
15https://journals.viamedica.pl/rpor

review article

reports of Practical Oncology and radiotherapy 
2022, volume 27, Number 1, pages: 15–22 

DOi: 10.5603/rPOr.a2021.0133
Submitted: 12.08.2021

accepted: 14.11.2021

Address for correspondence: Simona Borghesi, MD, Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, 
Via Curtatone 54, 52100 Arezzo, Italy, tel: +39 340 9125890, fax: +39 0575 254086; e-mail: s.borghesi@gmail.com

Stereotactic radiotherapy for brain oligometastases

Marco Lupattelli1, Paolo Tini2, Valerio Nardone3, Cynthia Aristei1, Simona Borghesi4, Ernesto Maranzano5, 
Paola Anselmo5, Gianluca Ingrosso1, Letizia Deantonio6, Michela Buglione di Monale e Bastia7

1Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
2Unit of Radiation Oncology, University Hospital of Siena, Italy

3Unit of Radiation Oncology, Ospedale del Mare, Napoli, Italy
4Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy

5Radiation Oncology Centre, S. Maria Hospital, Terni, Italy
6Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, Bellinzona-Lugano, Switzerland

7Department of Radiation Oncology, ASST Spedali Civili and Brescia University, Italy

this article is available in open access under creative common attribution-Non-commercial-No Derivatives 4.0 international (cc BY-Nc-ND 4.0) license, allowing to download 
articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially

© 2021 Greater Poland cancer centre.  
Published by via Medica.  
all rights reserved.
e-iSSN 2083–4640
iSSN 1507–1367

REPORTS OF PRACTICAL
ONCOLOGY AND
RADIOTHERAPY

ISSN: 1507–1367

introduction

Brain metastases are the most common metas-
tases in adults, accounting for more than one-half 
of all intracranial tumors. They are most associated 
with breast cancer, lung cancer, melanoma and, less 
frequently, colorectal and kidney carcinoma [1] 
and will develop in up to 40% of cancer patients 

and in 15–30% of patients with metastatic breast 
cancer [2]. 

In breast cancer, the principal risk factors are 
young age, negative receptor status and poorly dif-
ferentiated disease. Although a positive HER2 sta-
tus increased the incidence of developing brain me-
tastases in up to 30–40% of patients, the introduc-
tion of trastuzumab has changed prognosis in this 

AbstrAct

Brain metastases, the most common metastases in adults, will develop in up to 40% of cancer patients, accounting for more 
than one-half of all intracranial tumors. they are most associated with breast and lung cancer, melanoma and, less frequently, 
colorectal and kidney carcinoma.  

Magnetic resonance imaging (Mri) is the gold standard for diagnosis. For the treatment plan, computed tomography (ct) 
images are co-registered and fused with a gadolinium-enhanced t1-weighted Mri where tumor volume and organs at risk are 
contoured. alternatively, plain and contrast-enhanced ct scans are co-registered. Single-fraction stereotactic radiotherapy 
(Srt) is used to treat patients with good performance status and up to 4 lesions with a diameter of 30 mm or less that are 
distant from crucial brain function areas. Fractionated Srt (2–5 fractions) is used for larger lesions, in eloquent areas or in 
proximity to crucial or surgically inaccessible areas and to reduce treatment-related neurotoxicity. the single-fraction Srt 
dose, which depends on tumor diameter, impacts local control. Fractionated Srt may encompass different schedules. No 
randomized trial data compared the safety and efficacy of single and multiple fractions. Both single-fraction and fractionated 
Srt provide satisfactory local control rates, tolerance, a low risk of transient acute adverse events and of radiation necrosis the 
incidence of which correlated with the irradiated brain volume.  

Key words: stereotactic radiotherapy; radiosurgery; oligometastasis; brain metastases; hypofractionation; local control; 
toxicity; radionecrosis 

Rep Pract Oncol Radiother 2022;27(1):15–22



Reports of Practical Oncology and Radiotherapy 2022, vol. 27, no. 1

https://journals.viamedica.pl/rpor16

subgroup of patients [1, 3, 4]. In lung cancer, brain 
metastases developed in 22–54% of non-small cell 
lung cancer patients with activating mutations in 
the epidermal growth factor receptor (EGFR) gene. 
Brain metastases will develop in up to 50% of pa-
tients with small cell lung cancer in their life-time 
[5, 6], with 10% being detected because of related 
symptoms. Advanced stage melanoma patients had 
a similar 50% risk [7]. In contrast, brain metastases 
developed in only about 2% of cases with renal cell 
carcinoma and colorectal cancer [8, 9].

Nowadays, in order to achieve durable control of 
brain disease, minimize the early and late adverse 
effects of therapy and maintain quality of life, sur-
gery and radiotherapy are the treatment of choice. 
In decision-making the following prognostic fac-
tors should be considered: Karnofsky performance 
status, age, systemic disease status, availability of 
systemic treatment, patient preferences, median 
survival associated with the underlying histology, 
number and size of brain metastases, as well as 
their location in either eloquent or non-eloquent 
cerebral regions [10]. 

Surgery alone was insufficient for long-term lo-
cal control. Adding postoperative whole brain radi-
ation therapy improved local control rates, without 
providing a survival benefit and increasing the risk 
of cognitive deficits [11–14].

Increasingly popular options are single-fraction 
and fractionated stereotactic radiotherapy (SRT), 
with both providing satisfactory local control rates 
and a low risk of radiation necrosis [15]. Single-frac-
tion SRT is used to treat patients with a good per-
formance status and up to 4 lesions with a diameter 
of 30 mm or less [16–17] that are distant from crucial 
brain function areas. Fractionated SRT (2–5 frac-
tions) is used for larger lesions, in eloquent areas 
or in proximity to crucial or surgically inaccessible 
areas and to reduce treatment-related neurotoxicity 
[18–20]. It aims at reducing the risk of adverse events 
with large metastases and maintaining satisfactory 
local control and has become widespread with the 
expansion of frameless techniques. In an adjuvant 
setting, a phase III randomized trial showed SRT 
significantly improved local control compared with 
resection alone of one to three brain metastases [18].

This overview analyzed the experience and 
trends in SRT in the treatment of brain oligometas-
tases, identifying whether radiation therapy mo-
dalities impacted outcomes.

Sources of information 
Up to February 2021, Pubmed and the Cochrane 

library were searched for relevant literature. 

imaging for staging and treatment 
planning

When neurological symptoms manifest, com-
puted tomography (CT) is the first-line imaging 
test. When positive, the second level is the gold 
standard magnetic resonance imaging (MRI) 
which best defines size, location and number of 
lesions, as well as peritumoral oedema and mass 
effect. In MRI, T1-weighted with gadolinium and 
T2-weighted sequences are commonly performed 
[21–23]. Single-fraction SRT is performed with 
a Gamma Knife (Elekta AB, Stockholm, Sweden) 
or linear accelerators that are equipped with micro 
multi-leaf collimators and a high-dose rate or with 
a CyberKnife (Accuray, Sunnyvale, CA, USA). Lin-
ear accelerators are also used for fractionated treat-
ments [15, 16]. For simulation purposes, the patient 
is placed in a supine position and a stereotactic 
frame is applied to the head using local anaesthesia 
for Gamma Knife SRT. A volumetric MRI is done 
after headframe placement in order to define target 
volumes and crucial areas. A modified stereotactic 
frame or frame-less approach with a 3-point ther-
moplastic fixation mask is often used with linear 
accelerator-based systems. A CT scan with 1–2 mm 
slice thickness is acquired from the cranial vertex 
to the mid-cervical spine. For contouring tumor 
volume and organs at risk CT images are co-reg-
istered and fused with a gadolinium-enhanced 
T1-weighted MRI [13, 17, 19]. Alternatively, plain 
and contrast-enhanced CT scans are co-registered.

The gross tumor volume (GTV) for definitive 
treatment and the clinical target volume (CTV) for 
adjuvant treatment of the surgical bed are delin-
eated by the T1-weighted MRI with gadolinium. 
If a frame-based SRT is performed, planning tar-
get volume (PTV) corresponds to the GTV. When 
a thermoplastic fixation mask is used, the PTV is 
based on the set-up error and reproducibility of 
the patient’s position; a 2–3 mm margin is com-
monly applied. Organs at risk, including the brain, 
brainstem, chiasm, optic nerves, cochlea, and hip-
pocampus also have to be contoured [18, 19] and 
the planned doses are an integral part of the quality 
control before treatment plan approval.
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The type of image-guided radiotherapy (IGRT) 
depends on the treatment machine. When treat-
ments are performed on a linear accelerator, a cone 
beam CT is the standard. When treatments are de-
livered by tomotherapy, a megavoltage CT is ac-
quired for IGRT. When dedicated machines, such 
as Gamma Knife and CyberKnife, are used, or-
thogonal kV X-rays are performed. 

Doses, fraction schedules 
and dose-constraints

As determined by the RTOG 90-05 dose-esca-
lation trial [24], the maximum tolerated doses of 
single fraction SRT were 24 Gy, 18 Gy, and 15 Gy, 
respectively, for tumors ≤ 20 mm, 21–30 mm, and 
31–40 mm in diameter. Notably, tumors 21-40 mm 
were 7.3–16 times more likely to develop grade 3–5 
neurotoxicity than tumors < 20 mm. 

Local control after SRT depends on dose. After 
a single dose of 21 Gy long-term local control was 
achieved in 80% of patients, dropping to 50% when 
15 Gy or less was administered [25]. Today, a single 
fraction of at least 20 Gy is standard for brain me-
tastases of 20 mm. 

The risk of radionecrosis correlated with irradi-
ated brain volume [24]. No data from randomized 
trials are available comparing safety and efficacy of 
single and multiple fractions. A recent meta-anal-
ysis designed to evaluate the safety and efficacy of 
SRT in 2–5 fractions versus single-fraction SRT 
showed that fractionated SRT enhanced safety and 
was as efficacious as the single-fraction in the treat-
ment of large brain metastases. In fact, the inci-
dence of radionecrosis was potentially reduced by 
68% in metastases measuring 4 to 14 cm3 and/or 
2 to 3 cm in diameter, and by 44% in metastases 
measuring > 14 cm3 and/or > 3 cm in diameter [19]. 

Kim et al. retrospectively compared 36 Gy in 6 
fractions to 20 Gy single-fraction SRT. At 1-year 
follow-up, no differences were found in local con-
trol while a significant reduction was observed in 
neurotoxicity (5% vs. 17%; p = 0.005) [26]. 

Several retrospective studies attempted to estab-
lish the best fractionation and total dose. Fahrig et 
al. compared 3 schedules (33.5 Gy in 5 fractions, 
40 Gy in 10 fractions, 35 Gy in 7 fractions) in 150 
patients with 228 brain metastases. For metastases 
over 30 mm in size, schedules of 5 and 7 fractions 
achieved a better local control [27]. After adminis-

tering 24–35 Gy in 3–7 fractions, 1-year local con-
trol rates ranged from 70 to 90% [28–31]. Notably, 
Martens et al. advised a treatment schedule corre-
sponding to an equivalent dose in 2 Gy (EQD2) > 35 
Gy [30]. Eaton et al. tested various schedules with 
a total dose of 21–30 Gy in 3–6 fractions, finding 
similar local control and radionecrosis rates [31]. 
With 30–42 Gy in 3 fractions, the 1-year local con-
trol rate was over 80%, with 12% radionecrosis [29]. 
Finally, a review showed that a single fraction of 20 
Gy or 8.5 Gy for 3 fractions achieved a 1-year local 
control rate of 70% [25].

After brain metastasis resection, single-fraction 
SRT to the surgical cavity is preferable to adjuvant 
whole brain radiotherapy when patients have no or 
few other lesions that are suitable for SRT [11–13, 
32]. In a multi-centre cooperative group trial, 194 
patients with resected brain metastases were ran-
domly assigned to postoperative single fraction SRT 
(12–20 Gy, depending on cavity volume) or whole 
brain radiotherapy (30 Gy in 10 fractions or 37.5 
Gy in 15 fractions). At 6 months follow-up, SRT 
was associated with a lower risk of cognitive de-
terioration (52 vs. 85% whole brain radiotherapy), 
worse surgical site control rates (80 vs. 87 %) and 
overall intracranial control rates (55 vs. 81%) [32]. 
Median OS was similar in both groups (12.2 vs. 11.6 
months). A lower dose delivered to a larger surgical 
bed may account for the differences. A recent meta-
nalysis by Lahrer et al. addressed this issue, advising 
fractionated adjuvant SRT for large surgical beds of 
brain metastases [19]. Other dose and fractionation 
schedules [33–39] are reported in Table 1.

The most common late complication of SRT 
for brain metastases is radiation necrosis, which 
occurred, from six months to several years after 
treatment, in approximately 10% of cases [40–42]. 
Radiation necrosis rates after postoperative SRT 
ranged from 4 to 18% [43]. The irradiated brain 
volume was its most predictive factor: normal brain 
tissue volumes receiving 10–12 Gy (V10–V12) in 
a single dose should be under 5–15 cc [24, 44–47]. 
In fractionated treatments, data from a review sug-
gested a V28 < 7cc [43]. Since late brainstem dam-
age is a life-threatening complication a maximum 
dose of 12.5 Gy is recommended in single-fraction 
SRT. On the other hand, a tumor volume > 1 cc 
was the only risk factor for brainstem complication 
after single-fraction SRT at a median dose of 16 Gy 
[48]. The optic chiasm dose should be limited to 
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8 Gy. Hearing complications, especially in acoustic 
neurinomas, are minimized with a mean cochlear 
dose threshold of 4–6 Gy. A maximum dose of 
12–14 Gy is advised to maintain serviceable hearing 
[49–54]. Finally, although SRT dose limits for the 
hippocampus are still lacking, long-term memory 

impairment after fractionated SRT was associated 
with an EQD2 over 7.3 Gy delivered to 40% of the 
bilateral hippocampus area [55].

Outcome evaluation

Contrast-enhanced MRI is the optimal modality 
for evaluating outcomes and disease recurrence in 
the brain. It should be performed every 2–3 months 
after completing radiotherapy for the first year and 
repeated at the same frequency if clinically indi-
cated [18, 19]. 

Precise evaluation of tumor response or pro-
gression is not always easy. When imaging find-
ings are doubtful, apparent diffusion coefficient 
(ADC) values can help in evaluating treatment 
results as they may distinguish radiation-induced 
necrosis from tumor recurrence [56]. MRI with 
dynamic contrast-enhanced (DCE) sequences as 
well as spectroscopy may identify metabolic chang-
es before morphological ones [57, 58]. To differ-
entiate radionecrosis from tumor progression in 
50 brain metastases treated with single dose SRT, 
6-[18F]-fluoro-L-3,4-dihydroxyphenylalanine 
(F-DOPA) positron emission tomography (PET) 
was performed, appearing more accurate than per-
fusion-weighted MRI [59]. 

treatment toxicity

High dose per fraction SRT of brain metastases 
is associated with satisfactory tolerance, a low risk 
of transient acute adverse events and less cogni-
tive impairment than whole brain radiotherapy. 
Radiation necrosis, a late complication, appears at 
follow-up imaging, as increased enhancement at 
the SRT site accompanied by surrounding oedema.

Major risk factors for radiation necrosis are le-
sion size, re-irradiation, and volume of healthy irra-
diated brain tissue. Other factors are the total dose, 
prescription isodose and treatment technique [24, 
40]. Risk of radionecrosis correlated with V10 and 
V12 [24, 40, 47, 60–62]. Although radionecrosis 
was reported to range from 5 to 32%, reaching up 
to 50% in retrospective analyses [36, 47, 63], in pro-
spective studies its risk was close to 3% [13, 64, 65] 
and under 10% in a series of 2200 metastases treat-
ed with GammaKnife. Median time to occurrence 
was 7 months, with symptoms in 60% of cases [66] 
correlating to > 2.1 cm tumor diameter, V12>3.3cc, 

table 1. Selected series of brain metastases treated by 
single-fraction and fractionated stereotactic radiotherapy

Authors Total dose and fractions

Mahajan et al.

(2017) [18]

12 Gy/1 fraction

14 Gy/1 fraction

16 Gy/1 fraction

abuodeh et al.

(2016) [33]
25 Gy/5 fractions

ling et al.

(2015) [34]
22 Gy (median dose)/1–5 fractions

Minniti et al.

(2013) [35]
27 Gy/3 fractions

Brennan et al.

(2014) [36]
18 Gy (median dose) /1 fraction

Shaw et al.

(2000) [24]

15 Gy/1 fraction

18 Gy/1 fraction

24 Gy/1 fraction

Kim et al.

(2011) [26]

20 Gy (median dose)/1 fraction

36 Gy/6 fractions

Fahrig et al.

(2007) [27]

30-35 Gy/5 fractions

40 Gy/10 fractions

35 Gy/7 fractions

Martens et al.

(2012) [30]

30–35 Gy/6–7 fractions 

30 Gy/5 fractions 

32-40 Gy/7–10 fractions 

25-30 Gy/5–6 fractions

eaton et al.

(2013) [31]

30 Gy/5 fractions 

24 Gy/4 fractions 

21 Gy/3 fractions

Narayana et al.

(2007) [28]
30 Gy/5 fractions

Saitoh et al.

(2010) [29]

42 Gy/3 fractions 

39/3 fractions

Brown et al.

(2017) [32]

20 Gy/1 fraction

12 Gy/1 fraction

ahmed et al.

(2014) [37]

30 Gy/5 fractions

20 Gy/5 fractions

Keller et al.

(2017) [38]
23.1 Gy/3 fractions

Pessina et al.

(2016) [39]
30 Gy/3 fractions

Navarria et al.

(2020) [76]

24 Gy/1 fraction

24 Gy/3 fractions
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and V10 > 4.3cc. The risk of radionecrosis was not 
restricted to the first year after treatment as 26% of 
radionecrosis developed in up to 48 months of fol-
low-up, suggesting that imaging should be repeated 
in patients with longer survival [67]. Brainstem ra-
dionecrosis was reported in 7.4% of 596 brainstem 
metastases treated by GammaKnife. Risk factors 
were tumor volume > 1 cc (confirming Kased’s re-
sults [48]), marginal dose > 16 Gy, and radiotherapy 
delivered < 4.5 months previously [68]. 

With fractionated SRT radionecrosis occurred 
in 2–10% of cases [17, 26–27, 69, 70], with a higher 
risk in large tumors (30 mm). Radionecrosis oc-
curred in 6% of patients after lesions of 21–30 mm 
and 31–50 mm were treated with, respectively, 
27 Gy in 3 fractions and 32 Gy in 4 fractions [71]. 
At a 1-year median follow-up 8% radionecrosis 
was observed in 289 patients with > 20 mm brain 
metastases who received a total dose of 27 Gy in 
3 fractions [72]. Large volumes and brain volumes 
receiving 18 Gy (V18) > 30 cc emerged as signifi-
cant risk factors.

In general, radiation necrosis is asymptomatic 
and diagnosed by MRI. In some cases, it may be 
symptomatic with focal neurological signs and 
symptoms related to cerebral oedema. Corticos-
teroids are commonly used to treat symptoms. Hy-
perbaric treatment, high-dose vitamin E, heparin 
or warfarin are prescribed for patients with low 
tolerance, concomitant morbidities counter-indi-
cating steroid use, or side effects due to long-term 
steroid therapy. No data on efficacy are available 
from controlled clinical trials. In severe cases of ra-
dionecrosis, resection or bevacizumab, an anti-an-
giogenic antibody may be useful [16, 67, 73–75] 
even though most patients relapsed when the drug 
was suspended and treatment resumption was not 
efficacious.
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