level increases in multiple cells and tissues
in response to food deprivation and CR (31–33) (Figure 1). SIRT1
deacetylates nuclear factor kappa-light-chain enhancer of activated
B cells (NF-kB), peroxisome proliferator-activated receptor g
(PPARg), and hypoxia-induced factor 1a (HIF-1a) to regulate
both innate and adaptive immune responses. In macrophages,
deficiency in SIRT1 results in the hyperactivation of NF-kB,
followed by the upregulation of pro-inflammatory cytokines such
as TNF-a and IL-1b (34). In a syncytial virus infection model, the
upregulation of SIRT1 in the lung was found to be essential to elicit
respiratory immune responses and alleviate tissue damage (35). In
this model, SIRT1 in dendritic cells promoted the production of
Th1-inducing cytokines (e.g., IL-12 and TNF-a) and conversely
suppressed the Th2 cytokines, leading to viral clearance and the
resolution of inflammation. Furthermore, SIRT1 activation by
NAD+ administration was found to ameliorate EAE symptoms by
downregulating key transcription factors for Th1 (T-bet) and Th17
(RORgT and STAT3) (36). SIRT1 also inactivates HIF-1a through
FIGURE 1 | Overview of the nutritional signals regulating immune responses. Calorie restriction (CR) and fasting lowers plasma IGF-1 levels and downregulates
PI3K/Akt/mTOR signaling pathways. At a low-energy status, two major energy sensors: adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 1
(SIRT) family proteins, are activated by AMP and NAD+, respectively. GCN2 acts as a sensor of amino acid deficiency to regulate the differentiation and polarization
of T cells and macrophages. b-HB also contributes to the anti-inflammatory effects by suppressing NLRP3 inflammasome activation. The white and orange boxes
represent signal messengers and enzymes/transcription factors, respectively. The pathways depicted by black arrows and red bars represent the activation and
inhibition by dietary restriction, respectively.
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its deacetylating activity (37). Accumulating evidence has indicated
the importance of HIF-1a for the Warburg-like metabolic rewiring
toward aerobic glycolysis in immune cells. Therefore, SIRT1 may
suppress the proinflammatory responses by inhibiting the HIF-1a-
dependent metabolic rewiring (38). These findings raise the
possibility that SIRT1 plays a role in the CR/fasting-dependent
mitigation of inflammatory responses.

The immunoregulatory effect of CR may also be mediated by
the Forkhead transcription factors O class 1 and 3 (FoxO1 and
FoxO3) (Figures 1 and 2). Since CR alleviates PI3K/Akt
signaling, which is a negative regulator of FoxO1 and FoxO3,
CR eventually upregulates these transcription factors (39). In
CD4+ T cells, FoxO1 and FoxO3 upregulate the expression of
Foxp3, the master regulator of regulatory T (Treg) cells (40–42).
Treg cells play a critical role in suppressing excessive immune
responses by expressing immunosuppressive molecules (e.g., IL-
10 and CTLA-4) and a high-affinity IL-2 receptor, CD25, which
provokes IL-2 deprivation. T-cell-specific deletion of FoxO1
attenuates the TGF-b-induced differentiation of Treg cells (43).
FoxO3 suppresses the proliferation and activation of Teff cells by
inhibiting NF-kB (44), and also induces apoptosis by
upregulating Puma and Bim (45). FoxO3-deficient mice
showed spontaneous lymphoproliferation, associated with
inflammation of the lung, kidney, and salivary gland (44). Such
inflammation was found to correlate with the presence of
hyperactivated Th1 and Th2 cells. In addition, mice carrying T
cells deficient in FoxO1 and FoxO3 develop severe systemic
autoimmune diseases mainly because of a defect in Treg cells and
Frontiers in Immunology | www.frontiersin.org 4
the activation of Teff cells (46). FoxO3 also suppresses the
production of IL-6 from dendritic cells, which also contributes
to the inhibition of Teff cells (47).

FoxO1 activation in macrophages exacerbates inflammatory
responses. Exogenous expression of a constitutively active form
of Foxo1 in RAW264.7 cells potentiated LPS-induced TLR4
signaling pathway leading to phosphorylation of NF-kB, and
vice versa, knockdown of Foxo1 suppressed the TLR4 signaling
pathway (48). Additionally, monocyte/macrophage-specific
FoxO1-deficient mice (LysMcre/+Foxo1fl/fl) impaired TLR2-
mediated response in liver-resident macrophages and failed to
induce Th1 and Th17 response during Staphylococcus aureus
infection (49). Interestingly, FoxO1-induced TLR2 and TLR4
signals induced Akt phosphorylation leading to FoxO1
inactivation. This negative feedback may constrain excessive
inflammatory responses in macrophages and induce resolution
of inflammation. Besides their immunomodulatory functions,
FoxOs prevent tissue damage by suppressing oxidative stress and
accelerating wound healing (50–53). This raises the possibility
that CR-dependent activation of FoxOs may also promote
wound healing, although further investigations are required to
prove this.

In addition to anti-inflammatory effects, CR may consolidate
immunological memory in response to vaccination. This
possibility has been raised by findings from two recent
independent studies: 1) 50% dietary restriction reinforced the
functions of CD8+ memory T cells to protect against secondary
bacterial infection and tumorigenesis (54) and 2) severe CR
A

B

C

FIGURE 2 | The immunomodulating effects of mTORC1, ACC1, and FoxO1/3. Fasting or calorie restriction (CR) suppresses mTORC1 and ACC1 activation and
activates FoxO1/3 pathways. (A) mTORC1 inhibition enhances ketogenesis and reduces glycolysis and glutaminolysis. mTORC1 inhibition also induces autophagy in
macrophage and suppresses Th1, Th17, and M1 macrophage differentiation. (B) ACC1 inhibition reduces FAS, which facilitates development of CD4+ memory T
cells and Treg cells and conversely suppresses Teff (Th1, Th2, and Th17) responses. (C) Activation of FoxO1 and/or FoxO3 induces apoptosis and inactivates
NF-kB. FoxO1 or FoxO3 also regulates phenotypes of macrophages, suppresses Th17 response, and induces development of CD8+ memory T cells and Treg cells.
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enhanced the proliferative response and cytokine production by
T cells upon secondary infection with influenza (55). These
effects by CR may be attributable to the inactivation of mTOR
signaling that orchestrates glycolysis, glutaminolysis, and fatty
acid biosynthesis (Figures 1 and 2). In support of this, low-dose
treatment with an mTOR inhibitor, rapamycin, also facilitated
the development andmaintenanceofmemoryT cells and conferred
protection against viral infection (56). Similarly, in vitro culture of
tumor-specificmemoryTcells underCRconditions enhancedanti-
tumor functions, accompanied by the inactivation of mTOR
signaling (57). Notably, ACC1 negatively regulates the transition
of antigen-specific CD4+ T cells from effector to memory cell types
(Figure 2). Therefore, genetic ablation or pharmacological
inhibition of ACC1 enforces CD4+ memory T-cell formation in
response to helminth infection (58). IL-7 is a cytokine essential for
the survival ofnaïve andCD8+memoryT cells. Importantly, FoxO1
upregulates Il7r genes in theseT-cell subsets to reinforce IL-7/IL-7R
signaling, by interactingwith other transcription factors:GABPand
Gfi-1 (59, 60). Thus, CR is considered to strengthen the
development and functionality of the memory T-cell subset by
regulating multiple mechanisms. In addition to these molecular
mechanisms in specific cell types, CR or fasting affects systemic
metabolism, hormone release (e.g., insulin, glucagon, adipokines,
and glucocorticoids), and nerve systems. Consequently, the
pleiotropic effects of CR could be attributable to integration of the
alterations of metabolic, endocrine, and nerve systems.
Interestingly, the efficacy of vaccines is attenuated by both
malnutrition and obesity (61–64), illustrating that an appropriate
energy balance is a prerequisite to induce immune responses to
vaccination fully.

Fasting and Refeeding
Fasting refers to completely abstaining from food intake for certain
periods ranging from several hours a day to a few weeks. There are
many different fasting practices, including time-restricted feeding
(TRF), intermittent fasting (IF), and periodic fasting (PF)/long-
term fasting. Among them, TRF represents the daily restriction of
food intake, usually for 12 to 20 h (65, 66). In IF, subjects or
laboratory animals take little or no calories at least two days per
week, but are allowed ad libitum feeding on the remaining days. IF
protocols include alternative day fasting (ADF), in which 24-h
fasting is repeated every other day (67, 68). Conversely, PF
represents the intake of little or no calories for several days. PF
has a more pronounced impact on metabolism and immune
responses thanCRor short-term fasting such asTRF andADF (69).

Fasting has been performed as a religious practice. In Islamic
tradition, abstinence from food and drink from dawn until
sunset is encouraged during the month of Ramadan (70). Like
CR, fasting also has a considerable impact on immune responses.
IF during Ramadan results in significant decreases in circulating
immune cells and pro-inflammatory cytokines (71, 72). Other
studies have also demonstrated that Ramadan fasting induces the
expression of antioxidant and anti-inflammatory genes in both
nondiabetic obese patients and healthy subjects (73, 74). Fasting
also reduces blood levels of glucose, insulin, insulin growth
factor-1 (IGF-1), and amino acids, with the activation of AMPK
Frontiers in Immunology | www.frontiersin.org 5
and suppression ofmTOR signaling. In response to thesemetabolic
alterations, long-term hematopoietic stem cells undergo stress
resistance, self-renewal, and regeneration (69). Fasting also
induces whole-body FAO and ketogenesis in the liver to generate
ketone bodies (i.e., acetone, acetoacetic acid, and b-
hydroxybutyrate (b-HB)). In the kidney of aging-related chronic
inflammation model, b-HB exerts an anti-inflammatory effect by
activating FoxO1 through inhibition of Akt phosphorylation (75).

Furthermore, the refeeding phase in the fasting regimen may
be necessary for cellular reprogramming and regenerative effects
in various organs such as the liver, and gut (76). In an EAE
model, IF was shown to ameliorate the disease symptoms by
increasing the serum levels of adiponectin, corticosterone, and b-
HB (77). Additionally, IF alters T-cell homeostasis in the gut
with a decrease in Th17 cells and an increase in Treg cells. This
effect is attributed to the alteration of gut microbiota by IF, which
is characterized by an overrepresentation of Bacteroidaceae,
Lactobacillaceae, and Prevotellaceae. The transplantation of
fecal microbiota from IF mice was also shown to recapitulate
EAE amelioration by IF (77).

Autophagy significantly contributes to somatic cell
reprogramming and stem cell maintenance (78). The process of
autophagy also serves as a protective factor against inflammation,
infection, and neurodegenerative diseases (79–81). Autophagy was
initially identified in Saccharomyces cultured under low-nutrient
conditions (82). In the liver, farnesoid X receptor (FXR) and
cAMP response element-binding protein (CREB), both of which
are activated in response to nutrient signals, regulate the hepatic
autophagy gene network (83). CREB was shown to promote the
autophagic degradation of lipids under nutrient-deprived
conditions, while FXR inhibited this response. Moreover, the
CREB pathway enhanced alternatively activated M2 macrophage
polarization in WAT (84). Furthermore, in the liver and muscle,
refeeding after 24-h fasting suppressed autophagy by activating the
mTOR complex 1 (mTORC1) pathway (85). Hence, fasting-
induced autophagy might also lead to therapeutic effects.

TRF may also elicit its effect independent of the reduction of
total calorie intake because TRF was shown to suppress weight
gain and improve hyperinsulinemia, hepatic steatosis, and
inflammation in mice fed a high-fat diet (HFD) (65). Notably,
the total amounts of food intake were comparable between the
TRF and ad libitum-fed groups. Ad libitum feeding with HFD
disrupts the normal feeding cycle, with the mice eating the diet all
day (86). Such feeding-cycle disruption is also prevalent inmodern
societies. This leads to the persistent activation of Akt/mTOR
signaling as well as disturbance of the circadian oscillation of clock
genes, both of which confer a predisposition to metabolic
syndromes. TRF coordinates the balance of CREB, mTOR, and
AMPK signaling and restores the circadian oscillations. The
circadian oscillations are also observed in lymphocyte trafficking.
At night, noradrenalin-dependent b2-adrenergic stimuli
upregulate CCR7 and CXCR4 on B and T lymphocytes to
suppress cell egress from the lymph nodes in mice (87).
Additionally, the expression of sphingosine-1-phosphate receptor
1 (S1PR1), which also facilitates egress from the lymph nodes, by
lymphocytes is also under the control of a circadian clock gene,
February 2021 | Volume 11 | Article 623989
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Bmal1 (88). Expression of sphingosine-1-phosphate (S1P) is
upregulated during the day. Consequently, CD4+ T cells
accumulate in the lymph nodes at night and circulate during the
day. In accordance with this observation, immunization with
myelin-oligodendrocyte glycoprotein (MOG) at daytime
augments the autoantigen-specific Th17 responses compared with
nighttime immunization and exacerbates CNS inflammation in an
EAE model (89). Taking these findings into account, the anti-
inflammatory effect of TRF may partially be mediated by the
normalization of the circadian oscillations.

Most previous studies have underscored the beneficial effects of
calorie restriction and fasting on metabolic disorders and
autoimmunity, where some reports showed adverse effects of
such dietary interventions. The outcomes of calorie restriction
and fasting are most likely dependent on feeding regimens, disease
models, and the age of animals employed in each study. For
example, a TRF in juvenile mice (4-8 weeks old) exacerbates
metabolic disorders in adult age (12-week-old) (10). This study
also manifested that TRF in juvenile mice affects sexual maturity as
evidenced by retarded testicle development as well as high levels of
serum GnRH, FSH, LH, and low levels of androgen and estrogen
at 8-week-old. Such an observation is analogous to our findings
that repeated fasting in juvenile mice (5-8 weeks old) attenuated
the booster effect of oral immunization (90). Considering that GC
reaction is essential for the induction of immunological memory,
eliminating GC B cells from Peyer’s patches (PPs) by fasting may
have resulted in this abnormality. This result is consistent with the
observation of cohort studies that children with malnutrition fail
to obtain vaccine efficacy (91–93). Thus, TRF and fasting in young
adulthood may cause adverse effects in the metabolic,
immunological, and enteroendocrine systems.

Recent clinical studies have shown the potential of a fasting-
mimic diet (FMD), which is low in calories, sugars, and protein,
but high in unsaturated fats, to achieve beneficial effects against
aging, cancer, metabolic diseases, and cardiovascular diseases, in
association with the reduction of body mass index, blood pressure
and serum parameters (e.g., glucose, triglycerides, total and low-
density lipoprotein cholesterol, IGF-1 and C-reactive protein)
(94). Recent studies have also shown the effect of FMT on
autoimmune diseases. Periodic 3-day FMD cycles ameliorated
demyelination and symptoms in an EAE model (95). The 4-day
cycles of FMD prevent the development of the dextran sodium
sulfate (DSS)-induced colitis model by increasing the abundance
of Lactobacillaceae and Bifidobacteriaceae with anti-inflammatory
properties (96). Thus, FMD may be beneficial to improve both
metabolic and inflammatory disorders.

Specific Nutrient Restriction
Growing evidence has suggested that amino acid restriction (AAR)
may be at least partly responsible for the immunomodulatory effect
of dietary restriction. AAR inactivates mTOR signaling because
certain amino acids, such as leucine, serve as activators of the
mTOR/S6K1 pathway (97, 98). Leucine deprivation was found to
improve insulin sensitivity of the whole-body and in vitro-cultured
hepatocytes (99). In addition, a serine protein kinase, general
control nonderepressible 2 (GCN2), functions as a sensor of
Frontiers in Immunology | www.frontiersin.org 6
amino acid deprivation. Leucine deprivation activates GCN2,
which in turn inhibits mTOR signaling. Deficiency of GCN2
canceled the effect of leucine deprivation on insulin tolerance.

AAR also appears to regulate the differentiation and functions of
immune cell subsets. For example, GCN2-dependent activation in
response to AAR diminishes mouse and human Th17
differentiation (100). In an EAE model, GCN2-deficient mice
showed severe disease symptoms even at the remission stage in
association with increases in Th1 and Th17 response and a decrease
in Treg cells (101). AAR also activates activating transcription factor
4 (ATF4) in CD4+ T cells. ATF4 transactivates a gene network that
facilitates the amino acid intake and mTORC1 signaling (102).
ATF4-dependent metabolic rewiring is required for the
proliferation of CD4+ T cells and the development of Th1 cells.

Dietary tryptophan restriction (DTR) was found to impair the
development of encephalitogenic Th17 cells to ameliorate EAE
(103). Interestingly, GCN2 is dispensable for the effect of DTR,
since GCN2-deficient mice fed a protein-free or tryptophan-free
diet were reported to show resistance to EAE similar to that of WT
mice. DTR suppresses gut inflammatory responses by shaping the
gut microbial community. Furthermore, 40% dietary methionine
restriction (DMR) was reported to reduce oxidative stress by
suppressing the generation of mitochondrial ROS in rat heart
(104). Oxidative stress is implicated in the development of
chronic inflammatory disorders including inflammatory bowel
disease (IBD). Therefore, DMR ameliorated the severity of DSS-
induced colitis (105). DMR also delayed the senescence-associated
secretory phenotype (SASP) in the kidney through hydrogen sulfide
(H2S) generation and AMPK pathway activation (106).

GCN2 also contributes to the regulation of various macrophage
functions. Among the major function of splenic macrophages is the
clearance of apoptotic cells, leading to immune tolerance.
Phagocytosis of apoptotic cells activated the indoleamine 2,3-
dioxygenase 1 (IDO1)/GCN2 axis to upregulate IL-10 and TGF-b
synthesis in splenic macrophages. Macrophages from monocyte/
macrophage lineage-specific GCN2 knockout (LysM cre/+/Gcn2fl/fl)
mice fails to acquire a tolerogenic phenotype (107). Backcross of
LysM cre/+/Gcn2fl/fl mice onto lupus-prone FcgRIIB-/- mice
exacerbates systemic lupus erythematosus-like symptoms (107).
Interestingly, tumor-associated macrophages from patients with
melanoma also activate GCN2 and IL-10 production in the
tumor microenvironment (108). Monocyte/macrophage-specific
deletion of GCN2 drives the tumor-associated macrophages to
induce antitumor responses. In contrast, GCN2 activation in
RAW264.7 cells under tryptophan-free conditions results in the
upregulation of inflammatory cytokines upon stimulation with LPS
(109). The GCN2/eIF2/CHOP pathway mediates this response.
The monocyte/macrophage-specific deletion of GCN2 improves
the mortality after a lethal challenge with LPS by reducing the
expression of IL-6 and IL-12 (109).

Carbohydrate restriction using a ketogenic diet (KD) also
significantly regulates immune responses. KD is defined as a very
low-carbohydrate, high-fat diet, which induces the generation of
ketone bodies. A recent study revealed that KD alters gut
microbiota. The KD-associated microbiota is characterized by an
underrepresentation ofBifidobacterium spp. (110).b-HBproduced
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by KD plays a central role in the decrease in Bifidobacterium spp.,
and thismicrobial environment prevents a pro-inflammatory Th17
response in the small intestine, but not the large intestine, of mice.
However, it remains obscure how Bifidobacterium spp., which are
usually located in the large intestine, induce the small intestinal
Th17 cells. Notably, the reduction of bifidobacteria (e.g.,
Bifidobacterium adolescentis and B. longum) was also evident in
humans fed KD for 4 weeks.

KD has been clinically used to cure intractable epilepsy, but the
therapeutic mechanism behind this is largely unknown. Although
the pathological mechanism has yet to be elucidated, an increased
Th17/Treg cell ratio is considered to be a predisposing factor for
intractable epilepsy (111). In young patients with intractable
epilepsy, KD improved the imbalance of Th17/Treg cells in the
blood through suppression of themTOR/HIF-1 signaling pathway.
Hence, KDmay contribute to the treatment of intractable epilepsy
by shaping the T-cell responses (111).Meanwhile, KDwas found to
induce the expansion of lung gd T cells to strengthen epithelial
barrier functions and antiviral resistance to influenza A virus (112).
However, KD may exert distinct immunological effects depending
on the duration of the treatment. Short-term (1-week-long) KD
activates adipose-tissue-resident gd T cells to support tissue repair,
whereas long-term (4-month) KD suppresses this T-cell subset and
exacerbates obesity in mice (113). Additionally, b-HB suppressed
the NLRP3 inflammasome and attenuated the secretion of IL-1b
and IL-18 in both mouse bone marrow-derived macrophages and
human monocytes (114). The inhibition of the NLRP3
inflammasome is not dependent on AMPK, ROS, and autophagy,
but is attributed to the prevention of K+ efflux and reduction of
apoptosis-associated speck-like protein with a caspase recruitment
domain (ASC) oligomerization.

Given that poor compliance and occasional adverse effects
have limited the clinical application of CR and fasting, specific
nutrient restrictions may be more feasible dietary interventions
to achieve beneficial effects similar to those of CR and fasting.

Nutrient Supplementation for the
Regulation of Immune Response
Epidemiological evidence has suggested that malnutrition is a risk
factor for infectious diseases and impairs vaccine efficacy (115–117).
Vaccine efficacy depends on the formation of immunological
memory. Vaccination evokes a GC reaction to generate plasma
cells and memory B cells, which contribute to antibody production
and long-lasting memory function, respectively. Anatomically, GCs
are separated into the light zone (LZ) and the dark zone (DZ). GC B
cells are highly mobile, circulating between the LZ and DZ (118).
Upon antigen stimulation, naïve B cells migrate into the LZ, where
the affinity-driven selection of GC B cells occurs through interaction
with follicular helper T (Tfh) cells and follicular dendritic cells. The
positively selected GC B cells activate mTORC1, which is required
for migration into the DZ and vigorous proliferation (119). Several
studies have demonstrated that the differentiation and the survival
of Tfh cells and GC B cells highly depends on the mTOR signaling
pathway (119, 120). We also confirmed that treatment with
rapamycin greatly reduces the number of GC B cells in PPs (90).
Deletion of Raptor or Rictor, which is the signature component of
mTORC1 and mTORC2 respectively, in OX40+ cells (i.e. activated
Frontiers in Immunology | www.frontiersin.org 7
CD4+ T cells) impaired Tfh cell differentiation in PPs (120). In PPs,
Tfh cells highly express glucose transporter Glut1 compared with
other T-cell lineages to enhance glucose uptake. Glut1 expression in
Tfh cells partly depends on mTORC1 signaling, since rapamycin
treatment reduced Glut1 expression and glucose uptake.
Nevertheless, GC B cells rely on FAO rather than glycolysis to
fuel proliferation (121, 122); however, the mechanisms underlying
how proliferating GC B cells actively oxidize fatty acids have
remained unclear. Moreover, recent studies have indicated that
several vitamins also participate in the regulation of B-cell
homeostasis. Deficiency in vitamin B1 was found to decrease the
number of naïve B cells in PPs. Vitamin B1-dependent maintenance
of naïve B cells is required for the induction, but not effector, phase
of the IgA response upon oral immunizaition (3).

Vitamin A (VA) deficiency is currently a global concern,
especially in developing countries. Retinoic acid (RA), an active
metabolite of VA, plays a central role in the lymphocyte trafficking
to the gut, GC formation, and development of IgA+ plasma cells,
leading to increased primary and secondary antibody responses
(123, 124). Large peritoneal macrophages (LPMs), one of the mouse
peritoneal macrophage subsets, supports IgA class-switching of
peritoneal B-1 cells. RA-induced activation of GATA6 in LPM
precursors causes their polarization and migration to the peritoneal
cavity. In accordance with this, mice carrying monocyte/
macrophage lineage-specific Gata6 deletion (LysMCre/+/Gata6f/f)
or mice fed on VA-depleted diet (VAD) decreased the number of
peritoneal macrophages, resulting in a decrease in B-1-derived IgA
plasma cells in intestinal lamina propria. Thus, RA facilitates the
differentiation of peritoneal B-1 cells into plasma B cells induced by
LPMs (125). RA is also required for inflammatory resolution during
helminth infection (126). Schistosoma mansoni infection transiently
increases inflammatory F4/80int CD206+ macrophages in the liver.
This macrophage subset subsequently differentiates into F4/80hi

CD206− macrophages to resolve acute inflammation. S. mansoni-
infected mice fed on VAD were defective in the development of F4/
80hi CD206− macrophages, leading to dysregulated inflammation
and increased mortality.

Therefore, deficiency in RA attenuates the immune response
and raises the risk of infectious diseases. TodealwithVAdeficiency,
the World Health Organization has recommended high-dose VA
supplementation in children 6–59months of age in locationswhere
VA deficiency is endemic. Oral supplementation of VA or RA
potentiated vaccine efficacy by facilitating the trafficking of vaccine-
antigen-specific T lymphocytes to the gastrointestinal mucosa in
mice (127, 128). Moreover, the supplementation of VA or RA
upregulated Stimulated by retinoic acid-6 (Stra6) in the spleen,
enhancing anti-tetanus toxoid antibody production (129). Thus,
VA supplementation has been considered a promising strategy to
reinforce the antigen-specific immune response upon vaccination.
THE EFFECT OF DIETARY INTERVENTION
ON CELL DYNAMICS

Recent studies have revealed that the bone marrow serves as a
reservoir for naïve B cells, monocytes, and memory CD8+ T cells
in response to a low-energy status like that found in CR and
February 2021 | Volume 11 | Article 623989

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Okawa et al. Immune Regulation by Metabolic Rewiring
fasting (54, 90, 130) (Figure 3). These findings indicate that
nutritional status influences the cell dynamics of several
immune cell subsets. We observed that naïve B cells migrated
from PPs to the bone marrow in a CXCL13-dependent manner
during 36 h of fasting in mice (90). CXCL13 expression by stromal
cells is essential for the formation and maintenance of lymphoid
follicles in the lymphoid organs including PPs (131, 132). The
Cxcl13 mRNA expression was significantly downregulated in PPs
during the fasting period. In vitro study using a lymph node-
derived stromal cell line suggested that cytokine stimulus (i.e.,
TNF-a and LTbR agonists)-dependent upregulation of Cxcl13 is
accompanied by an increase in glycolysis. Because treatment with
a glycolysis inhibitor, 2-deoxyglucose, mitigated Cxcl13 expression
by activated BLS12 cells in a dose-dependent manner, the
metabolic rewiring to glycolysis plays a pivotal role in Cxcl13
expression. The 36 h of fasting markedly lowered blood glucose
levels and attenuated glycolysis, resulting in the downregulation of
Cxcl13 expression. In sharp contrast, in the bone marrow, Cxcl13
expression significantly increased during fasting, which allowed
naïve B cells to accumulate mainly in the vicinity of blood vessels
of the bone marrow cavity. Such a perivascular region is also
known as a site for hematopoietic stem cell (HSC) differentiation
and proliferation due to the accumulation of survival factors such
as B-cell activating factor (BAFF), colony-stimulating factors
(CSF), and stem cell factors (SCF), which are most likely
fundamental for the survival of B cells (133–135). Therefore, the
perivascular region could serve as a transient niche for naïve B
cells during fasting. In response to refeeding, Cxcl13 expression in
the bone marrow was downregulated and naïve B cells migrated
back to PPs. Thus, the number of naïve B cells was gradually
restored until 48 h after refeeding. In contrast, the recovery of GC
B cells and IgA+ B cells was much slower than that of naïve B cells
because these cells readily underwent apoptosis in response to
fasting. As a consequence, GC B cells were eliminated from
lymphoid follicles of PPs, whereas naïve B cells were restored
after fasting-refeeding. Give that a subset of GC B cells
differentiates into memory B cells, the elimination of GC B cells
from PPs in fasted mice may lead to the loss of immune memory
for oral antigens. Indeed, fasted mice failed to generate antigen-
specific IgA, IgM, and IgG upon repeated oral immunization
with ovalbumin.

Jordan et al. found that short-term (4–20 h) fasting
suppressed the CCL2/CCR2 axis, which is essential for the
egress of inflammatory monocytes from the bone marrow into
the bloodstream (130). This short-term fasting activated AMPK/
PPARa signaling in hepatocytes to lower the level of circulating
CCL2. Although monocyte dynamics are also regulated by the
CXCL12/CXCR4 axis in the bone marrow, the CXCL12
expression level was not affected by fasting (136). Fasting-
induced accumulation of monocytes in the bone marrow was
independent of fibroblast growth factor 21 (FGF21) and ketone
body production. Transcriptome analysis demonstrated that
monocytes were in a quiescent state during fasting. Notably,
upon infection with Listeria monocytogenes, monocytes normally
migrated from the bone marrow into the bloodstream and
eliminated the pathogen without causing inflammation.
Frontiers in Immunology | www.frontiersin.org 8
Collins et al. showed that 50% dietary restriction promoted
the accumulation of circulating CD8+ memory T cells in the
bone marrow in an S1P/S1P receptor 1- and CXCL12/CXCR4-
dependent manner (54). CD8+ memory T cells resided in WAT
under physiological conditions; however, they preferentially
migrate to the bone marrow at low-energy status. Under CR
conditions, the concentration of glucocorticoid is increased in
the blood but decreased in the bone marrow. Because a high
concentration of glucocorticoid induces apoptosis in memory
CD8+ T cells, these cells can survive in the bone marrow under
CR conditions. Furthermore, dietary restriction led to the
differentiation of adipocytes that generate fatty acids. Memory
CD8+ T cells actively utilize fatty acids for mitochondrial FAO
(137–139). Thus, the bone marrowmicroenvironment provides a
niche for memory CD8+ T cells under the low-energy conditions
(54). It is worth noting that dietary restriction was also found to
enhance the protective function of memory T CD8+ cells;
dietary-restriction promoted clearance of influenza and
Yersinia pseudotuberculosis in mice.

These recent studies revealed the function of the bone marrow
as a shelter for several immune cell subsets during metabolic
adversity. Such a multiorgan-trafficking of immune cells may
occur even under normal nutritional conditions. In support of
this notion, we observed that naive B cells show circadian
oscillation between the bone marrow and PPs. The number of
naive B cells in the bone marrow increased during the daytime
when mice usually take little food, whereas the number decreased
during nighttime in response to food intake. Furthermore, FoxO1,
which is upregulated during CR, regulates naïve T cell migration
to the secondary lymphoid tissues by increasing the expression of
CCR7 and L-selectin. We are only beginning to learn about the
multiorgan-trafficking of immune cells as a fasting response.
Further investigation will clarify the underlying mechanisms in
this emerging field.
A CLINICAL PERSPECTIVE ON
IMMUNOMETABOLISM

In addition to dietary interventions, drugs targeting key nutrient
signaling pathways (e.g., AMPK and mTOR) have attracted
substantial attention in efforts to improve metabolic and
inflammatory disorders. Rapamycin is best characterized as an
inhibitor of mTORC1, and its chronic administration also inhibits
mTORC2 in some tissues. Rapamycin has been clinically used as
an immunosuppressant to prevent post-transplantation rejection.
Animal studies have also corroborated that rapamycin-dependent
mTOR inhibition is effective for various diseases, including
ischemic stroke, rheumatoid arthritis, and EAE (140–143)
(Table 1). The anti-inflammatory effect of rapamycin treatment
is associated with the attenuation of Th17-cell differentiation as
well as the promotion of Treg-cell development (142, 143).
Moreover, the coadministration of rapamycin with FMS-like
tyrosine kinase 3 (FLT-3) ligand was shown to facilitate the
plasmacytoid dendritic cell-dependent induction of Treg cells,
February 2021 | Volume 11 | Article 623989

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Okawa et al. Immune Regulation by Metabolic Rewiring
thereby enhancing immune tolerance (144). Rapamycin was also
reported to alleviate the development of a murine atherosclerosis
model. During the initial phase of atherosclerosis, peritoneal
macrophages transform into foam cells that elicit plaque
formation inside the arterial vessels (145). Rapamycin was found
to induce autophagy in macrophages to prevent foam cell
development (146). However, rapamycin and everolimus, a
Frontiers in Immunology | www.frontiersin.org 9
derivative of rapamycin, possess only a narrow therapeutic index
because of their pleiotropic effects, which potentially cause
adverse effects.

Metformin, the first-line drug for type 2 diabetes, has the
potential to regulate immune responses through inducing
metabolic rewiring in immune cells such as T cells (Table 1). It
inhibits mitochondrial complex I and restrains hepatic
FIGURE 3 | Bone marrow serves as a reservoir for several immune cell subsets in response to calorie restriction (CR) or fasting. Under low-energy conditions, naïve B cells,
monocytes, and memory CD8+ T cells accumulate in the bone marrow. Fasting lowers CXCL13 levels in PPs and reciprocally increases the expression in the bone marrow.
This leads to the migration of naïve B cells from PPs to the bone marrow. On the other hand, GC B cells and IgA+ B cells undergo apoptosis. Fasting diminishes circulating
CCL2 levels through AMPK/PPARa signaling activation. Consequently, the egress of monocytes from the bone marrow is suppressed. Dietary restriction drives CD8+ memory
T cells to traffic toward the bone marrow in the S1P/S1PR1- and CXCL12/CXCR4-dependent manner. The bone marrow microenvironment provides a tissue-specific niche
for the maintenance of memory CD8+ T cells with low glucocorticoid concentration and abundant adipocytes.
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gluconeogenesis, with an increase in glucose utilization in peripheral
tissues (147). Such inhibition of mitochondrial complex I was found
to enhance hepatic AMPK, which in turn established a CR/fasting-
like metabolic status (148). A low concentration (0.5 mM) of
metformin inhibited hepatic mTORC1 through the AMPK-
related pathway in mice (149). Similar to dietary interventions,
metformin and a complex I inhibitor, rotenone, were reported to
suppress mitochondrial ROS generation and NLRP3-dependent
inflammasome formation in animal and human studies (150–
152). Accordingly, metformin treatment decreased IL-1b
production while increasing IL-10 in response to LPS (153).
Metformin treatment also suppressed the development of Th17
cells by inhibiting mTOR and STAT3 signaling, whereas it induced
Treg cells by enhancing AMPK signaling (154). These studies
demonstrate that metformin has a therapeutic effect on
inflammation-related diseases, including IBD, EAE, rheumatoid
arthritis, and psoriasis (154–158). These observations also raise
the possibility that a combination of dietary intervention and
metformin may induce synergy on the anti-inflammatory
responses. In a preliminary clinical trial, a combination of a
dietary restriction with metformin on obese people enforced
protective effects on insulin resistance (159). Interestingly, a low
concentration (10 µM) of metformin stimulated exhausted tumor-
infiltrating CD8+ T cells to upregulate IL-2, TNF-a, and IFN-g and
potentiated anti-tumor activity (160). Metformin also diminished
tumor-resident Treg cells that counteract anti-tumor immunity
(161). Although Treg metabolism largely depends on OXPHOS
through FAO, metformin-treated Treg cells undergo glycolysis.
These facts indicate that low-dose metformin augments anti-
tumor immunity by inducing metabolic rewiring.

Halofuginone (HF), a derivative of the plant alkaloid Dichroa
febrifuga is a pharmacological mimic of AAR. HF competitively
inhibited prolyl-tRNA synthetase, enhancing the intracellular pool
of uncharged tRNA that phosphorylates and activates GCN2
Frontiers in Immunology | www.frontiersin.org 10
(162). HF treatment selectively constrained Th17 differentiation,
but not Th1, and protected the development of EAE (100). The
administration of HF also inhibited IL-1b production by LPS-
stimulated macrophages and ameliorated the severity of DSS-
induced colitis (163). Additionally, HF promoted GC formation
andmemory B cell formation in the draining lymph nodes in mice
received vaccination (164). HF treatment also increased antigen-
specific effector CD4+ and CD8+ T cells upon the secondary
stimulation. Based on these observations, the pharmacological
mimic of AAR responses may be a promising strategy to dampen
inflammatory response and consolidate immunological memory
for vaccine antigens (Table 1).

Other drugs targeting the metabolic system have also become
key options for immune modulation. Dimethyl fumarate (DMF), a
derivative of the Krebs cycle intermediate fumarate (165). DMF
inactivated a glycolytic enzyme, glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and inhibited aerobic glycolysis in
activated, but not resting, macrophages (Table 1). The inhibition
of glycolysis by DMF limited differentiation and functions of CD4+

T cells cultured under Th1- and Th17-polarized conditions.
Innate immune cells also develop long-term memory upon

stimulation with bacterial products like b-glucan. This
phenomenon is termed as trained immunity (166). A metabolic
shift from OXPHOS to aerobic glycolysis, namely, Warburg-like
effect, is vital for b-glucan-induced trained immunity. Such a
metabolic alteration is caused by the activation of mTOR-HIF-1
pathway (167). The induction of trained immunity is also
dependent on mevalonate, a metabolite of cholesterol synthesis.
Mevalonate not only active the mTOR-HIF-1 pathway but also
cause epigenetic alternations characterized by enrichment of
H3K4me3 on the promoter region of IL6 and TNFA gene loci
(168). Inhibition of mevalonate synthesis by fluvastatin canceled
the increment of cytokine production as well as epigenetic
alternations induced by either b-glucan or oxidized low-density
TABLE 1 | Drugs targeting the metabolic pathways of immune cells.

Drugs Conventional application Targeting metabolism Immunological change Tissue New applications

Rapamycin
(sirolimus)
Everolimus

post-transplantation rejection
suppression

Inhibition of mTORC1
(mTORC2)

autophagy in macrophages↑
Th1/Th17 ↓
Treg ↑
memory CD8+ T cells ↑

Brain
arterial-
vessels

rheumatoid arthritis
EAE/MS
ischemic stroke
atherosclerosis
viral infection

Metformin type 2 diabetes Inhibition of mitochondrial
complex I
Activation of AMPK
Inhibition of mTOR

Inhibition of NLRP 3-
inflammasome
Th1/Th17 ↓
Treg/IL-10 ↑
IL-1b↓

brain
lung
liver
intestine
skin

IBD
MS
sepsis-induced acute lung
injury
psoriasis

Dimethyl fumarate Psoriasis Inhibition of GAPDH Activation of macrophages↓
Th1/Th17 ↓
Treg ↑

spleen
intestine
brain

EAE

Mevalonate a metabolite of cholesterol synthesis Activation of mTOR-HIF-1
pathway

trained monocyte ↑ (blood) innate immune memory ↑
cancer

Soraphen A Fungicide Inhibition of ACC1 Inhibition of FAS
Th17 ↓
Treg ↑

brain ischemic stroke

Halofuginone the plant alkaloid Dichroa-febrifuga Inhibition of prolyl-tRNA
synthetase
Activation of GCN2

Th17 ↓
GC formation ↑
memory CD8+ T cells ↑

intestine
brain

colitis
MS
vaccine efficacy↑
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lipoprotein in monocytes. Thus, cholesterol biosynthetic pathways
are considered as a drug target to interrupt innate immune
memory (Table 1).
CONCLUSION

Dietary interventions have profound effects on immune responses
through metabolic rewiring. Fasting has been shown to enhance
immune memory and suppress inflammation. TRF was shown to
recover the appropriate circadian rhythm, improving metabolic
disorders and optimizing immune responses. Moreover,
accumulating studies have demonstrated the molecular mechanisms
underlying these findings. Thus, drugs targeting the metabolic system
may become a critical option for immune modulation.

Meanwhile, dietary interventions of different types, durations,
and timings can have opposite effects on health and disease. The
benefits of dietary interventions can vary from patient to patient
when we apply such interventions in a clinical setting.
Experimental protocols have been performed to treat various
immune-related disorders with dietary interventions. Looking
ahead, we need to develop evidence-based, optimized protocols
to avoid adverse effects. New therapeutic approaches against type 2
diabetes and cardiovascular disease are currently being discussed
Frontiers in Immunology | www.frontiersin.org 11
and applied (169–171). It is reasonable to use the same approach
to treat inflammatory diseases and enhance vaccine efficacy.

In addition to local responses, an integrated immunometabolic
response is required for host survival in a state of energy deficit.
Recent studies have revealed the function of the bone marrow as a
shelter for immune cells during dietary deficiency. It is clear that
metabolic rewiring impacts immune cell dynamics, inducing inter-
organ fasting responses in the body. A deeper understanding of this
field could lead to the identification of novel drug targets.
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