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Abstract: Acute myeloid leukemia (AML) is a leading blood cancer subtype that can be caused by
27 gene mutations. Previous studies have explored potential vaccine and drug treatments against
AML, but many were proven immunologically insignificant. Here, we targeted this issue and applied
various clinical filters to improve immune response. KIT is an oncogenic gene that can cause AML
when mutated and is predicted to be a promising vaccine target because of its immunogenic responses
when activated. We designed a multi-epitope vaccine targeting mutations in the KIT oncogene using
CD8+ and CD4+ epitopes. We selected the most viable vaccine epitopes based on thresholds for
percentile rank, immunogenicity, antigenicity, half-life, toxicity, IFNγ release, allergenicity, and
stability. The efficacy of data was observed through world and regional population coverage of our
vaccine design. Then, we obtained epitopes for optimized population coverage from PCOptim-CD,
a modified version of our original Java-based program code PCOptim. Using 24 mutations on the
KIT gene, 12 CD8+ epitopes and 21 CD4+ epitopes were obtained. The CD8+ dataset had a 98.55%
world population coverage, while the CD4+ dataset had a 65.14% world population coverage. There
were five CD4+ epitopes that overlapped with the top CD8+ epitopes. Strong binding to murine
MHC molecules was found in four CD8+ and six CD4+ epitopes, demonstrating the feasibility of
our results in preclinical murine vaccine trials. We then created three-dimensional (3D) models to
visualize epitope–MHC complexes and TCR interactions. The final candidate is a non-toxic and
non-allergenic multi-epitope vaccine against KIT mutations that cause AML. Further research would
involve murine trials of the vaccine candidates on tumor cells causing AML.

Keywords: vaccine design; acute myeloid leukemia (AML); KIT oncogene; artificial neural networks;
immunoinformatics; epitopes; MHC I and MHC II molecules; epitope–MHC complexes; TCR binding;
murine MHC molecules

1. Introduction

Acute myeloid leukemia (AML) is a blood cancer subtype where an overproduc-
tion of abnormal myeloid cells causes improper development of platelets, red blood cells,
white blood cells, and bone marrow failure [1]. AML is the leading acute leukemia sub-
type (80%) and is common among older individuals. Genetic mutations (point mutations
and chromosomal translocations) are the root cause of AML. Other conditions, includ-
ing myelodysplastic syndrome, aplastic anemia, myelofibrosis, Down syndrome, blood
syndrome, and environmental exposures such as chemotherapy, benzene, tobacco, and
radiation, have been proven to increase the risks of AML [2,3].

Common mutations that cause AML are in the genes Nucleophosmin 1 (NPM1),
FMS-like tyrosine kinase 3 (FLT3), Runt-related transcription factor (RUNX1), and KIT,
all of which are critical for hematopoiesis. The KIT gene encodes for a type III receptor
tyrosine kinase that is critical for pathways involved in cell proliferation, survival, and

Pharmaceuticals 2023, 16, 932. https://doi.org/10.3390/ph16070932 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph16070932
https://doi.org/10.3390/ph16070932
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0003-3681-4121
https://doi.org/10.3390/ph16070932
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph16070932?type=check_update&version=2


Pharmaceuticals 2023, 16, 932 2 of 23

differentiation of hematopoietic progenitor cells [4]. Synonyms for the KIT gene include
c-kit, CD117, and mast/stem cell growth factor receptor (SCFR).

KIT is a proto-oncogene that can cause AML, most often core-binding factor acute
myeloid leukemia (CBF-AML), and gastrointestinal stromal tumors [5,6]. CBF-AML is
characterized by the chromosomal alterations t(8;21) and inv(16) [7], and 15–45% of patients
suffer from mutations in the KIT gene [8]. We did not focus on CBF-AML because most of
the clinically studied KIT mutations referenced in our data were not specific to CBF-AML.
Still, most of the KIT mutations we analyze may be relevant to CBF-AML.

The KIT gene comprises six domains: Ig-like C2-type 1, Ig-like C2-type 2, Ig-like C2-
type 3, Ig-like C2-type 4, Ig-like C2-type 5, and protein kinase. The protein kinase domain is
intracellular, while the five other domains work on extracellular regions [9]. KIT mutations
on the cell surface exhibit various ligand-induced activities, including ubiquitination, cell
transformation, and greater sensitivity for basal tyrosine phosphorylation. Intracellular KIT
mutations exhibit ligand-independent activities, including KIT activation, ubiquitination,
and cell transformation [10].

AML is currently targeted with chemotherapy, drugs, and stem cell transplants [11].
Less aggressive treatments are needed because AML is an acute disease with a quick and
poor prognosis, especially among the elderly. Research on CBF-AML treatments includes
drug therapies such as cytarabine [12]. A successful preclinical murine trial was also
conducted for a solid vaccine treatment made of polyethylene glycol and alginate [13].
Other peptide vaccine studies have targeted major mutated genes involved with AML that
induce T-cell responses, including Wilms’ tumor 1 (WT1), proteinase 3 (PR3), hyaluronic
acid-mediated motility receptor (RHAMM), and mucinone1 protein (MUC1). However,
these vaccines have had limited success in phase II clinical trials.

The KIT gene has not been targeted with vaccines to treat AML, but trials on the gene’s
effectiveness in drugs and vaccines for other conditions exist. KIT gene mutations are
common targets for the treatment of various cancers because of the gene’s role in cellular
functions such as hematopoiesis, carcinogenesis, and melanogenesis [14,15]. Furthermore,
KIT is predicted to be a strong target for drugs and vaccines owing to its immunogenicity. C-
kit ligation is associated with the release of cytokines and other pro-inflammatory mediators,
and c-kit signaling can impact adaptive immunity [15]. Completed studies on treatments
targeting the KIT gene include anti-drug conjugates against small cell lung cancer and a
DNA vaccine targeting ligand attachment to fight tumor growth [14,16].

This study relied on inducing an immunogenic response to point mutations on the KIT
oncogene that have been found in AML patients. Single amino acid changes in genes can
change the chemical properties of peptide sequences and have been associated with several
cancers [17]. The KIT gene was our chosen target because of its significance in cancers
such as AML and its critical functions in hematopoiesis. Point mutations on KIT can lead
to the development of ubiquitinated tumor-specific antigens (TSAs), which are cleaved
into epitopes in proteasomes. Transporter-associated antigen processing (TAP) protein
complexes direct the epitopes to bind with MHC molecules at the endoplasmic reticulum.
After epitope–MHC complexes are transported to the surface of tumor cells, antigen-
presenting cells help induce CD8+ and CD4+ T cells. Through their T-cell receptors (TCRs),
an immune response is initiated to respond to and attack the antigen [18]. Combining CD8+
and CD4+ immune pathways may create a potent vaccine because CD4+ T cells improve
the immune response of cytotoxic T cells.

Our design was a multi-epitope AML vaccine predicted to induce effective CD8+ and
CD4+ T-cell responses by targeting the intracellular and extracellular domains of the KIT
oncogene. We used epitopes derived from common AML-inducing point mutations in the
KIT gene and overlapping CD8+ and CD4+ epitopes. Our epitope vaccine design elicits
T-cell immune responses by releasing epitopes cleared through the following clinically
relevant variables: HLA binding affinity, immunogenicity, antigenicity, half-life, instabil-
ity, toxicity, IFNγ release, allergenicity, population coverage, and murine MHC binding
affinity. CD8+ T cells respond to endogenous antigens and participate in a cytotoxic activ-
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ity, while CD4+ T cells respond to exogenous antigens and are helper T cells that induce
a more refined immune response. Implementing CD8+ and CD4+ epitopes into cancer
vaccines is predicted to safely induce an immune response that removes tumor cells ex-
pressing the same epitopes. This study is the first to target AML with a vaccine against KIT
gene mutations.

2. Results

We targeted AML-inducing KIT mutations because of the gene’s critical roles in
hematopoietic cell survival, proliferation, and differentiation (Figure 1) [19–22]. When
bound to a stem cell factor, KIT facilitates multiple intracellular signaling pathways, which
helps maintain normal hematopoietic cell activity. KIT mutations are also involved in
immunogenic responses such as cytokine release and adaptive immunity [15]. Mutations in
the KIT gene can cause improper differentiation and growth in hematopoietic cells, causing
harmful conditions such as AML. The KIT gene plays critical roles in tumor cell activity,
but AML vaccines targeting KIT have yet to be explored. We designed a multi-epitope
vaccine combining CD8+ and CD4+ epitopes that is predicted to induce a safe immune
response against mutations in the KIT gene.
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Figure 1. Intracellular signaling pathways that KIT is involved in. The KIT receptor tyrosine
kinase can facilitate multiple signaling pathways when bound to a stem cell factor ligand. The
RAS/RAF/MEK/ERK pathway guides cell proliferation. The PI3K-Akt pathway helps determine
cell survival and proliferation. The JAK-STAT pathway plays a role in cell proliferation and differenti-
ation/development (Created with BioRender.com accessed on 28 July 2022).

Figure 2 provides a workflow of the methodology we used to design the multi-epitope
AML vaccine. We started by choosing a cancer subtype, researching common gene mu-
tations, and obtaining the mutated peptide sequences. Then we computed percentile
rank, binding affinity, immunogenicity, antigenicity, half-life, instability, toxicity, IFNγ,
and allergenicity values of the epitopes and filtered through the data based on specific
thresholds. Optimized epitopes were obtained through a modified version of PCOp-
tim called PCOptim-CD, which finds epitopes for optimal population coverage for both
CD8+ and CD4+ datasets. Steps five through eight were repeated for both the CD8+ and
CD4+ data. Finally, we modeled the top epitope–MHC complexes and their binding with
TCR complexes.
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Figure 2. Workflow diagram of the study methodology. This process was used to develop the vaccine
design; Created with BioRender.com (accessed on 18 February 2023).

2.1. Filtration of CD8+ Epitopes

The final CD8+ dataset included 12 ninemer epitopes filtered for rank (<10), im-
munogenicity (>0), antigenicity (>0.4), half-life (>1 h), toxicity (non-toxin), allergenicity
(non-allergen), and instability (<40). CD8+ epitopes were not filtered for IFNγ release.
IFNγ release was not prioritized for the CD8+ epitopes because CD8+ T cells are cytotoxic
and less involved in releasing IFNγ than CD4+ helper T cells. Table 1 lists the top CD8+
epitopes, their respective mutations, and their binding HLA alleles. Specific values for clin-
ically relevant variables (rank, immunogenicity, antigenicity, half-life, toxicity, allergenicity,
instability, and IFNγ release) of the top CD8+ epitopes are in Supplementary Table S7.

2.2. Population Coverage for CD8+ Epitopes

Next, we determined that the world population coverage for MHC Class I binding
CD8+ epitopes was 98.55% (Figure 3). Regions with high population coverage included
East Asia (98.18%), Europe (99.68%), East Africa (98.18%), West Indies (98.98%), and North
America (99.06%). However, Central America had an especially low population coverage
of 7.76%. Population coverage for all regions is listed in Supplementary Table S1.

Table 1. Top CD8+ Epitopes and Murine Binding.

Mutation Epitope HLA Alleles Strong H2 Allele
Restriction

Weak H2 Allele
Restriction

I571L INGNNYVYL

HLA-A*24:02,
HLA-B*08:01,
HLA-A*23:01,
HLA-A*68:02

H-2-Db, H-2-Dd,
H-2-Kb H-2-Ld

K550N NPMYEVQWK

HLA-A*68:01,
HLA-B*35:01,
HLA-A*33:01,
HLA-B*53:01,
HLA-A*11:01,
HLA-A*03:01,
HLA-B*07:02

Not available Not available
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Table 1. Cont.

Mutation Epitope HLA Alleles Strong H2 Allele
Restriction

Weak H2 Allele
Restriction

R49H GKSDLIVHV

HLA-A*02:06,
HLA-A*02:03,
HLA-A*68:02,
HLA-A*02:01,
HLA-B*40:01
HLA-A*30:01,
HLA-B*44:03,
HLA-B*51:01,
HLA-B*44:02,
HLA-A*30:02,
HLA-A*26:01,
HLA-B*15:01

Not available Not available

R49H KSDLIVHVG
HLA-B*58:01,
HLA-B*57:01,
HLA-A*01:01

Not available Not available

R49H VHVGDEIRL

HLA-A*23:01,
HLA-B*40:01,
HLA-A*24:02,
HLA-B*44:03,
HLA-B*35:01,
HLA-B*44:02,
HLA-B*53:01

Not available H-2-Kd

V399I SDINAAIAF

HLA-B*44:03,
HLA-B*44:02,
HLA-B*40:01,
HLA-B*15:01,
HLA-B*35:01,
HLA-A*26:01,
HLA-A*30:02,
HLA-B*53:01,
HLA-A*01:01,
HLA-B*07:02,
HLA-A*32:01,
HLA-A*23:01,
HLA-A*24:02,
HLA-B*58:01

H-2-Qa2 H-2-Kk, H-2-Ld

V399I SNSDINAAI

HLA-A*68:02,
HLA-B*51:01, HLA-

A*02:06,HLA-B*40:01,
HLA-A*30:02,
HLA-A*02:03,
HLA-A*26:01,
HLA-B*07:02,
HLA-B*58:01,
HLA-A*32:01,
HLA-B*44:02,
HLA-B*44:03,
HLA-A*01:01,
HLA-B*53:01,
HLA-B*35:01,
HLA-A*23:01,
HLA-A*24:02

Not available H-2-Kk
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Table 1. Cont.

Mutation Epitope HLA Alleles Strong H2 Allele
Restriction

Weak H2 Allele
Restriction

V399I NSDINAAIA

HLA-A*01:01,
HLA-B*51:01,
HLA-A*68:02,
HLA-B*35:01

Not available H-2-Db

D760V AIMEDVELA

HLA-A*02:06,
HLA-A*02:01,
HLA-A*02:03,
HLA-A*68:02,
HLA-A*30:02,
HLA-A*26:01,
HLA-A*01:01,
HLA-A*32:01,
HLA-A*11:01

Not available Not available

C809R GRITKIRDF

HLA-B*08:01,
HLA-A*30:02,
HLA-B*15:01,
HLA-A*23:01,
HLA-A*26:01,
HLA-B*44:03,
HLA-A*32:01,
HLA-A*24:02,
HLA-B*44:02,
HLA-B*40:01

Not available Not available

C809R ITKIRDFGL

HLA-B*08:01,
HLA-B*57:01,
HLA-A*30:01,
HLA-B*58:01,
HLA-A*68:02,
HLA-A*32:01,
HLA-A*02:06,
HLA-B*07:02,
HLA-A*30:02,
HLA-B*51:01,
HLA-A*02:03,
HLA-A*31:01,
HLA-B*15:01,
HLA-A*33:01,
HLA-A*24:02,
HLA-A*23:01

Not available Not available

C809R THGRITKIR
HLA-A*33:01,
HLA-A*31:01,
HLA-A*68:01

Not available Not available

2.3. Murine MHC Binding for CD8+ Epitopes

We used the default thresholds provided by NetMHCpan-4.0 to determine strong-
and weak-binding epitopes to murine MHC molecules. Strong-binding epitopes had a
threshold of 0.5% and weak-binding epitopes had a threshold of 2%. There were four
strong binders and six weak binders. Top CD8+ epitopes had strong binding to the murine
MHC alleles H-2-Db, H-2-Dd, H-2-Kb, and H-2-Qa2. Table 1 lists strong- and weak-binding
murine MHC alleles for the top CD8+ epitopes.
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Figure 3. World Population Coverage for top CD8+ epitopes. World population coverage for the
top CD8+ epitopes was 98.55%. Epitopes included in the calculation were filtered for percentile
rank/binding affinity, immunogenicity, antigenicity, half-life, toxicity, allergenicity, and stability.
Greater variety in HLA alleles resulted in higher population coverage.

2.4. Optimized Data for CD8+ Epitopes

PCOptim-CD was used on CD8+ epitopes filtered for rank, immunogenicity, anti-
genicity, half-life, toxicity, allergenicity, and stability. The resulting dataset with optimal
population coverage included four CD8+ epitopes (Supplementary Table S2). One op-
timized epitope matched a top CD8+ epitope (SNSDINAAI) from Table 1. Population
coverage rates of the final CD8+ epitopes and the optimized CD8+ epitopes were both
98.55% because PCOptim-CD was run on the same epitopes as the final filtered dataset.

2.5. Filtration of CD4+ Epitopes

The final CD4+ dataset included 21 epitopes filtered for rank (<10), immunogenicity
(<50), antigenicity (>0.4), half-life (>1 h), toxicity (non-toxin), IFNγ (positive), allergenicity
(non-allergen), and instability (<40). Two epitopes were 15-mers, two were 16-mers, five
were 17-mers, and 12 were 18-mers. Thus, longer length epitopes had higher potency for
MHC class II binding in our vaccine design. Table 2 lists the mutations, lengths, and binding
HLA alleles of our top CD4+ epitopes. Specific values for clinically relevant variables
(rank, immunogenicity, antigenicity, half-life, toxicity, allergenicity, instability, and IFNγ

release) of the top CD8+ epitopes are in Supplementary Table S8. There were five CD4+
epitopes overlapping with top CD8+ epitopes. The C809R mutation resulted in four CD4+
epitopes (AARNILLTHGRITKIRDF, ARNILLTHGRITKIRDF, ARNILLTHGRITKIRDFG,
ILLTHGRITKIRDFGLAR) overlapping with the CD8+ epitope GRITKIRDF from the same
mutation. The K550N mutation resulted in the CD4+ epitope TYKYLQNPMYEVQWK
overlapping with the CD8+ epitope NPMYEVQWK from the same mutation.

2.6. Population Coverage for CD4+ Epitopes

We determined that the world population coverage for MHC Class II-binding CD4+
epitopes was 65.14% (Figure 4). Regions with highest population coverage included South
Asia (62.22%), Europe (71.47%), and North America (73.34%). Regions with the low-
est population coverage were Southeast Asia (29.2%), Southwest Asia (33.7%), South
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Africa (5.91%), and Oceania (37.6%). Population coverage for all regions is listed in
Supplementary Table S3.

Table 2. Top CD4+ Epitopes.

Mutation Length Epitope HLA Alleles Strong H2 Allele
Restriction

Weak H2 Allele
Restriction

D816H 18 FGLARHIKNDSNYVVKGN
HLA-DRB1*13:02,
HLA-DRB3*02:02,
HLA-DRB3*01:01

Not available Not available

D816H 18 GLARHIKNDSNYVVKGNA
HLA-DRB1*13:02,
HLA-DRB3*02:02,
HLA-DRB3*01:01

Not available Not available

D816H 18 LARHIKNDSNYVVKGNAR
HLA-DRB1*13:02,
HLA-DRB3*02:02,
HLA-DRB3*01:01

Not available Not available

D816V 18 VIKNDSNYVVKGNARLPV

HLA-DRB1*13:02,
HLA-DRB3*02:02,
HLA-DRB1*08:02,
HLA-DRB1*15:01

Not available H-2-IEd

D816Y 17 DFGLARYIKNDSNYVVK

HLA-DRB3*02:02,
HLA-DRB1*13:02,
HLA-DRB3*01:01,
HLA-DRB1*08:02,
HLA-DRB1*04:01,
HLA-DRB1*15:01

Not available H-2-IEd

D816Y 18 DFGLARYIKNDSNYVVKG

HLA-DRB3*02:02,
HLA-DRB1*13:02,
HLA-DRB3*01:01,
HLA-DRB1*08:02,
HLA-DRB1*04:01,
HLA-DRB1*15:01

Not available H-2-IEd

D816Y 16 FGLARYIKNDSNYVVK

HLA-DRB3*02:02,
HLA-DRB1*13:02,
HLA-DRB3*01:01,
HLA-DRB1*15:01,
HLA-DRB1*04:01,
HLA-DRB1*08:02

H-2-IEd Not available

D816Y 17 FGLARYIKNDSNYVVKG

HLA-DRB3*02:02,
HLA-DRB1*13:02,
HLA-DRB3*01:01,
HLA-DRB1*08:02,
HLA-DRB1*04:01,
HLA-DRB1*15:01

H-2-IEd Not available

D816Y 18 FGLARYIKNDSNYVVKGN

HLA-DRB3*02:02,
HLA-DRB1*13:02,
HLA-DRB3*01:01,
HLA-DRB1*08:02,
HLA-DRB1*04:01,
HLA-DRB1*15:01

Not available H-2-IEd

D816Y 17 GLARYIKNDSNYVVKGN

HLA-DRB3*02:02,
HLA-DRB1*13:02,
HLA-DRB3*01:01,
HLA-DRB1*08:02,
HLA-DRB1*04:01,
HLA-DRB1*15:01

H-2-IEd Not available
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Table 2. Cont.

Mutation Length Epitope HLA Alleles Strong H2 Allele
Restriction

Weak H2 Allele
Restriction

D816Y 18 GLARYIKNDSNYVVKGNA

HLA-DRB3*02:02,
HLA-DRB1*13:02,
HLA-DRB3*01:01,
HLA-DRB1*08:02,
HLA-DRB1*04:01,
HLA-DRB1*15:01

Not available H-2-IEd

D816Y 17 LARYIKNDSNYVVKGNA

HLA-DRB3*02:02,
HLA-DRB1*13:02,
HLA-DRB3*01:01,
HLA-DRB1*08:02,
HLA-DRB1*04:01,
HLA-DRB1*15:01

Not available H-2-IEd

D816Y 18 LARYIKNDSNYVVKGNAR

HLA-DRB3*02:02,
HLA-DRB1*13:02,
HLA-DRB3*01:01,
HLA-DRB1*08:02,
HLA-DRB1*04:01,
HLA-DRB1*15:01

Not available H-2-IEd

N822K 15 DSKYVVKGNARLPVK

HLA-DRB3*02:02,
HLA-DRB1*13:02,
HLA-DRB5*01:01,
HLA-DRB1*01:01,
HLA-DRB1*08:02,
HLA-DRB1*11:01,
HLA-DRB1*15:01

H-2-IEd, H-2-IEk Not available

N822K 16 NDSKYVVKGNARLPVK
HLA-DRB3*02:02,
HLA-DRB1*13:02,
HLA-DRB5*01:01

H-2-IEd H-2-IEk

K550N 15 TYKYLQNPMYEVQWK

HLA-DRB3*02:02
HLA-DRB1*04:05,
HLA-DRB1*04:01,

HLA-
DPA1*01:03/DPB1*04:01

Not available Not available

C809R 18 AARNILLTHGRITKIRDF HLA-DRB1*07:01 Not available Not available

C809R 17 ARNILLTHGRITKIRDF HLA-DRB1*07:01 Not available Not available

C809R 18 ARNILLTHGRITKIRDFG HLA-DRB1*07:01 Not available Not available

C809R 18 ILLTHGRITKIRDFGLAR HLA-DRB1*07:01 Not available Not available

T417D &
Y418F 18 AAIAFNVYVNTKPEILDF HLA-DRB1*07:01,

HLA-DRB3*02:02 Not available Not available

2.7. Murine MHC Binding for CD4+ Epitopes

We used the default thresholds provided by NetMHCIIpan-4.0 to determine strong-
and weak-binding epitopes to murine MHC molecules. Strong-binding epitopes had a
threshold of 1% and weak-binding epitopes had a threshold of 5%. There were six strong-
binding epitopes and eight weak-binding epitopes. The top CD4+ epitopes had strong
binding to the murine MHC alleles H-2-IEd and H-2-IEk. Table 2 lists strong- and weak-
binding murine MHC alleles for the top CD4+ epitopes.
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Figure 4. World Population Coverage for top CD4+ epitopes. World population coverage for the
top CD8+ epitopes was 65.14%. Epitopes included in the calculation were filtered for percentile
rank/binding affinity, immunogenicity, antigenicity, half-life, toxicity, IFNγ release, allergenicity,
and stability. HLA-DRB3*02:02, HLA-DRB3*01:01, HLA-DRB1*04:05, HLA-DRB5*01:01, and HLA-
DPA1*01:03/DPB1*04:01 were removed from the population coverage calculations because IEDB did
not contain these alleles in their dataset.

2.8. Optimized Data for CD4+ Epitopes

PCOptim-CD was used on CD4+ epitopes filtered for rank, immunogenicity, and
antigenicity. The resulting dataset included six CD4+ epitopes (Supplementary Table S4)
with a world population coverage of 99.68%. There was no overlap between the optimized
epitopes and the top CD4+ epitopes from Table 2, indicating weaker results for CD4+ data
compared to CD8+ data. Regions with the highest population coverage for the optimized
CD4+ dataset were Northeast Asia (99.39%), South Asia (99.74%), Europe (99.98%), East
Africa (99.98%), West Africa (99.94%), Central Africa (99.88%), Central America (99.5%),
South America (99.99%), and Oceania (99.54%). South Africa had the lowest regional
population coverage (32.1%). HLA-DRB3*01:01, HLA-DRB3*02:02, and HLA-DRB5*01:01
were disregarded from the CD4+ optimized epitopes population coverage because the
IEDB dataset did not include these alleles. Supplementary Table S5 provides the world and
regional population coverage of the optimized CD4+ epitopes.

2.9. Population Coverage for Combined Class I and Class II Molecules

We combined the final filtered dataset for Class I and Class II MHC binding epitopes
and used the IEDB population coverage tool to obtain 99.49% world population cover-
age. Population coverage rates for specific regions are listed in Supplementary Table S6.
HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-DRB1*04:05, HLA-DPA1*01:03/DPB1*04:01,
HLA-DRRB5*01:01, HLA-B*40:01, and HLA-A*30:01 were excluded from the combined
population coverage because the IEDB dataset did not contain data for those alleles.

2.10. 3D Modeling for Peptide–MHC Complexes and TCR Interactions

We modeled four top epitope–MHC complexes using MDockPep, CABS-dock, and
PyMOL. We created 3D models for SDINAAIAF binding to HLA-A*01:01, GKSDLIVHV
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binding to HLA-A*02:06, GLARYIKNDSNYVVKGN binding to HLA-DRB1*04:01, and
FGLARYIKNDSNYVVK binding to HLA-DRB3*01:01 (Figure 5). The 3D models for TCR
interactions with peptide–MHC complexes were obtained using TCRModel (Figure 6).
The A6 TCR is specific to HLA-A2 and was thus used to model an immune response
to HLA-A*02:06 and the CD8+ epitope GKSDLIVHV [23]. The HA1.7 TCR is specific to
HLA-DRB1*04:01 and was thus used to model an immune response to HLA-DRB1*04:01
and the CD4+ epitope GLARYIKNDSNYVVKGN [24]. Supplementary Figure S1 includes
superimposed images of our epitope–MHC complexes with sample peptides from the
RCSB Protein Data Bank [25] to validate the binding affinity of our epitopes to select
MHC molecules.
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Figure 5. 3D models for peptide–MHC complexes. SDINAAIAF binding to MHC Class I molecule
HLA-A*01:01 (RCSB PDB: 6MPP) (A). GKSDLIVHV binding to MHC Class I molecule HLA-
A*02:06 (RCSB PDB: 3OXR) (B). GLARYIKNDSNYVVKGN binding to MHC Class II molecule
HLA-DRB1*04:01 (RCSB PDB: 5JLZ) (C). FGLARYIKNDSNYVVK binding to MHC Class II molecule
HLA-DRB3*01:01 (RCSB PDB: 2Q6W) (D). Yellow represents HLA alleles, and red represents epitopes.

2.11. 3D Modeling of Epitopes on KIT Gene

We selected a total of 33 CD8+ and CD4+ epitopes based on the filters: binding
affinity/percentile rank, immunogenicity, antigenicity, half-life, toxicity, IFNγ release,
allergenicity, and stability (12 CD8+ epitopes and 21 CD4+ epitopes). The KIT gene’s
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protein kinase domain, which affects intracellular signaling pathways, holds 26 of our top
epitopes. Figure 7 locates our top epitopes in a 3D model of the KIT gene.
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Figure 6. 3D models for TCR binding to top epitope–MHC complexes. GKSDLIVHV epitope and
MHC Class I HLA-A*02:06 binding with the A6 TCR complex (RCSB PBD: 3QH3) (A). GLARYIKND-
SNYVVKGN epitope and MHC Class II HLA-DRB1*04:01 binding with the HA1.7 TCR complex
(RCSB PDB: 4GKZ) (B). Green represents the TCR complex specific to the HLA allele, yellow repre-
sents the HLA allele, and red represents the epitope.
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Figure 7. 3D structure of KIT marked with the locations of our top filtered epitopes. Three
of our top CD8+ epitopes (GKSDLIVHV, KSDLIVHVG, VHVGDEIRL) are on the Ig-like C2-
type 1 domain, and three (SDINAAIAF, SNSDINAAI, NSDINAAIA) are on the Ig-like C2-
type 4 domain. Six CD8+ epitopes are on the protein kinase domain: NPMYEVQWK, IN-
GNNYVYL, GRITKIRDF, ITKIRDFGL, THGRITKIR, AIMEDVELA. One CD4+ epitope (AA-
IAFNVYVNTKPEILDF) is located on the Ig-like C2-type five domain. The protein kinase
holds 20 of our CD4+ epitopes: FGLARHIKNDSNYVVKGN, GLARHIKNDSNYVVKGNA,
LARHIKNDSNYVVKGNAR, VIKNDSNYVVKGNARLPV, DFGLARYIKNDSNYVVK, DFGLARY-
IKNDSNYVVKG, FGLARYIKNDSNYVVK, FGLARYIKNDSNYVVKG, FGLARYIKNDSNYVVKGN,
GLARYIKNDSNYVVKGN, GLARYIKNDSNYVVKGNA, LARYIKNDSNYVVKGNA, LARYIKNDS-
NYVVKGNAR, TYKYLQNPMYEVQWK, DSKYVVKGNARLPVK, NDSKYVVKGNARLPVK,
AARNILLTHGRITKIRDF, ARNILLTHGRITKIRDF, ARNILLTHGRITKIRDFG, ILLTHGRITKIRDFGLAR.
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3. Discussion

There is limited research on treatments for AML that target the KIT gene. Instead,
peptide vaccines and dendritic cell vaccines have targeted other tumor-associated antigens
(TAAs), including WT1, PR3, RHAMM, and MUC1. Limited MHC allele interactions with
epitopes have been tested in WT1 vaccines, indicating potentially low population coverage.
Additionally, a WT1 vaccine restricted in HLA-A*02 had no immunological significance in
its phase II clinical trial owing to minimal vaccine benefits and low sample size. A vaccine
targeting OCV-501 with MHC class II molecules resulted in insignificant immunological
improvements in its phase II clinical trial. TAAs are less effective than TSAs in eliciting
safe immune responses to cancer cells. TSAs are only present in cancer cells and have a
higher affinity to MHC molecules and TCRs, making them better candidates for anticancer
vaccines. TAAs are more widely studied, but their potential toxicity and lack of specificity
for tumors indicate that targeting TSAs may be an improved approach. Clinical trials with
TSA-based anticancer vaccines have also been successful [18]. Further research is needed
to treat AML patients with vaccines targeting TSAs, but existing trials have shown the
potential use of peptide vaccines in treating AML [26].

Clinical trials for CD8+ and CD4+ epitope vaccines against AML exist, but with
limited success. One such vaccine targeting the WT1 gene reached phase II of clinical
trials but did not develop strong immunological memory. We addressed this issue in our
vaccine design by only selecting epitopes with high antigenicity scores. However, another
vaccine targeting mutated WT1 peptides resulted in improved survival. Future trials for
AML vaccines must prioritize targeting TSAs instead of TAAs to ensure proper and safe
immune responses [26]. In this study, we targeted the proto-oncogene KIT and identified
top epitopes predicted to elicit safe immunogenicity by selecting those with high binding
affinity, immunogenicity, antigenicity, half-life, toxicity, IFNγ release, allergenicity, and
population coverage.

Current studies on treatments for AML that target the KIT gene emphasize drug
therapy, such as combined treatment with nilotinib and chemotherapy [27] and midostaurin
on patients with (8;21) translocation AML. Patients in these studies had mutations in the
KIT or FLT3-ITD genes, and similar to our study, the effects of midostaurin are being
observed on mut-KIT8 and mut-KIT17 [28].

Our vaccine design follows in silico methods predicted to safely induce CD8+ and
CD4+ immunogenic responses. We demonstrated predicted vaccine efficacy by filtering
epitopes through clinically relevant variables such as immunogenicity, antigenicity, toxicity,
and allergenicity, to obtain top epitopes. Designing vaccines through bioinformatics offers
a quick and cost-effective method of developing anti-cancer treatments before murine or
pre-clinical trials. We identified four CD8+ and six CD4+ epitopes that were strong binders
to murine MHC molecules, demonstrating potential use of our vaccine design in further
research including murine trials.

We filtered out many potential CD8+ and CD4+ epitopes because of low immuno-
genicity scores. In the CD8+ dataset, 50% of epitopes that passed the percentile rank filter
also passed the immunogenicity filter. All top CD8+ epitopes failed to pass the IFNγ filter
because IFNepitope was only developed for CD4+ epitopes. Thus, the IFNγ filter was
disregarded for MHC I binding molecules. For the CD4+ dataset, IFNγ and allergenicity
filtered out most of the epitopes in addition to immunogenicity.

Our vaccine design was strengthened by the five CD4+ epitopes overlapping with
the top CD8+ epitopes. Overlapping epitopes emphasizes their strength and our vaccine’s
potential to elicit high immunogenic responses involving both cytotoxic and helper T cells.
Population coverage for overlapping epitopes alone remains low, but the two potential
immunogenic pathways that may be induced by the overlapping CD8+ and CD4+ epi-
topes indicate high potency for attacking cancerous cells. Further research on increasing
population coverage of overlapping epitopes can help improve the vaccine’s effectiveness.
Additionally, combined usage of CD8+ and CD4+ epitopes increase the likelihood of sta-
bility despite the short peptide lengths of CD8+ epitopes. CD8+ epitopes were limited to
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9-mers, but CD4+ data included epitopes of up to 18-mers. Still, previous studies indicated
that CD8+ and CD4+ immunogenic responses are inducible with vaccines using 9- or
10-mer peptides in patients with solid tumors [29].

The protein kinase domain of the KIT gene held 26 out of 33 top CD8+ and CD4+
epitopes. Each epitope was critical for our vaccine design. Still, the intracellular signaling
pathways that the KIT gene is involved in, such as those outlined in Figure 2, are mainly
instigated in the protein kinase domain. The protein kinase’s critical role in hematopoietic
cell growth, proliferation and development makes the domain an important location for
our top epitopes. Cancerous activities caused by mutations in the protein kinase domain
can be primarily targeted by having most of our target mutations in this domain. Our study
was unique in targeting a proto-oncogene for which not many have studied AML vaccine
therapies. The 33 combined CD8+ and CD4+ epitopes induced a population coverage
of 99.49%, ensuring that our vaccine may effectively improve AML prognosis for a large
population. For both CD8+ and CD4+ epitopes, we determined population coverage
based on HLA alleles that the peptides could bind to and the frequency of those alleles
among various regions worldwide. High population coverage was optimal because more
patients could effectively be treated with the vaccine. However, regions including Central
America had lower population coverage for CD8+ and CD4+ epitopes. Large differences in
population coverage such as between Central America and Europe were due to varying
frequencies of HLA alleles in different populations. Each population has a unique frequency
of HLA alleles, so the potency of our epitope design varies by region. In Central America,
frequent HLA alleles include A*02:06:01, A*02, DQA1*05:01, and A*02:02 [30]. However,
frequent alleles in Central America, such as DQA1*05:01, were still included in our top
epitopes. This indicated that other discrepancies in the region’s genetic makeup may have
caused lower population coverage in this region. Vaccine design methods can be improved
by filtering for top epitopes that specifically bind to alleles prevalent in regions with low
population coverage found in our data to maximize efficacy. Limitations in IEDB’s allele
dataset also resulted in lower population coverage for certain regions, primarily with the
CD4+ dataset.

Our vaccine design would be the most effective on AML patients within Asia, Europe,
and North America, which included regions with the highest population coverage. HLA
alleles that our top epitopes bind to were more prevalent in these regions. AML is most
reported in North America, Western Europe, and South Asia, which validates our vaccine
design, as our targeted population would be the most reactive to our vaccine [31].

Our data were weakly validated for population coverage owing to the minimal overlap
between final epitope datasets and optimized epitopes from PCOptim-CD. However,
PCOptim-CD was not as effective in our vaccine design as compared to other datasets—
when PCOptim-CD was used on epitope data for a vaccine design targeting the HRAS gene
for squamous cell carcinoma, the optimized dataset contained six epitopes [32]. PCOptim-
CD analysis on CD8+ epitopes filtered for rank and immunogenicity only resulted in one
optimal epitope. This demonstrated the high quality of our epitopes in the inputted dataset
because it showed that maximum population coverage could be obtained with one epitope.
However, to find more optimized epitopes, every filter had to be applied to the inputted
data, making the optimized CD8+ epitope population coverage identical to that of the
top CD8+ epitopes. Only one epitope from the optimized dataset matched one of our top
CD8+ epitopes. Additionally, none of the epitopes in the CD4+ optimized dataset matched
the top CD4+ epitopes. Therefore, population coverage of the CD4+ epitope dataset was
weaker than that of CD8+. With CD4+ epitopes having a lower population coverage and
less validity from PCOptim-CD, CD4+ T-cell response to our vaccine design was weak.
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Peptide vaccine designs are a cost-effective method of developing treatments to target
tumors and/or viruses. Computational methods also allow for large protein datasets to
be quickly tested for vaccine efficacy. When compared to in vitro and in vivo studies, in
silico methods are unable to reflect direct testing with living cells. To address these chal-
lenges, tools for in silico vaccine studies are constantly being developed to form optimal
vaccine designs. IntegralVac is an example of this, where MHCSeqNet, DeepVacPred,
and hemolytic/non-hemolytic peptide predictors were combined to improve vaccine de-
sign accuracy and safety [33]. Our data can also be used for future research to develop
immunoinformatic methods to strengthen our epitope design.

Limitations of the Study

Compared to the population coverage of the CD8+ epitopes, the CD4+ epitopes had
low coverage. Additional mutations were filtered through to find more epitopes, including
combination mutations with double missense, but population coverage remained low. One
potential reason was that IEDB had limitations in their HLA allele dataset—a few alleles
in the final CD4+ dataset were excluded from the population coverage calculation. For
example, HLA-DRB3*02:02 was not included in the CD4+ population coverage, but the
allele could bind to 16 of the final CD4+ epitopes. HLA-DRB3*01:01 was also excluded
from the population coverage but could bind to 12 final CD4+ epitopes. Thus, the accuracy
of CD4+ population coverage was limited owing to the IEDB database.

CD4+ epitope population coverage may have also been low because studies show that
the KIT gene does not often interact with CD4+ T cells [34]. The KIT gene is involved in
CD8+ T-cell immunodominance, but the gene was not expressed in the presence of CD4+
T cells. KIT genes can induce CD4+ T-cell immune responses, but KIT gene expression is
less involved with CD4+ T cells than CD8+ T cells. Past experiments that found minimal
interaction with the KIT gene and CD4+ T cells indicated why population coverage may
have been low. Furthermore, because most of our mutations were on the intracellular
protein kinase domain of the KIT gene, CD8+ T cells are more susceptible to being instigated,
as CD8+ T cells respond to endogenous antigens, while CD4+ T cells mainly respond to
exogenous antigens.

4. Materials and Methods
4.1. Finding Prevalent Point Mutations on the KIT Gene

Common mutations of the KIT gene that cause AML are located on exons 17 and 8,
and D816V is the most prevalent [1,35]. Mutations were chosen based on prevalence—
CoDing Sequence (CDS) mutations of alanine to threonine were present in 48.20% of
samples compiled in the COSMIC database. We used Y418F and D816V in this study.
The CDS mutation of glycine to threonine was present in 15.51% of samples, including
the point mutations W8C and D816Y used in our study. The CDS mutation of glycine to
cysteine was present in 11.91% of samples, which included the point mutation D816H used
in our study. Lastly, the CDS mutation of threonine to glycine was present in 9.14% of
samples, including the point mutation N822K used in our study [36]. The most common
mutations were located at point 816 on aspartic acid [36]. Additional point mutations
found in past clinical trials [1,4,36], as well as those found in the COSMIC database (https:
//cancer.sanger.ac.uk/cosmic, (accessed on 2 June 2022)) [37] were used to obtain mutated
KIT gene sequences. Figure 8 shows where the 24 mutations we observed are located on
the KIT gene.

https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
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Figure 8. 3D structure of KIT with the locations of point mutations used in our study. Two mutations
are on the Ig-like C2-type 1 domain (P31S, R49H), one mutation is on the Ig-like C2-type 2 domain
(S197L), and one mutation is on the Ig-like C2-type 4 domain (V399I), and five mutations are on the
Ig-like C2-type 5 domain (T417D, Y418F, D419G, T417D and Y418F, Y418F and D419G). The protein
kinase domain holds 14 of the mutations we used in our study (K550N, D816H/V/Y, D820G, I571L,
N822K, D579H and H580Q, R586T and N587D, N587D and R588M, C809R, A617S, D760V). The
AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk/entry/P10721, (accessed on 31
July 2022) [9] was used to obtain the whole KIT gene structure, and UniProt was used to identify the
domains [38].

4.2. Identifying Mutated Sequences

The “mast/stem cell growth factor receptor Kit” peptide sequence was obtained in
FASTA format using UniProt (https://www.uniprot.org/, (accessed on 31 July 2022) [39].
Mutated peptide sequences were determined based on the point mutations labeled in
Figure 1.

4.3. MHC Class I Binding Epitope Prediction

9-mer CD8+ epitopes for each point mutation were obtained using the IEDB T Cell
Epitope Prediction Tool with MHC I Binding (http://tools.iedb.org/mhci/, (accessed on
7 June 2022) [40]. The prediction tool was trained to predict binding affinity for top HLA
alleles in humans using binding affinity and eluted ligand data. IEDB calculated a percentile
rank for each epitope’s binding affinity to 27 HLA alleles: HLA-A*01:01, HLA-A*02:01,
HLA-A*02:03, HLA-A*02:06, HLA-A*03:01, HLA-A*11:01, HLA-A*23:01, HLA-A*23:01,
HLA-A*24:02, HLA-A*26:01, HLA-A*30:01, HLA-A*30:02, HLA-A*31:01, HLA-A*32:01,
HLA-A*33:01, HLA-A*68:01, HLA-A*68:02, HLA-B*07:02, HLA-B*08:01, HLA-B*15:01,
HLA-B*35:01, HLA-B*40:01, HLA-B*44:02, HLA-B*44:03, HLA-B*51:01, HLA-B*53:01, HLA-
B*57:01, HLA-B*58:01. IEDB derived the percentile rank by comparing IC50 values of
each peptide in the protein sequence with the IC50 values of other peptides found in the
SWISSPROT database [41]. Lower percentages (above 0%) indicated higher binding affinity,
and a maximum threshold of 10% was used for this filter.

Strong and stable epitope candidates were determined based on a variety of clinically
relevant variables, including percentile rank (binding affinity), immunogenicity, antigenic-
ity, half-life, instability, isoelectric point, aliphatic index, GRAVY score, toxicity, IFNγ

release, and allergenicity. Only epitopes that passed these filters (IFNγ was disregarded for
CD8+) were presented as top epitopes for our vaccine design.

Each epitope that passed the percentile rank filter was tested for immunogenicity using
the IEDB Class I Immunogenicity tool (http://tools.iedb.org/immunogenicity/, (accessed
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on 13 June 2022) [42]. IEDB trained the tool to identify immunogenicity through a study of
600 immunogenic and 181 non-immunogenic peptide–MHC complexes. Further training
included analysis of non-anchor positions (positions 4–6) in determining positions of high
interaction with T-cell receptors (TCRs). Higher scores indicated greater immunogenicity
of the epitopes, and the minimum threshold was set to 0 [43].

Antigenicity for top immunogenic epitopes was determined by VaxiJen v2.0 (http:
//www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html, (accessed on 13 June 2022) [44].
VaxiJen is up to 89% accurate and was developed with auto-cross covariance (ACC), turning
protein sequences into vectors representing principal amino acid properties. VaxiJen v2.0
provides datasets for five organisms: bacteria, viruses, tumors, parasites, and fungi—we
used tumors for our dataset. The minimum threshold used for antigenicity was 0.4—when
VaxiJen was developed and tested on viral antigens, a threshold of 0.4 had 70% accuracy
for external validation [44,45]. VaxiJen has been tested on multiple in silico vaccine designs,
one of which identified T-cell and B-cell epitopes targeting the SARS-COV2 S protein [46].

Half-life, instability, isoelectric point, aliphatic index, and GRAVY score were deter-
mined through ProtParam (https://web.expasy.org/protparam/, (accessed on 14 June
2022). To calculate half-life, ProtParam analyzed each epitope’s N-terminal amino acid [47].
Amino acids in mammals have a minimum half-life of 0.8–1 h. Thus, we used one hour as
the minimum threshold for half-life [48]. ProtParam calculates the instability index based
on dipeptides. ProtParam trained the program to calculate instability using a study of
400 dipeptides in test tubes that were given weight values based on dipeptides of known
stable and unstable proteins. A maximum threshold of 40 was used by ProtParam and our
study to distinguish instability [49,50].

While the epitopes were not filtered for isoelectric point, aliphatic index, and GRAVY
score, these values demonstrate the physicochemical properties of our top epitopes. Iso-
electric point indicates the pH when a peptide reaches a neutral charge [51]. The aliphatic
index was calculated by ProtParam based on the volume of aliphatic side chains (alanine,
valine, leucine, and isoleucine) in the epitopes. A higher aliphatic index indicates higher
thermostability. The GRAVY (grand average of hydropathy) score reveals the hydropathy
of peptides, with higher scores indicating higher hydrophobicity [49].

Toxicity was obtained with ToxinPred (https://webs.iiitd.edu.in/raghava/toxinpred/,
(accessed on 14 June 2022) [52]. Toxicity is determined based on SVM scores, which
ToxinPred calculates based on the amino acid and dipeptide composition, binary profile
pattern, and motif-based profile. The main training dataset used to develop ToxinPred
included 1805 toxic peptides and 3593 non-toxic peptides. Performance on the main training
dataset resulted in 93.92% maximum accuracy from the amino acid-based SVM model,
94.50% accuracy from the dipeptide-based SVM model, and 91.63% accuracy from the
binary profile-based SVM model [53].

IFNγ release was tested using IFNepitope (http://crdd.osdd.net/raghava/ifnepitope/,
(accessed on 14 June 2022) [54]. IFNepitope determines IFNγ release with an accuracy of
82.10% based on motifs likely to release IFNγ. IFNepitope obtained 10,433 CD4+ epitopes
from IEDB to develop the dataset—3705 resulted in positive IFNγ release, and 6728 resulted
in negative IFNγ release [55]. The IFNγ filter was disregarded for MHC class I molecules
because IFNepitope was only developed using MHC class II molecules. However, results
were still obtained for MHC class I molecules.

Allergenicity was determined using AllerTOP v2.0 (https://www.ddg-pharmfac.net/
AllerTOP/, (accessed on 14 June 2022) [56]. AllerTOP v2.0 also uses ACC to develop
uniform vectors from proteins. Datasets in AllerTOP v2.0 were tested against known
allergenic and non-allergenic peptides. Filtering out allergenic epitopes helps design a safe
vaccine because certain proteins can induce abnormal immune responses, such as rashes,
sneezing, and mucous membrane swelling [57].

Population coverage was calculated using the IEDB epitope analysis tool “Population
Coverage” (http://tools.iedb.org/population/, (accessed on 21 June 2022)). We used
population coverage to determine our vaccine’s effectiveness on the world population
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and on the populations of 16 regions: East Asia, Northeast Asia, South Asia, Southeast
Asia, Southwest Asia, Europe, East Africa, West Africa, Central Africa, North Africa, South
Africa, West Indies, North America, Central America, South America, and Oceania. We
observed population because HLA type representation varies by population and ethnicity,
and maximum coverage is ideal for a vaccine design [58].

4.4. MHC Class II Binding Epitope Prediction

We used the same method for filtering through the CD4+ epitope dataset as we did for
the CD8+ epitopes. However, percentile rank/binding affinity and immunogenicity were
calculated with different tools. Percentile rank/binding affinity was obtained using the
MHC II Binding Prediction tool on IEDB (http://tools.iedb.org/mhcii/, (accessed on 4 July
2022)) [59]. IEDB included 27 HLA alleles, and epitopes of length 12–18 mers were obtained.
The HLA alleles studied for MHC class II molecules were HLA-DRB1*-1:-1, HLA-DRB1*03:01,
HLA-DRB1*04:01, HLA-DRB1*04:05, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01,
HLA-DRB1*11:01, HLA-DRB1*12:01, HLA-DRB1*13:02, HLA-DRB1*15:01, HLA-DRB3*01:01,
HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-DRB5*01:01, HLA-DQA1*05:01/DQB1*02:01, HLA-
DQA1*05:01/DQB1*03:01, HLA-DQA1*03:01/DQB1*03:02, HLA-DQA1*04:01/DQB1*04:02,
HLA-DQA1*01:01/DQB1*05:01, HLA-DQA1*01:02/DQB1*06:02, HLA-DPA1*02:01/DPB1*01:01,
HLA-DPA1*01:03/DPB1*02:01, HLA-DPA1*01:02/DPB1*04:01, HLA-DPA1*03:01/DPB1*04:02,
HLA-DPA1*02:01/DPB1*05:01, HLA-DPA1*02:01/DPB1*14:01. A percentile rank threshold of
10% was kept.

Immunogenicity was determined using the IEDB CD4+ T cell immunogenicity pre-
diction tool (http://tools.iedb.org/CD4episcore/, (accessed on 4 July 2022)) [60]. This
tool calculated an IEDB-recommended combined score, which is the combination of each
epitope’s immunogenicity and their HLA binding prediction scores. Combined scores
had a maximum area under the ROC curve (AUC) score of 0.71 with a training dataset of
530 immunogenic peptides and 1758 non-immunogenic peptides [61]. We calculated the
percent of MHC class I binding epitopes that passed the immunogenicity threshold of 0
to determine a threshold for CD4+ epitope immunogenicity. Half of the CD8+ epitopes
passed the immunogenicity filter, so a maximum combined score of 50 (out of 100) was
used for the CD4+ epitope immunogenicity threshold. A lower combined score indicated a
better T-cell response.

4.5. Obtaining Optimized Population Coverage with PCOptim-CD

The final epitopes had several overlapping amino acid sequences. We developed
PCOptim-CD to find an optimized epitope dataset with maximal population coverage to re-
duce redundancy in epitope selection. The original program, PCOptim, was only designed
for CD8+ datasets. The modified version, PCOptim-CD, was programmed to obtain the
optimized epitopes for the CD4+ dataset as well. PCOptim-CD (Supplementary Figure S1)
was based on the console version, called PopCoverageOptimization. Therefore, it is text-
based rather than GUI-based, and instructions for using the program can be found in the
comments of the Java code.

Epitopes and their MHC-restricted alleles for optimal population coverage were ob-
tained using PCOptim-CD [32]. We used CD8+ epitopes filtered by rank, immunogenicity,
antigenicity, half-life, instability, toxicity, and allergenicity to find multiple optimal CD8+
epitopes. We used CD4+ epitopes filtered by rank, immunogenicity, and antigenicity to
obtain the optimized CD4+ dataset. PCOptim-CD allowed us to identify epitopes from our
full dataset that were likely to have optimal population coverage.

4.6. Murine MHC Binding

Strong- and weak-binding CD8+ epitopes to murine MHC molecules were identified
using NetMHCpan-4.0 for peptide-MHC class I binding (https://services.healthtech.dtu.
dk/service.php?NetMHCpan-4.0, (accessed on 28 June 2022) [62]. NetMHCpan-4.0 used
artificial neural networks (ANNs) to give results for the following murine MHC alleles:

http://tools.iedb.org/mhcii/
http://tools.iedb.org/CD4episcore/
https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.0
https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.0


Pharmaceuticals 2023, 16, 932 19 of 23

H-2-Db, H-2-Dd, H-2-Kb, H-2-Kd, H-2-Kk, H-2-Ld, H-2-Qa1, and H-2-Qa2. For CD4+
epitopes, NetMHCIIpan-4.0 for peptide–MHC class II binding was used (https://services.
healthtech.dtu.dk/service.php?NetMHCIIpan-4.0, (accessed on 19 July 2022) [63], which
gave results for the following murine MHC alleles: H-2-IAu, H-2-Ied, and H-2-IEk.

4.7. Three-Dimensional (3D) Modeling of Peptide–MHC Complex and TCR Interactions

We found PDB files for four HLA alleles that were restricted by several of our top
epitopes on the RCSB Protein Data Bank (https://www.rcsb.org/, (accessed on 21 July
2022) [25]. HLA alleles were chosen based on the MHC restrictions presented for each CD8+
and CD4+ epitope listed by IEDB. Using MDockPeP (https://zougrouptoolkit.missouri.
edu/mdockpep/, (accessed on 21 July 2022) [64–66] and CABS-dock [67], select epitopes
from our final dataset were attached to binding grooves of HLA alleles to create four 3D
models of peptide–MHC complexes. Both MDockPeP and CABS-dock generate top-scoring
docking models with minimal binding energy. TCRModel (https://tcrmodel.ibbr.umd.
edu/rtcrex/TCRSDM6_180718_160348, (accessed on 31 July 2022) [68] was used to create
3D models of TCR complex interactions with our peptide–MHC complexes. All 3D models
were edited with PyMOL.

5. Conclusions

Several studies have investigated how to treat AML, including drug therapies, combi-
nation therapy (drugs and chemotherapy), stem cell transplants, and vaccines. However,
many treatments, including AML vaccines that target the KIT gene, remain unexplored.
The purpose of this study was to develop a vaccine design for AML using in silico methods
that target missense mutations on the KIT oncogene. We applied several clinically relevant
variables to our vaccine epitopes, including percentile rank, immunogenicity, antigenicity,
half-life, toxicity, IFNγ release, allergenicity, and stability, to ensure the vaccine’s safety
and effectiveness. Then, population coverage demonstrated the broadness of our vaccine
design’s potential. Using this method, we found 12 CD8+ and 21 CD4+ epitopes from
mutated KIT peptide sequences that can be implemented in a vaccine and potentially
used in murine trials. The 12 CD8+ epitopes were immunogenic, antigenic, non-toxic,
non-allergenic, and had long half-lives. In comparison, the 21 CD4+ epitopes were im-
munogenic, antigenic, non-toxic, non-allergenic, have long half-lives, and release IFNγ.
The CD8+ epitopes had a high population coverage of 98.55%, while the CD4+ epitopes
had a lower population coverage of 65.14% owing to limitations in our tools’ datasets and
minimal interactions between the KIT gene and CD4+ T-cells. PCOptim was modified into
PCOptim-CD to analyze both CD8+ and CD4+ datasets for optimized population coverage.
There was minimal overlap between the final filtered epitopes and the optimized epitopes
from PCOptim-CD, proving that further research is needed to develop a stronger dataset
with greater validity. The four CD8+ and six CD4+ epitopes that were strong binders to
murine MHC alleles indicated that our results can lead to preclinical studies with vaccine
trials on murine models. We designed a vaccine predicated to be safe and effective through
in silico methods to help improve treatments for AML and develop cost-effective methods
for vaccine designs before pre-clinical trials. Our data may be used to facilitate future stud-
ies in investigating the use of our vaccine design in murine and clinical trials and improving
immunoinformatic tools. Murine trials with the peptide vaccine design would be the next
step for advancing research on this treatment for AML. Using the top epitopes with strong
binding to murine MHC molecules, hematopoietic and stem and progenitor cells from
mice would be modified with genome editing in vitro. The treatment group would receive
these cells intravenously (IV) in addition to radiation treatment [69] and IV-administered
peptide vaccine, and the control group would receive normal saline administration. The
study would include dosage testing to measure the appropriate dosage needed for the
peptide vaccine. qPCR analysis may be conducted to measure the presence of the KIT gene
as well as mutant KIT genes. RNA-sequence analysis would be used to measure prevalence
of the single amino acid mutations found in our peptide vaccine. MHC-epitope binding
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complexes would be isolated with immunoprecipitation assays to confirm the success of
epitope binding to target MHC allele. SCF binds to the KIT gene to induce various cellular
pathways, and SCF-ELISA assay may be used to analyze antibody binding levels on KIT to
assess KIT function. The results of these experiments with murine trials would determine
whether the peptide vaccine can be tested further clinically.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16070932/s1, Figure S1: Superimposed models of epitope–MHC
complexes with sample peptides. SDINAAIAF binding to MHC Class I molecule HLA-A*01:01
superimposed with PDB ID: 6MPP (A). GKSDLIVHV binding to MHC Class I molecule HLA-A*02:06
superimposed with PDB ID: 3OXR (B). GLARYIKNDSNYVVKGN binding to MHC Class II molecule
HLA-DRB1*04:01 superimposed with PDB ID: 5JLZ (C). FGLARYIKNDSNYVVK binding to MHC
Class II molecule HLA-DRB3*01:01 superimposed with PDB ID: 2Q6W (D); Table S1: Population
Coverage for CD8 Epitopes; Table S2: Optimized CD8 Epitopes; Table S3: Population Coverage for
CD4 Epitopes; Table S4: Optimized CD4 Epitopes; Table S5: Population Coverage for Optimized CD4
Epitopes; Table S6: Combined Class I and Class II Population Coverage; Table S7: Top CD8+ Epitopes
Clinically Relevant Variables; Table S8: Tope CD4+ Epitopes Clinically Relevant Variables.

Author Contributions: Conceptualization, S.D.; methodology, K.S., S.D. and M.K.; software, K.S.
and S.D.; validation, M.K. and K.S.; formal analysis, M.K. and K.S.; investigation, K.S., S.D. and M.K.;
resources, S.D.; data curation, M.K. and K.S.; writing—original draft preparation, M.K., K.S. and
S.D.; writing—review and editing, M.K., K.S. and S.D.; visualization, M.K.; supervision, S.D.; project
administration, S.D.; funding acquisition, S.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and Supplementary Material.

Acknowledgments: This work was supported in part by funding from Georgetown Lombardi’s
Comprehensive Cancer (LCCC) Research Training and Education Coordination (CRTEC), and the
author M.K. and K.S. were part of the GLCCC Undergraduate Summer Research Program. The
author D.S. acknowledges the support of the LCCC METRO PILOT Award.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. DiNardo, C.D.; Cortes, J.E. Mutations in AML: Prognostic and therapeutic implications. Hematol. Am. Soc. Hematol. Educ. Program

2016, 1, 348–355. [CrossRef] [PubMed]
2. Vakiti, A.; Mewawalla, P. Acute Myeloid Leukemia. In StatPearls [Internet]; [Updated 17 August 2021]; StatPearls Publishing:

Treasure Island, FL, USA, 2022.
3. Mayo Foundation for Medical Education and Research. Acute Myelogenous Leukemia. Mayo Clinic. 10 February 2021.

Available online: https://www.mayoclinic.org/diseases-conditions/acute-myelogenous-leukemia/symptoms-causes/syc-20
369109 (accessed on 21 July 2022).

4. Hussain, S.R.; Raza, S.T.; Babu, S.G.; Singh, P.; Naqvi, H.; Mahdi, F. Screening of C-kit gene Mutation in Acute Myeloid Leukaemia
in Northern India. Iran. J. Cancer Prev. 2012, 5, 27–32.

5. Poklepovic, A.; Bose, P. Molecularly Targeted Therapy: Imatinib and Beyond Gastrointestinal stromal tumor. In Gastrointestinal
Stromal Tumor; Lunevicius, R., Ed.; InTech: London, UK, 2012; Volume 49.

6. Tabone-Eglinger, S.; Subra, F.; El Sayadi, H.; Alberti, L.; Tabone, E.; Michot, J.-P.; Théou-Anton, N.; Lemoine, A.; Blay, J.-Y.; Emile,
J.-F. KIT Mutations Induce Intracellular Retention and Activation of an Immature Form of the KIT Protein in Gastrointestinal
Stromal Tumors. Clin. Cancer Res. 2008, 14, 2285–2294. [CrossRef] [PubMed]

7. Sangle, N.A.; Perkins, S.L. Core-Binding Factor Acute Myeloid Leukemia. Arch. Pathol. Lab. Med. 2011, 135, 1504–1509. [CrossRef]
8. Badr, P.; Elsayed, G.M.; Eldin, D.N.; Riad, B.Y.; Hamdy, N. Detection of KIT mutations in core binding factor acute myeloid

leukemia. Leuk. Res. Rep. 2018, 10, 20–25. [CrossRef]
9. Mast/Stem Cell Growth Factor Receptor Kit: AlphaFold Structure Prediction. AlphaFold Protein Structure Database. Updated 1

June 2022. Available online: https://alphafold.ebi.ac.uk/entry/P10721 (accessed on 31 July 2022).

https://www.mdpi.com/article/10.3390/ph16070932/s1
https://www.mdpi.com/article/10.3390/ph16070932/s1
https://doi.org/10.1182/asheducation-2016.1.348
https://www.ncbi.nlm.nih.gov/pubmed/27913501
https://www.mayoclinic.org/diseases-conditions/acute-myelogenous-leukemia/symptoms-causes/syc-20369109
https://www.mayoclinic.org/diseases-conditions/acute-myelogenous-leukemia/symptoms-causes/syc-20369109
https://doi.org/10.1158/1078-0432.CCR-07-4102
https://www.ncbi.nlm.nih.gov/pubmed/18413817
https://doi.org/10.5858/arpa.2010-0482-RS
https://doi.org/10.1016/j.lrr.2018.06.004
https://alphafold.ebi.ac.uk/entry/P10721


Pharmaceuticals 2023, 16, 932 21 of 23

10. Shi, X.; Sousa, L.P.; Mandel-Bausch, E.M.; Tome, F.; Reshetnyak, A.V.; Hadari, Y.; Schlessinger, J.; Lax, I. Distinct cellular properties
of oncogenic kit receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition. Proc. Natl. Acad. Sci. USA
2016, 113, E4784–E4793. [CrossRef]

11. Treating Acute Myeloid Leukemia (AML). American Cancer Society. Available online: https://www.cancer.org/cancer/acute-
myeloid-leukemia/treating.html (accessed on 21 July 2022).

12. Paschka, P.; Konstanze, D. Core-binding factor acute myeloid leukemia: Can we improve on HiDAC consolidation? Hematol. Am.
Soc. Hematol. Educ. Program 2013, 1, 209–219. [CrossRef]

13. Brownell, L. Solid Vaccine Eliminates Acute Myeloid Leukemia in Mice. Harvard Gazette. 14 January 2020. Available online:
https://news.harvard.edu/gazette/story/2020/01/solid-vaccine-eliminates-acute-myeloid-leukemia-in-mice/ (accessed on 21
July 2022).

14. Kim, K.H.; Kim, J.O.; Park, J.Y.; Seo, M.D.; Park, S.G. Antibody-drug conjugate targeting c-KIT for the treatment of small cell lung
cancer. Int. J. Mol. Sci. 2022, 23, 2264. [CrossRef] [PubMed]

15. Ray, P.; Krishnamoorthy, N.; Oriss, T.B.; Ray, A. Signaling of c-kit in dendritic cells influences adaptive immunity. Ann. N. Y. Acad.
Sci. 2010, 1183, 104–122. [CrossRef]

16. Dentelli, P.; Cavallo, F.; Brizzi, M.F. Membrane-bound KIT ligand-targeting DNA vaccination inhibits mammary tumor growth.
Oncoimmunology 2014, 3, e27259. [CrossRef]

17. Liu, J.J.; Yu, C.S.; Wu, H.W.; Chang, Y.J.; Lin, C.P.; Lu, C.H. The structure-based cancer-related single amino acid variation
prediction. Sci. Rep. 2021, 11, 13599. [CrossRef] [PubMed]

18. Zhao, Y.; Baldin, A.V.; Isayev, O.; Werner, J.; Zamyatnin, A.A., Jr.; Bazhin, A.V. Cancer Vaccines: Antigen Selection Strategy.
Vaccines 2021, 9, 85. [CrossRef]

19. Liang, J.; Wu, Y.L.; Chen, B.J.; Zhang, W.; Tanaka, Y.; Sugiyama, H. The c-kit receptor-mediated signal transduction and
tumor-related diseases. Int. J. Biol. Sci. 2013, 9, 435–443. [CrossRef]

20. de Lartigue, J. The SCF/KIT Pathway’s Roles: Interest in Therapeutic Targets is Growing. OncLive. Updated 1 September
2011. Available online: https://www.onclive.com/view/the-scfkit-pathways-roles-interest-in-therapeutic-targets-is-growing
(accessed on 31 July 2022).

21. Feng, Z.C.; Riopel, M.; Popell, A.; Wang, R. A survival Kit for pancreatic beta cells: Stem cell factor and c-Kit receptor tyrosine
kinase. Diabetologia 2015, 58, 654–665. [CrossRef]

22. Carlino, M.S.; Todd, J.R.; Rizos, H. Resistance to c-KIT inhibitors in melanoma: Insights for Future Therapies. Oncoscience 2014, 1,
423–426. [CrossRef] [PubMed]

23. Wang, Z.; Turner, R.; Baker, B.M.; Biddison, W.E. MHC Allele-Specific Molecular Features Determine Peptide/HLA-A2 Confor-
mations That Are Recognized by HLA-A2-Restricted T Cell Receptors. J. Immunol. 2002, 169, 3146–3154. [CrossRef]

24. Ge, C.; Weisse, S.; Xu, B.; Dobritzsch, D.; Viljanen, J.; Kihlberg, J.; Do, N.-N.; Schneider, N.; Lanig, H.; Holmdahl, R.; et al.
Key interactions in the trimolecular complex consisting of the rheumatoid arthritis-associated DRB1*04:01 molecule, the major
glycosylated collagen II peptide and the T-cell receptor. Ann. Rheum. Dis. 2022, 81, 480–489. [CrossRef] [PubMed]

25. RCSB PDB. Available online: https://www.rcsb.org/ (accessed on 21 July 2022).
26. Barbullushi, K.; Rampi, N.; Serpenti, F.; Sciumè, M.; Fabris, S.; De Roberto, P.; Fracchiolla, N.S. Vaccination Therapy for Acute

Myeloid Leukemia: Where Do We Stand? Cancers 2022, 14, 2994. [CrossRef]
27. Combination of Nilotinib (AMN107) and RAD001 in Patients with Acute Myeloid Leukemia. ClinicalTrials.gov. Updated 8

August 2012. Available online: https://clinicaltrials.gov/ct2/show/NCT00762632?term=KIT (accessed on 21 July 2022).
28. Trial to Assess the Efficacy of Midostaurin (PKC412) in Patients with c-KIT or FLT3-ITD Mutated t(8;21) AML (MIDOKIT).

ClinicalTrials.gov. Updated 6 August 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT01830361?term=KIT
(accessed on 21 July 2022).

29. Gross, S.; Lennerz, V.; Gallerani, E.; Mach, N.N.; Böhm, S.; Hess, D.; von Boehmer, L.; Knuth, A.; Ochsenbein, A.; Gnad-Vogt, U.S.;
et al. Short Peptide Vaccine Induces CD4+ T Helper Cells in Patients with Different Solid Cancers. Cancer Immunol. Res. 2016, 4,
18–25. [CrossRef]

30. Gonzalez-Galarza, F.F.; McCabe, A.; Melo dos Santos, E.J.; Jones, J.; Takeshita, L.; Ortega-Rivera, N.D.; Del Cid-Pavon, G.M.;
Ramsbottom, K.; Ghattaoraya, G.; Alfirevic, A.; et al. Allele frequency net database (AFND) 2020 update: Gold-standard data
classification, open access genotype data and new query tools. Nucleic Acids Res. 2020, 48, D783–D788. [CrossRef]

31. Yi, M.; Li, A.; Zhou, L.; Chu, Q.; Song, Y.; Wu, K. The global burden and attributable risk factor analysis of acute myeloid leukemia
in 195 countries and territories from 1990 to 2017: Estimates based on the global burden of disease study 2017. J. Hematol. Oncol.
2020, 13, 72. [CrossRef]

32. Savsani, K.; Jabbour, G.; Dakshanamurthy, S. A New Epitope Selection Method: Application to Design a Multi-Valent Epitope
Vaccine Targeting HRAS Oncogene in Squamous Cell Carcinoma. Vaccines 2022, 10, 63. [CrossRef] [PubMed]

33. Suri, S.; Dakshanamurthy, S. IntegralVac: A Machine Learning-Based Comprehensive Multivalent Epitope Vaccine Design
Method. Vaccines 2022, 10, 1678. [CrossRef]

34. Frumento, G.; Zuo, J.; Verma, K.; Croft, W.; Ramagiri, P.; Chen, F.E.; Moss, P. CD117 (c-kit) is expressed during CD8+ T cell
priming and stratifies sensitivity to apoptosis according to strength of TCR Engagement. Front. Immunol. 2019, 10, 468. [CrossRef]
[PubMed]

https://doi.org/10.1073/pnas.1610179113
https://www.cancer.org/cancer/acute-myeloid-leukemia/treating.html
https://www.cancer.org/cancer/acute-myeloid-leukemia/treating.html
https://doi.org/10.1182/asheducation-2013.1.209
https://news.harvard.edu/gazette/story/2020/01/solid-vaccine-eliminates-acute-myeloid-leukemia-in-mice/
https://doi.org/10.3390/ijms23042264
https://www.ncbi.nlm.nih.gov/pubmed/35216379
https://doi.org/10.1111/j.1749-6632.2009.05122.x
https://doi.org/10.4161/onci.27259
https://doi.org/10.1038/s41598-021-92793-w
https://www.ncbi.nlm.nih.gov/pubmed/34193921
https://doi.org/10.3390/vaccines9020085
https://doi.org/10.7150/ijbs.6087
https://www.onclive.com/view/the-scfkit-pathways-roles-interest-in-therapeutic-targets-is-growing
https://doi.org/10.1007/s00125-015-3504-0
https://doi.org/10.18632/oncoscience.51
https://www.ncbi.nlm.nih.gov/pubmed/25594040
https://doi.org/10.4049/jimmunol.169.6.3146
https://doi.org/10.1136/annrheumdis-2021-220500
https://www.ncbi.nlm.nih.gov/pubmed/35027402
https://www.rcsb.org/
https://doi.org/10.3390/cancers14122994
https://clinicaltrials.gov/ct2/show/NCT00762632?term=KIT
https://clinicaltrials.gov/ct2/show/NCT01830361?term=KIT
https://doi.org/10.1158/2326-6066.CIR-15-0105
https://doi.org/10.1093/nar/gkz1029
https://doi.org/10.1186/s13045-020-00908-z
https://doi.org/10.3390/vaccines10010063
https://www.ncbi.nlm.nih.gov/pubmed/35062725
https://doi.org/10.3390/vaccines10101678
https://doi.org/10.3389/fimmu.2019.00468
https://www.ncbi.nlm.nih.gov/pubmed/30930902


Pharmaceuticals 2023, 16, 932 22 of 23

35. Fuster, O.; Barragán, E.; Bolufer, P.; Cervera, J.; Larráyoz, M.J.; Jiménez-Velasco, A.; Martínez-López, J.; Valencia, A.; Moscardó, F.;
Sanz, M. Rapid detection of KIT mutations in core-binding factor acute myeloid leukemia using high-resolution melting analysis.
J. Mol. Diagn. 2009, 11, 458–463. [CrossRef] [PubMed]

36. KIT Gene–Somatic Mutations in Cancer. COSMIC. Available online: https://cancer.sanger.ac.uk/cosmic/gene/analysis?all_
data=&coords=AA%3AAA&dr=&end=977&gd=&hn=haematopoietic_neoplasm&id=258193&ln=KIT&seqlen=977&sh=acute_
myeloid_leukaemia&sn=haematopoietic_and_lymphoid_tissue&ss=NS&start=1#ts (accessed on 8 August 2022).

37. Catalogue of Somatic Mutations in Cancer. COSMIC. Updated 31 May 2022. Available online: https://cancer.sanger.ac.uk/cosmic
(accessed on 24 July 2022).

38. P10721: KIT_HUMAN. UniProt. Available online: https://www.uniprot.org/uniprotkb/P10721/entry#family_and_domains
(accessed on 31 July 2022).

39. Uniprot. UniProt. Available online: https://www.uniprot.org/ (accessed on 21 July 2022).
40. MHC-I Binding Predictions. IEDB Analysis Resource. Available online: http://tools.iedb.org/mhci/ (accessed on 7 June 2022).
41. MHC-I Binding Predictions–Tutorial. IEDB Analysis Resource. Available online: http://tools.iedb.org/mhci/help/ (accessed on

21 July 2022).
42. Class I Immunogenicity. IEDB Analysis Resource. Available online: http://tools.iedb.org/immunogenicity/ (accessed on 13

June 2022).
43. Calis, J.J.A.; Maybeno, M.; Greenbaum, J.A.; Weiskopf, D.; De Silva, A.D.; Sette, A.; Keşmir, C.; Peters, B. Properties of MHC Class
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