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Abstract: The present study explored the effects of ascorbic-acid (AA)/retinol and timed inflam-
mation on the stemness, the regenerative potential, and the transcriptomics profile of gingival
mesenchymal stem/progenitor cells’ (G-MSCs). STRO-1 (mesenchymal stem cell marker) immuno-
magnetically sorted G-MSCs were cultured in basic medium (control group), in basic medium
with IL-1β (1 ng/mL), TNF-α (10 ng/mL) and IFN-γ (100 ng/mL, inflammatory-medium), in basic
medium with AA (250 µmol/L) and retinol (20 µmol/L) (AA/retinol group) or in inflammatory
medium with AA/retinol (inflammatory/AA/retinol group; n = 5/group). The intracellular levels
of phosphorylated and total β-Catenin at 1 h, the expression of stemness genes over 7 days, the
number of colony-forming units (CFUs) as well as the cellular proliferation aptitude over 14 days,
and the G-MSCs’ multilineage differentiation potential were assessed. Next-generation sequencing
was undertaken to elaborate on up-/downregulated genes and altered intracellular pathways. G-
MSCs demonstrated all mesenchymal stem/progenitor cells characteristics. Controlled inflammation
with AA/retinol significantly elevated NANOG (p < 0.05). The AA/retinol-mediated reduction in
intracellular phosphorylated β-Catenin was restored through the effect of controlled inflammation
(p < 0.05). Cellular proliferation was highest in the AA/retinol group (p < 0.05). AA/retinol coun-
teracted the inflammation-mediated reduction in G-MSCs’ clonogenic ability and CFUs. Amplified
chondrogenic differentiation was observed in the inflammatory/AA/retinol group. At 1 and 3 days,
the differentially expressed genes were associated with development, proliferation, and migration
(FOS, EGR1, SGK1, CXCL5, SIPA1L2, TFPI2, KRATP1-5), survival (EGR1, SGK1, TMEM132A), dif-
ferentiation and mineral absorption (FOS, EGR1, MT1E, KRTAP1-5, ASNS, PSAT1), inflammation
and MHC-II antigen processing (PER1, CTSS, CD74) and intracellular pathway activation (FKBP5,
ZNF404). Less as well as more genes were activated the longer the G-MSCs remained in the inflam-
matory medium or AA/retinol, respectively. Combined, current results point at possibly interesting
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interactions between controlled inflammation or AA/retinol affecting stemness, proliferation, and
differentiation attributes of G-MSCs.

Keywords: inflammation; ascorbic acid; retinol; stem cell; gingiva

1. Introduction

Initiation of periodontitis generally necessitates the stimulation of the periodontal
immune system through a bacterial dysbiosis, consequently setting complex inflammatory
cascades in motion, characterized by the liberation of a variety of pro-inflammatory cy-
tokines, mainly tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1 beta (IL-1β), IL-4,
IL-6, IL-17 as well as interferon-gamma (IFN-γ) [1,2]. Although such pro-inflammatory
response is pivotal in combating the invading pathogens and in boosting subsequent
periodontal stem/progenitor cells-mediated reparative/regenerative endeavors, a long-
lasting not adequately self-limiting pro-inflammatory insult could detrimentally affect the
tooth-supporting and investing cellular components of the periodontium [3]. Clinically, gin-
gival mesenchymal stem/progenitor cells (G-MSCs) are in constant immuno-regenerative
crosstalk with their surrounding micro-environment [4–6], with controlled and precisely
timed pro-inflammatory stimuli exerting positive effects on their stemness and repara-
tive/regenerative attributes [7,8].

Ascorbic acid (AA) and retinol are antioxidants, with a multitude of significant host
inflammation-modulatory effects [9–12] on periodontal disease and the outcome of repar-
ative/regenerative periodontal therapies [13,14]. While AA promotes wound healing and
collagen synthesis [12], AA and retinol boost cellular metabolism, proliferation, and differenti-
ation, while impeding apoptosis [15–19]. Chronic periodontitis was found to be associated
with a lower retinol intake in young Korean women [9] and low serum levels of a variety
of carotenoids, in particular beta-cryptoxanthin and beta-carotene, were demonstrated to
be connected with an elevated periodontitis prevalence in a sample of 1258, 60–70-year-old
Western European men [10]. Every other day oral administration of all-trans retinoic acid
in a Porphyromonas gingivalis-induced mice periodontitis model reduced the inflammatory
cellular infiltrate, enhanced the T-regulatory cell activation, and arrested further periodontal
inflammation-mediated tissue destruction [11].

Most strikingly, recent reports demonstrated the ability of AA and retinol, at specific
concentrations, to impact cellular epigenetics, through nuclear bases demethylation, with a
resultant de-differentiation of adult cells into pluripotent ones [20,21], a perspective with
great potential for periodontal reparative/regenerative endeavors. The current study’s aim
was to explore for the first time the effects of AA/retinol in isolation and combined with
controlled and timed pro-inflammatory stimulation on stemness, proliferation, Wnt/β-
catenin pathway activation, differentiation, and mRNA transcriptomics of G-MSCs in vitro
and to elaborate on the associated intracellular pathways.

2. Materials and Methods
2.1. G-MSCs’ Isolation, Characterization and Multilineage Differentiation

The study’s protocol was reviewed by the Ethical Committee of the Christian-Albrechts
University of Kiel, Kiel, Germany (IRB:513/17). Gingival connective tissue cells were iso-
lated from free gingival collars from five healthy patients (Table 1 shows the donors’ age
and gender), and STRO-1 immuno-magnetically sorted to obtain G-MSCs as previously
described [22]. Colony-forming units (CFUs), multilineage differentiation potential and
CD14, CD34, CD45, CD73, CD90, and CD105 stemness marker expression were examined
on second passage G-MSCs (FACS-Calibur-E6370 and FACS-Comp5.1.1 software, Becton
Dickinson, Franklin Lakes, NJ, USA), as previously described [22].
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Table 1. Donors’ gender and age.

Donor’s Number Gender Age

1 Male 18
2 Female 20
3 Female 19
4 Male 22
5 Male 20

2.2. Experimental Groups

Second passage G-MSCs were cultured in basic medium, consisting of Eagle’s minimum es-
sential medium alpha modification (Sigma-Aldrich GmbH, Hamburg, Germany) supplemented
with antibiotics (100 U mL−1 penicillin, 100 µg mL−1 streptomycin) and 1% amphotericin
(all from Biochrom, Berlin, Germany) (control group), in basic medium, with 1 ng/mL IL-1β,
10 ng/mL TNF-α and 100 ng/mL IFN-γ (Pepro Tech Inc., Rocky Hill, NJ, USA) [5,6,8,23–25] (in-
flammatory group), in basic medium with 250 µg/mL AA [21] and 20 µmol/L retinol [26]
(AA/retinol group), or in inflammatory medium with 250 µg/mL AA and 20 µmol/L
retinol (inflammatory/AA/retinol group). Media were exchanged three times per week.

2.3. G-MSCs’ mRNA Expression

NANOG, octamer-binding-transcription-factor-4A (OCT4A) and sex-determining-
region-Y-box-2 (SOX2) stemness markers were assessed on mRNA level in the four groups
(n = 5). mRNA isolation was carried out at 1, 3, 5, and 7 days (RNeasy kit, Qiagen, Hilden,
Germany). cDNA was produced from RNA (1 µg/µL) by reverse transcription (QuantiTect
Reverse Transcription Kit, Qiagen, Hilden, Germany) in 20 µL reaction mixture (4 pmol of
each primer, 10 µL of LightCycler Probes Master mixture (Roche, Indianapolis, IN, USA)
and 5 µL specimen cDNA). Real-time polymerase chain reaction (rt-PCR; LightCycler
96 Real-Time PCR System, Roche Molecular Biochemicals, Indianapolis, IN, USA) was
performed. Nineteen potential reference genes (18S, ACTB, ALAS, β-2M, β-Globin, G6PDH,
GAPDH, GUSB, HPRT1, IPO8, PBGD, PGK1, PPIA, RPL13A, RPLP0, SDHA, TBP, TFRC,
and YWHAZ) were pre-examined for the most suitable reference gene, which would not be
altered by the experiment (NormFinder). Apart from PGK1, all tested genes were altered.
Thus, PGK1 (a housekeeping gene) was deemed suitable to be utilized (Table 2). Relative
quantification of all genes under examination was performed using the 2ˆ-∆∆Ct method in
triplicate and averaged.

Table 2. Real-time PCR primers (Roche, Indianapolis, IN, USA).

Gene Gene Symbol Accession ID Assay ID

RUNX2 RUNX2 H. sapiens ENST00000359524 113380
ACAN ACAN H. sapiens ENST00000439576 138057

ALP ALP H. sapiens ENST00000374840 103448
LPL LPL H. sapiens ENST00000311322 113230

NANOG NANOG H. sapiens ENST00000229307 148147
OCT4A OCT4 H. sapiens ENST00000259915 113034
PGK1 PGK1 H. sapiens ENST00000373316 102083

PPARγ PPARγ H. sapiens ENST00000287820 110607
SOX2 SOX2 H. sapiens ENST00000325404 111867

Abbreviations: ACAN: Aggrecan; ALP: alkaline phosphatase; LPL: lipoprotein lipase; OCT4A: octamer-binding
transcription factor 4A; PGK1: Phosphoglycerate kinase-1; PPARγ: proliferator-activated receptor gamma;
RUNX2: Runt-related transcription factor 2; SOX2: sex-determining region Y-box 2.

2.4. ELISA

SOX2, OCT4, and NANOG were measured using simple step ELISA Kits (ABCAM,
Cambridge, UK). G-MSCs (n = 5) were cultivated on six-well plates and stimulated ac-
cording to the defined groups, followed by PBS washing, 600 µL lysis buffer addition,
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and aliquoting. ELISA measurements were carried out following the manufacturer’s
instructions. Quantitation of bound analyte was achieved photometrically through detec-
tion of the colored oxidized TMB product at 450 nm (µQuant-spectrophotometer, BioTek;
Mikrowin-software, Mikrotek Laborsysteme, Overath, Germany).

For evaluation of phosphorylated (pβ-catenin, pS45 ELISA Kit, Abcam, Cambridge, UK)
and total (tβ-catenin, Abcam, Cambridge, UK) intracellular β-catenin levels, 8 × 104 G-MSCs
were cultivated per well in six-well plates until reaching 85% confluence. Subsequently,
G-MSCs were stimulated for one hour in the different groups and washed with 3 × 350 µL
1× wash buffer PT followed by the addition of 350 µL chilled 1× cell extraction Buffer.
Fifty microliters standard or sample was mixed with 100 µL pβ-catenin or tβ-catenin
detection antibody and incubated in the dark on a plate shaker (400 rpm, 37 ◦C, 5% CO2,
15 min), followed by Stop Solution (100 µL) and 450 nm optical density (OD) measurements
(MultiskanGO Microplate Spectrophotometer, Thermo Fisher, Langenselbold, Germany).
Intracellular %pβ-catenin and %tβ-catenin were determined employing standard curves.
All experiments were performed in duplicates and averaged.

2.5. mRNA Next-Generation Sequencing

mRNA from three different probands grown in control or inflammatory medium and
subjected to either treatment with AA/retinol or not were extracted. Differential expression
analysis (DEA) was conducted on days 1 and 3 of exposure (n = 24). Sequencing of samples
was performed at the next-generation sequencing (NGS) lab at the Institute of Clinical
Molecular Biology (IKMB) in Kiel on an Illumina MiSeq. Raw FastQ files were aligned,
quality controlled, and transformed into read counts, using Nextflow nfcore/RNAseq
pipeline https://nf-co.re/rnaseq (accessed on 22 February 2021) [27]. Read counts were
analyzed in Rv3.6.2 using edgeR [28] and DeSEQ2 Packages [29]. Gene counts were rlog
transformed and visualized in heatmaps in DeSEQ2. Differential expression analysis (DEA)
was carried out in edgeR, using the Quasi-likelihood F-test (QLF) function, which gives
stricter error rate control by accounting for the uncertainty in dispersion estimation and
allows for multi-factor contrast, while controlling the individual subjects, thus correcting
for inter-individual variation in the samples [30]. Contrasts were modeled separately
for effects of medium (control or inflammatory medium) and treatment (AA/retinol or
not) on days 1 and 3, as well as grouped (medium with treatment) together leading to
three different contrasts in each experiment day. To control the false discovery rate (FDR),
the Benjamini–Hochberg method was employed to correct for multiple testing. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis [31] was carried out for
each day of the experiment and visualized for differently expressed genes, using R-package
“clusterprofiler” [32].

2.6. CFUs and Cellular Proliferation

G-MSCs passage (1 × 104) were cultivated per well per group in 24-well culture
plates (n = 5). Cellular counts were established daily by two independent examiners for
14 consecutive days and cellular proliferation curves were plotted for the different groups.

Second passage 1.63/cm2 G-MSCs of the different groups were seeded in 10 cm diameter
dishes (n = 5). On the 14th day, cell cultures were fixed using chilled 100% methanol and
stained with 0.1% crystal violet for 10 min. Two independent examiners counted the CFUs
under a phase-contrast inverted microscope, where aggregations of ≥50 cells were considered
as a colony.

2.7. Multilineage Potential of Stimulated G-MSCs

For five days, G-MSCs were pre-stimulated in the experimental groups (n = 5). Subse-
quently, they underwent osteogenic (14 days), adipogenic (21 days), or chondrogenic (35 days)
differentiation in an inflammation-free environment with their respective inductive media
as described above. Runt-related transcription factor 2 (RUNX2) and alkaline phosphatase
(ALP) mRNA expression as well as qualitative and quantitative Alizarin-Red staining was

https://nf-co.re/rnaseq
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conducted [33]. Lipoprotein lipase (LPL) and proliferator-activated receptor gamma (PPARγ)
mRNA expression as well as quantitative and qualitative Oil-Red-O evaluation were exam-
ined to confirm adipogenic differentiation [34]. Aggrecan (ACAN) mRNA expression and
Alcian-Blue/nuclear-fast-red staining quantification were evaluated as evidence for chondro-
genic differentiation [35]. All PCR primers were supplied by Roche and the real-time PCR
was conducted as described above in triplicate and averaged (Table 2).

2.8. Statistical Analysis

Normality of the data was examined, employing the Shapiro–Wilk Test. Data proved to
be not normally distributed. Hence, differences in %tβ-catenin, %pβ-catenin, CFUs, mRNA
expressions, and quantitative adipogenic, osteogenic, and chondrogenic differentiation
between the experimental groups were examined, using the Friedman test (SPSS 23, IBM,
Chicago, IL, USA). The significance level was set at p ≤ 0.05.

3. Results
3.1. Characterization of G-MSCs

Fibroblast-like cell clusters grew out of adherent gingival connective tissue masses
(Figure 1A). G-MSCs exhibited classical CFUs (Figure 1B), and were CD14−, CD34−, CD45−,
CD73+, CD90+, and CD105+ (Figure 1C). Through osteogenic induction, G-MSCs deposited
Alizarin-Red-positive calcified deposits, in distinction to their controls (Figure 1D,E). Adi-
pogenic induction of G-MSCs formed Oil-Red-O-positive intracellular inclusion bodies, in
distinction to their controls (Figure 1F,G). Chondrogenic induction of G-MSCs deposited
Alcian-Blue/acid-fast-red-positive glycosaminoglycans, in distinction to their controls
(Figure 1H,I).
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Figure 1. Phase contrast inverted microscopic picture of gingival cells growing out from a gingival connective tissue
specimen (A). G-MSCs’ colony-forming units (CFUs) (B). G-MSCs surface markers’ expression flowcytometrically (C).
Osteogenic induction of G-MSCs (Alizarin-Red stained; (D)) and respective controls (E) Adipogenic induction of G-MSCs
(Oil-Red-O stained; (F)) and respective controls (G). Chondrogenic induction of G-MSCs (Alcian Blue/acid-fast-red staining;
(H)) and respective controls (I).
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3.2. Stemness Markers’ Expression

Regarding the expression of stemness genes, significant differences between the
groups were notable at day 1 for SOX2 expression, at day 5 for OCT4A expression and at
days 5 and 7 for NANOG expression (p < 0.05). On the protein level, at day 1, significant
differences were further evident for NANOG expression between groups (p < 0.05), with a
synergistic effect of AA/retinol and inflammation evident only at day 3 (p < 0.05, Friedman).
No expressions were detected for SOX2 or OCT4 on the protein level (Figure 2).
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Figure 2. mRNA and protein expressions of stemness markers (NANOG, OCT4A, SOX2) in G-MSCs challenged by
AA/retinol and inflammation at 1, 3, 5, and 7 days (box and whisker plots with medians/quartiles). Significant differ-
ences denoted with asterisks (n = 5; * p < 0.05, Friedman test). Abbreviations: SOX2: sex-determining region Y-box 2;
OCT4A: octamer-binding transcription factor 4A.

3.3. mRNA Next Generation Sequencing

Rlog-transformed gene counts showed a clear cluster pattern depending on probands
(Figure 3A,B and Figure S1), appearing to be the main source of variation in the gene
expression profiles. Further analysis was performed in edgeR, allowing for complex multi-
factor designs and adjustment for the individual effect of different probands. Table 3
provides an overview of the top three differentially expressed (DE) genes on days 1 and 3
(A full list of DE genes for each effect is provided in Supplementary Table S1).

Table 3. Top three differentially expressed genes for the effect of growth medium, AA/retinol treatment, as well as the
combined effect of inflammatory medium and AA/retinol treatment. Effects have been adjusted for the influence of different
probands. LogFC = log Fold Change, LogCPM = log counts per million. Correction for multiple testing was performed with
the Benjamini–Hochberg method, significance level was set to FDR < 0.05.

Ensemble Entrez ID Gene
Name LogFC p-Value FDR

Medium Treatment

Day 1

Treatment +
medium

Gen 1 ENSG000001058257980 TFPI1 1.46 1.82 × 10−13 1.41 × 10−9

Gen 2 ENSG0000013436310468 FST −0.43 5.48 × 10−13 2.0 4× 10−9

Gen 3 ENSG000000960602289 FKBP5 1.54 6.66 × 10−13 2.04 × 10−9

Medium
Gen 1 ENSG000001058257980 TFPI2 1.98 5.85 × 10−14 9.06 × 10−10

Gen 2 ENSG000001637356374 CXCL5 3.86 5.63 × 10−12 4.36 × 10−8

Gen 3 ENSG000001631311520 CTSS 2.27 8.82 × 10−12 4.56 × 10−8

Treatment
Gen 1 ENSG000000960602289 FKBP5 2.00 1.29 × 10−13 2.00 × 10−9

Gen 2 ENSG0000013436310468 FST −1.52 1.74 × 10−12 1.25 × 10−8

Gen 3 ENSG000001697154493 MT1E 1.33 2.42 × 10−12 1.25 × 10−8

Day 3

Treatment +
medium

Gen 1 ENSG000000960602289 FKBP5 2.00 1.67 × 10−12 1.21 × 10−8

Gen 2 ENSG0000013506929968 PSAT1 1.17 1.18 × 10−12 1.22 × 10−8

Gen 3 ENSG0000013436310468 ASNS 0.38 2.39 × 10−11 1.22 × 10−8

Medium
Gen 1 ENSG00000019582 972 CD74 1.89 3.20 × 10−12 4.88 × 10−8

Gen 2 ENSG000001631311520 CTSS 1.53 9.24 × 10−11 7.05 × 10−7

Gen 3 ENSG0000022185283895 KRTAP1-5 1.12 4.27 × 10−9 1.83 × 10−5

Treatment
Gen 1 ENSG000000960602289 FKBP5 2.52 3.32 × 10−14 5.05 × 10−10

Gen 2 ENSG0000013436310468 FST −1.83 2.04 × 10−11 1.55 × 10−7

Gen 3 ENSG0000011699157568 SIPA1L2 −1.40 4.48 × 10−11 2.28 × 10−7
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Figure 3. Visualization of gene counts and differentially expressed genes: (A) Heatmap of rlog-transformed gene counts
for all samples on day 1 of the experiment. Labels refer to type of medium, type of treatment and proband number.
(B) Heatmap of rlog transformed gene counts for all samples on day 3 of the experiment. Labels refer to type of medium,
type of treatment and proband number. (C) MD plot of differentially expressed genes for the overall effect of growth
medium on day 1 of the experiment, type of treatment and proband id. (D) MD plot of differentially expressed genes for the
effect of AA/retinol treatment on day 1 of the experiment, type of growth medium and proband id. (E) Top five significantly
represented pathways for the effects of AA/retinol treatment (lower section), medium (middle section) and the combined
effect of both (upper section). Three patients were tested (n = 3) per day (days 1 and 3). Four replicates were carried out for
each measurement.
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For the combined effect of inflammatory medium and AA/retinol treatment, adjusted
for the effect of proband, DEA resulted in 803 DE genes on day 1 and 729 DE genes on
day 3. On day 1, the top three genes for this effect were the tissue factor pathway inhibitor
(TFPI1), Folistatin (FST), and FKBP proryl isomerase (FKBP5). On day 3, the top DE
genes were FKBP5 and two genes involved in the transfer and synthesis of amino acids
serine (phosphoserine aminotransferase—PSAT1) and asparagine (asparagine synthetase—
ASNS). When looking at the effect of inflammatory medium solely on day 1, adjusted
for proband and treatment, a total of 161 genes were significantly downregulated and
182 genes were significantly upregulated. On day 3, this changed to 99 genes being
significantly downregulated and 90 genes significantly upregulated (Figure 3C,D). The
top three DE genes on day 1 were, again TFPI1, followed by the C-X-C motif chemokine
ligand 5 (CXCL5) and cathepsin S (CTTS). On day 3, the top upregulated genes were
CD74, followed by CTTS and the keratin-associated protein (KRATP1-5), a gene that is
associated with developmental biology. Finally, when considering the effect of treatment
solely on day 1, adjusted for proband and medium, a total of 182 genes were significantly
downregulated and 91 genes were significantly upregulated. On day 3, this changed to
245 genes, being significantly downregulated and 104 genes significantly upregulated. The
top 3 DE genes on day 1 were FKPB5, FST, and metallothionein 1E (MT1E). On day 3, the
top three genes were again FKBP5, FST, and SIPA1L2).

To validate this observation and to further explore the involvement of our entire DE
gene list in cellular pathways, an overrepresentation analysis based on KEGG pathways
was performed. Results of the pathway analysis for effects of medium, treatment, and their
combined effect are shown in Figure 3E (figure shows top five overrepresented pathways
only). Supplementary Table S2 provides the full list of overrepresented KEGG pathways
for each effect. To validate the results, we additionally performed functional pathway
analyses, using Reactome and Wikipathway databases (Supplementary Table S3, for the
combined effect of treatment and medium). For obvious reasons, curation and annotation
of pathways differ between the platforms. Yet, interesting commonalities with regard to
the activation of interleukin signaling and chemokine binding pathways (KEGG, Reactome,
and Wikipathways) and mineral absorption (KEGG and Wikipathways) were observed.

3.4. Intracellular β-Catenin

Significantly lower intracellular pβ-catenin was evident in the AA/retinol—compared
to the inflammatory/AA/retinol– and the inflammatory group (p < 0.05, Figure 4A).
Intracellular tβ-catenin was similar between all groups (p > 0.05, Friedman, Figure 4B).
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Figure 4. β-catenin expression, cellular proliferation and CFUs following AA/retinol and inflammatory stimulation of
G-MSCs: ELISA examination of the phosphorylated (pβ-catenin) and total (tβ-catenin) intracellular β-catenin, following
G-MSCs’ challenging by AA/retinol and inflammation ((A,B); box and whisker plots with medians/quartiles). GMSCs’ cell
proliferatory graph of the AA/retinol and inflammation stimulated groups over 14 days ((C); box and whisker plots with
medians/quartiles). CFUs assay/CFUs’ numbers following G-MSCs’ stimulation via ascorbic acid and inflammation ((D);
box and whisker plots with medians/quartiles). Significant differences denoted with asterisks (n = 5, * p < 0.05; Friedman
test). Representative CFUs of the four experimental groups (E). CFUs; colony-forming units, pβ-catenin; phosphorylated
β-catenin, tβ-catenin; total (tβ-catenin) intracellular β-catenin.

3.5. CFUs and Cellular Proliferation

Significant inter-group differences in cellular counts were evident from days 4 to 11,
with the AA/retinol group demonstrating the highest cellular counts, followed by the
control-, the inflammatory/AA/retinol—and finally the inflammatory group (p < 0.05). At
14 days, the numbers of CFUs were significantly higher in the AA/retinol—followed by
the inflammatory/AA/retinol group (p < 0.05, Friedman, Figure 4C–E).

3.6. Stimulated G-MCSs’ Multilineage Differentiation

G-MSCs in all experimental groups exhibited a remarkable multilineage differenti-
ation aptitude, with a heightened differentiation potential irrespective of the treatment
group. However, the chondrogenic differentiation appeared to be significantly enhanced
by the synergistic effect of inflammation and AA/retinol application in the inflamma-
tory/AA/retinol group, compared to AA/retinol alone, with significantly higher ACAN
expression and glycosaminoglycans deposition observed (p < 0.05, Friedman, Figure 5).
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ALP and RUNX2 following a 14-day osteogenic stimulation ((A); box and whisker plots with medians/quartiles). Ca2+ quan-
tification and Alizarin-Red staining following a 14-day osteogenic induction of ascorbic acid and inflammation stimulated
G-MSCs ((B); box and whisker plots with medians/quartiles). LPL and PPARγ gene expression after 21 days of adipogenic
stimulation of ascorbic acid and inflammation challenged G-MSCs ((C); box and whisker plots with medians/quartiles).
Oil-Red-O staining and lipid amount quantification of ascorbic acid and inflammation stimulated G-MSCs after 21 days
of adipogenic stimulation ((D); box and whisker plots with medians/quartiles). ACAN gene expression following a
35-day chondrogenic induction of ascorbic acid and inflammation stimulated G-MSCs ((E); box and whisker plots with
medians/quartiles). Alcian-blue/nuclear-fast-red staining of ascorbic acid and inflammation stimulated G-MSCs following
a 35-day chondrogenic induction (F) (n = 5, a circle represents an outlier, * p < 0.05, ** p < 0.01; Friedman test).
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4. Discussion

Periodontal reparative/regenerative approaches rely chiefly on the reiteration of developmen-
tal procedures, involving stem/progenitor cells’ proliferation, differentiation, and maturation [36].
Clinically, these primary events occur under inflamed periodontal micro-environmental con-
ditions, with inflammatory cytokines stage-managing the path of events [2,37,38]. Apart from
their important roles in periodontal repair/regeneration [13,14,39,40], AA and retinol exert
anti-oxidative effects against periodontitis-induced tissue damages [41,42], demonstrate
immunomodulatory capabilities on stem/progenitor cells, dendritic cells, macrophages,
T- and B-cells, and markedly downregulate IL-1α, IL-1β, IL-6, TNF-β, and nitric oxide
release [43–46]. Most importantly, AA and retinol at specific concentrations, which were em-
ployed in the current investigation, could drive cellular reprogramming/de-differentiation
and pluripotency [19,20,47].

In accordance with earlier investigations [22,48–51], G-MSCs exhibited all characteristic
mesenchymal stem/progenitor cells’ traits [52]. In line with a multitude of studies, revealing
the positive stimulatory effects of local, controlled, and well-timed micro-environmental
pro-inflammatory conditions on G-MSCs’ reparative/regenerative attributes [3,8,53], G-MSCs
were challenged by periodontal pro-inflammatory cytokines; explicitly IL-1β, TNF-α, and
IFN-γ, by AA/retinol or their combination and their stemness, proliferation, differentiation
potentials, mRNA transcriptomics, and associated gene pathways examined.

Although differences in NANOG, OCT4A, and SOX2 mRNA expressions were de-
tectable between the groups at different time points, only NANOG was detectable on
protein level, in line with earlier reports on dissimilar NANOG, OCT4A, and SOX2 pro-
tein and mRNA expression dynamics within mesenchymal stem/progenitor cells [54–56].
This AA/retinol-induced increase in the NANOG, especially in the presence of controlled
inflammatory stimuli at 3 days, could be ascribed primarily to the capability of AA and
retinol to activate the ten-eleven translocation (TET) DNA demethylases, initiating in-
tracellular epigenetic reprogramming with pluripotency amplification [20,57]. The ob-
served synergistic effect suggests that controlled inflammation could have augmented this
AA/retinol-mediated effect. Pro-inflammatory stimuli further appeared to increase the
AA/retinol-mediated decrease in phosphorylated β-catenin levels intracellularly, restoring
the G-MSCs’ stemness [58] and differentiation capacity [59].

According to the mRNA NGS results, it was noticeable that the top three differentially
expressed genes for all effects could be grouped under five categories, namely genes asso-
ciated with developmental biology, cell proliferation, mitosis, and migration (FOS, EGR1,
SGK1, CXCL5, SIPA1L2, TFPI2, KRATP1-5), with cell survival (EGR1, SGK1, TMEM132A),
with cell differentiation and mineral absorption (FOS, EGR1, MT1E, KRTAP1-5, ASNS,
PSAT1), with inflammation and MHC-class-II antigen processing (PER1, CTSS, CD74) and
intracellular pathway activation (FKBP5, ZNF404). On day 1, the KEGG pathways of the
combined effect of treatment (AA/retinol or not) and medium (inflammation) were mainly
characterized by an overexpression of genes in the C-motif chemokine ligand family (CCL
and CXCL). The top five activated KEGG pathways affected the IL-17 and TNF signaling
pathway, and cytokine/cytokine receptor interaction. On day 3, the overexpression of
C-Motif pathways remained. However, a downregulation of genes in the cardiomyopa-
thy pathways, primarily characterized by genes from the alpha integrin family (ITGA10,
ITGA11, ITGAB), which bind collagen and are involved in the degradation of the extra-
cellular matrix [60,61], was observed. Examining exclusively the effect of inflammatory
medium, on day 1 the top five KEGG pathways were identical to those of the combined
effect on day 1, although fold changes differed slightly. For the AA/retinol effect, on day 1
an under-expression of genes in the integrin-alpha family was notable, with activation of
genes in the mineral absorption pathway and overexpression of genes in the Metalloth-
ionein family (MT1X, MT1E, etc.) [62]. On day 3, activation of the focal adhesion and ECM
receptor interaction pathways was observed, both of which regulate important biological
processes on the cellular level including cellular differentiation, proliferation, motility, and
adhesion [61,63]. Broadly speaking, the effect of inflammation seemed to lead to fewer
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activated genes the longer the cells remained in the inflammatory medium, while the effect
of treatment induced activation of more genes the longer the cells were stimulated via
AA/retinol, thus endorsing a positive impact of short-termed inflammatory stimuli with a
longer AA/retinol stimulation.

Similar to earlier investigations [53,64,65], AA/retinol augmented G-MSCs’ cellular
proliferation, especially between the 4th and 11th day, an effect that was clearly attenuated
by a combination with pro-inflammatory stimuli. The observed proliferation-inducing
effect could be ascribed to AA/retinol-induced upregulated gene expression of SIPA1L2
and TFPI2 as well as AA’s ability to suppress cellular growth arrest encoding genes, namely
growth arrest/DNA damage-inducible 45α (Gadd45a) and apoptosis inducing genes,
namely caspase-1 [44] with an upregulation of the proliferation-related Fos-transcriptional
factor [66]. Although, inflammatory stimuli, especially longer-term TNF-α challenges,
could induce self-senescence of stem/progenitor cells, especially in the presence of IFN-γ,
through changing the IFN-γ-activated, non-apoptotic form of TNF receptor superfamily
member 6 (Fas) signaling into a caspase 3- and caspase 8-associated pro-apoptotic cas-
cade [67], significantly higher CFUs were observed over 14 days in the AA/retinol as well
as the inflammation/AA/retinol group, demonstrating that AA/retinol could counteract
the long-term detrimental effects of inflammation, maintaining the G-MSCs’ colonogenic
self-renewal and CFUs production at low cellular densities.

AA and retinol are generally characterized by their ability to modulate cell growth,
metabolism, and morphogenesis during osteogenesis [26,68,69] and extracellular matrix
production [16]. Similar to earlier studies, inflammatory cytokines or AA/retinol short-
term pre-stimuli did not attenuate the subsequent G-MSCs’ characteristic multilineage
differentiation potentials [53,65]. Yet, the results regarding the osteogenic differentiation
should still be interpreted with caution, taking into consideration that osteogenic media
normally contain a specific concentration of AA, which could have possibly masked
any effect between the groups. Particularly their conjoint presence appeared beneficial
regarding the G-MSCs’ chondrogenic differentiation capacity. In this context, the activation
of genes of the mineral absorption pathway (MT1X, MT1E, KRTAP1-5, PSAT1) and the
downregulation of genes of the alpha integrin family (ITGA10, ITGA11, ITGAB) described
above could have significantly contributed to this synergistic effect.

5. Conclusions

Combined, current results point at altered G-MSCs’ characteristics in the presence
of controlled inflammation or AA/retinol. Apart from the isolated modulatory effects
of inflammation or AA/retinol on G-MSCs, a synergistic effect of their conjoint pres-
ence on the expression of the NANOG stemness marker was observed. The presence of
AA/retinol could counteract the inflammation-induced cellular senescence and maintain
the G-MSCs’ clonogenic abilities. On the other hand, controlled inflammation could restore
the AA/retinol-mediated reduction in intracellular phosphorylated β-catenin as well as
enhance the AA/retinol-mediated G-MSC’s chondrogenic differentiation potential. The ob-
served effects were associated with the activation of a multitude of differentially expressed
genes associated with development, proliferation and migration, survival, differentiation
and mineral absorption, inflammation, and MHC-II antigen processing as well as intra-
cellular pathway activation, with less as well as more genes activated the longer the cells
remained in the inflammatory medium or AA/retinol, respectively.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10123310/s1, Table S1: A full list of differentially expressed genes for each effect. Table S2:
A full list of overrepresented KEGG pathways for each effect. Table S3: A side by side comparison
of overrepresented KEGG, WIKIPATHWAYS and REACTOME pathways for each effect. Figure S1:
PCA plot of gene expression data. Colors denote treatment with AA/retinol or no treatment. Shapes
denote control or inflammation medium.
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